导航:首页 > 装置知识 > 合肥核聚变实验装置

合肥核聚变实验装置

发布时间:2023-03-31 23:26:41

Ⅰ 中国第一“人造太阳”基地是哪

中国第一复“人造太阳”基地是制合肥科学岛。

中国“人造太阳”EAST物理实验获重大突破,实现在国际上电子温度达到5000万度持续时间最长的等离子体放电,标志着中国在稳态磁约束聚变研究方面继续走在国际前列。

中国的全超导托卡马克核聚变实验装置EAST和中国、美国、俄罗斯等七方共同启动的国际热核聚变实验堆ITER都是旨在创造一个“太阳”,给人类带来源源不断的清洁能源,因此也俗称“人造太阳”。

(1)合肥核聚变实验装置扩展阅读:

2018年6月28日,国务院国资委在北京发布中央企业工业文化遗产(核工业)名录,首批专门发布核工业行业的12项工业文化遗产。中国第一座人造太阳实验装置是其中之一。

在刘志宏心中神秘的“人造太阳”的所在地, 其实就是中科院等离子体物理研究所,也是他获得博士学位的地方。在这里,他明白了,通过科学家们一代又一代的努力,已经建成了世界上首个全超导非圆截面托卡马克核聚变实验装置(EAST), 同时,于2006 年正式加入了国际热核聚变实验堆(ITER)项目,这也是我国迄今为止参与的最大的国际合作项目。

Ⅱ “人造太阳”如能永耀,人类将彻底解决能源问题

太阳的聚变反应,靠重力约束,但仍然需要巨大的空间,才能容纳这样一个高温物体。 (东方IC/图)

2021年5月28日,中科院合肥物质科学研究院有“人造太阳”之称的全超导托卡马克核聚变实验装置(EAST)创造新的世界纪录,成功实现可重复的1.2亿摄氏度101秒和1.6亿摄氏度20秒等离子体运行,该成绩打破了2020年年底韩国创造的1亿摄氏度20秒的纪录,将时间延长了5倍。科研人员称新纪录进一步证明核聚变能源的可行性,也为迈向商用奠定物理和工程基础。这是人类掌控核聚变的又一次成功突破。

核聚变,指轻原子核,例如氢的同位素氘和氚,聚合为较重原子核,例如氦。聚变过程,会损失一定质量,根据爱因斯坦质能方程,这些质量会转变为巨大的能量。热核聚变是宇宙中的常见现象,太阳就是一个巨大的热核聚变反应炉。

人类对核聚变认识,差不多有100年了。1932年,马克·奥利芬特完成了氢同位素的实验室聚变。20年后,1952年,氢弹试验成功。氢弹是人类 历史 上第一次利用核聚变。不过,这种方式是剧烈的、不可控。其实,单单可控,人类也能做到,但这样的聚变反应,输入能量大于输出能量,得不偿失,而且时间也极短,所以,不能用来发电。要想聚变被用来发电,不但要可控,还要输出能量大于输入,并且持续、平稳。

太阳的聚变反应,靠重力约束,但仍然需要巨大的空间,才能容纳这样一个高温物体。太阳表面的日珥,高于日面几十万千米,而地球的直径才1.2万多千米。即便如此,没有磁场、大气层的保护,地球生物仍然承受不了太阳核聚变所发射的射线。显然,地球上没有那么大空间,要想实现大规模的聚变,还得想其他办法。

核聚变发生时,是等离子状态,温度达到几千万度甚至几亿度。没有任何容器可以承受这样的高温。那么,一个思路就是用一种无形的力去约束等离子体。人类想到的办法是磁场。

从1940年代末起,各国对聚变发电可行性展开了大量研究,投入大量的人力与经费,开发了多种磁笼。到了1970年代,苏联科学家伊戈尔·塔姆、安德烈·萨哈罗夫和列夫·阿齐莫维齐等人在1950年代发明的“托克马克”(Tokamak)逐渐显示出了优势,并在1980年代成为聚变能研究的主流。托克马克的中央是一个环形真空,外面围绕着线圈。通电时其内部会产生巨大螺旋形磁场,将其中的等离子体加热到很高温度,并加以约束,达到受控核聚变的目的。

此次合肥的EAST于2000年开建,2006年建成,是由中国自行设计研制的,又被称为东方超环。EAST的一系列里程碑成果表明,中国磁约束聚变研究在稳态运行的物理和工程方面,开始引领国际前沿。

不过,核聚变所要求的技术、资金、人力是如此之大,往往是一国所难以独力承受的。

1970年代后期到80年代中期,美国、日本、俄罗斯、欧洲陆续建成了五个大型的托卡马克装置。1985年,里根-戈尔巴乔夫倡议苏联、欧盟(通过欧洲原子能共同体)、美国和日本平等地参与建设ITER。2006年5月24日,欧盟、美国、中国、日本、韩国、俄罗斯和印度7方代表草签了一系列相关合作协议,标志着这项计划开始启动。ITER是目前全球规模最大、影响最深远的国际科研合作项目之一,也是国际 科技 合作史上前所未有的。它的建造周期很长,计划耗资五十亿美元(1998年值)。

需要指出的是,ITER的目标是实现氘氚放电自持300-500秒,预期功率到500MW。但这仍然是一个实验,离商业化还非常遥远。

可控聚变被认为能为人类带来无限的清洁能源,远景规划非常诱惑人。然而,遗憾的是,过去几十年,在投入了无数资金之后,科学家取得的成就非常有限,实用性的商业价值,还遥不可及。研究聚变的物理学家中流传着一个很久的笑话:新闻界又开始报道核聚变技术,要在30年后进入实用阶段、核聚变工厂即将开工的消息了。

媒体难免夸张,是因为前景太过美好。

人类的工业 历史 ,无非是挖矿、种植,得到原材料,然后引入能量制造产品。挖矿本身需要能量,而种植无非是把太阳能变为碳的化合物。所以,人类的生活本质上是由利用能量的程度决定的。而核聚变,可以提供廉价、清洁的能源,一旦实现,势必从根本上改变我们的生活。

比如,一些高耗电的行业就没有了电力的限制,势必会发生变革,例如钢铁、化工等产业。电力成本降低,整个产品成本也随之降低。而煤炭、原油行业,逐渐被替代,地球环境也会更好。再比如现在的电动 汽车 被一些人溢美为“新能源车”,但有的能源的来源一点都不新,电力仍以化石燃料为主。只有当可控核聚变真正占据能源供应的主流时,以此能源的新能源车才实至名归。

前景如此美好,人类翘首以盼,但前路遥远,道阻且艰,还有待科学家的努力, 探索 那无尽的前沿。

(作者系上海金融与法律研究院研究员)

(本文仅为作者个人观点,不代表本报立场)

刘远举

Ⅲ 可控核聚变的输出能量已经大于输入,那么现在可以商业化了吗

我们所熟悉的可控核聚变实现方式有两种,一种是国际热核聚变装置ITER支持的磁约束核聚变,另一种是各国自行研究方向的惯性约束核聚变!两种从原理上来看有很大的区别,但都需要输入大量的能量作为可控核聚变的基础都是完全一致的!

上图是磁约束核聚变装置的动态示意图,当然事实上的核聚变堆也许并不是这种方式运行的,但表现原理并无问题,它存在几个非常关键的结构:

1.约束控制与加热超高温等离子体的磁场,即D行空腔的第二层内壁!

2.燃料的等离子体的注入,动图中在内壁侧面注入!

3.内壁兼热交换结构,将核聚变产生的超高温从聚变堆内部带走转换发电并保持内壁适合温度

4.核聚变堆灰烬排出结构!

磁约束可控核聚变装置实现有两种, 一种是托卡马克结构,另一种是仿星器结构 ,两种都是现代可控核聚变的重要研究方向!

托卡马克可控核聚变装置内部,这种结构最早是前苏联库尔恰托夫研究所的阿齐莫维齐等在上世纪50年代发明的,托卡马克的核心装置是环形真空室,外壁缠绕超导线圈,通电后会产生螺旋形磁场,完成等离子的加热以及控制约束的目的!

另一种则是仿星器,仿星器最早是由美国理论物理学家、天文学家李曼斯·皮策(Lyman Spitzer)在上世界50年代发明并建成,其实两种磁约束的经典结构最早时间都差不多!但两者真空室结构不一样,它的规模要比托卡马克要小一些!但托卡马克在等离子体磁场建立过程中可以调整磁场以约束磁场而仿星器则完全依靠安装精度!而且仿星器的磁场扭曲结构并非轴对称,因此仿星器的等离子体约束难度要比托卡马克难得多!

尽管仿星器与托卡马克都有一大票支持者,当然托卡马克装置更是有ITER的支持!不过无论哪家都没有一家在这个可控核聚变的道路走到商业化的程度,其原因不外乎等离子体的温度不够高,约束的时间不够久,商业化的门槛大约是一亿度,1000S,我们现在走得最远的大概温度实现了一半,时间则在1/10-1/5左右,尽管最近以来的进展比较快,但仍然有很远的路要走!

还有一种与磁约束完全不同的结构则是 惯性约束核聚变装置 ,这种理解起来比较简单,用几十到束激光轰击中央的燃料靶,高温高压以达到核聚变的目的!

与各位理解的不一样激光束并不是直接加热燃料的,而是采用一种山图的间接的方式,不过到现在为止惯性约束遇到的难题并不比磁约束小,一是数十束超高能激光束的激光装置,另一个燃料加热后的外层等离子体影响进一步加热,似乎有一种走入死胡同的感觉!

在合肥的中国托卡马克可控核聚变实验装置东方超环,当然也有执行中国惯性约束研究神光一号二号,我们的进度在磁约束方面甚至还部分领先全球,不过在惯性约束上并无更多的资料披露,我们难以了解进度如何!

当前在可控核聚变领域做到输出大于输入并没有多大的问题,但并不是说输出大于输入即可商业化,因为巨大的建设与运行成本并不是那么一点点盈余即可应付的,而且不稳定的运行成本则更高,我们要求的稳态的长时间高回报的能量输出!但似乎看起来永远都差那么五十年,不过根据最近的进展来看,还真有可能在最后这个五十年内实现,各位少安毋躁!

Ⅳ “人造太阳”东方超环再创新纪录,我国的东方超环到底多厉害

有“人造太阳”之称的全超导托卡马克核聚变实验装置(EAST东方超环)在本月初,已经开启了新一轮的实验。此次实验建立在对上一轮实验结果的总结以及对 EAST 辅助加热等系统升级改造的基础之上,目标是让“人造太阳”向着更“热”更“持久”发起冲击。

我们拥有一个共同的梦想,那就是寻求一种无限而清洁的能源,从而实现人类的永续发展。如果说“夸父追日”是古人战胜自然的美好愿望,那么东方超环则代表了今人把梦想变为现实的努力。

EAST是由国家发改委批准立项的“九五”国家重大科技基础设施。中国聚变工程实验堆目前已完成工程设计,聚变堆主机关键系统综合研究设施正在建设。按照中国核聚变“三步走”的规划,中国极有可能成为世界首个建成核聚变实验电站的国家。

Ⅳ 为什么要研究可控核聚变因为它可以使人类文明前进很大的一步!

不管我们要做什么事,首先要有一个原因,我们人类为什么要发展可控核聚变呢?这要从能量的角度谈起,到目前为止,我们的所需要能量绝大多数来自太阳,比如说石油、天然气、煤以及水力、风力发电等等,甚至我们生命的根本-食物,它们所蕴含的能量都是太阳赋予的。而太阳的能量来自于哪里呢?这一点大家都知道,它源自太阳内部的氢-氦核聚变反应。

人类现在已经可以利用核裂变来发电了,但地球上核裂变的资源是非常有限的,根据相关数据,目前地球上已探明的可以用作核裂变的原料仅仅够人类使用几十年的时间。相比之下,地球上核聚变的资源就要多出很多了,地球上的海水中拥有40万亿吨氘(氢的同位素),而如果完全利用的话,一公斤氘的核聚变反应就可以产生差不多1亿度的电能。这还没有算上宇宙中其他的广泛存在的核聚变资源,例如月球上储量惊人的氦-3。

如果人类能够随意控制核聚变的能量,我们就可以实现完全的自给自足,甚至可以不再依靠太阳!这也就意味着人类文明将会前进很大的一步,有了可控核聚变,人类走出太阳系将指日可待。换一个角度来看,核聚变是具有高效率、低成本的清洁能源,这也非常符合人类发展的方向。

核聚变的原理就是通过技术手段将氢原子“捏”在一起,使其聚变为氦,在这个过程中会释放大量的能量。以目前的 科技 ,要使氢原子发生核聚变,就必须用高温高压的方式,这个原理很简单,原子核之间有着巨大的排斥力,我们又不可能真的能将原子核“捏”在一起,所以就只有将原子核加速,只要原子核具有足够的速度,它们就可以克服排斥力撞在一起,而高压环境下的原子核会更集中,这将大大增加原子核碰撞的概率。要将原子核加速,科学家们可以简单的用升高温度的方法来实现,由此可见,核聚变最关键的就是高温环境。

人类的末日武器-氢弹就是核聚变反应,它的原理就是利用引爆小型原子弹(核裂变)来达到高温高压的环境,进而引发氢弹的核聚变反应,并在一瞬间释放出强大的能量。

但这种反应是破坏性的,不可控制的,如果人类要利用它的能量,这种方式明显是不可行的。人类需要用一种持续的、平稳的方式来获得核聚变的能量。从理论上来讲,可控核聚变实现起来似乎并不难,只需要三步就可以,第一步、将核聚变原料放入一个容器中;第二步、对核聚变原料加温加压使其产生聚变反应;第三步、通过某种方式将容器里的能量平稳的导出来。

事实上,要点燃核聚变对于人类来说并不困难,科学家们可以用多束高能激光,从各个方位对核聚变原料进行加热,从而实现“点火”的目的。但难点就在于这个“容器”上,要知道核聚变会产生至少5000万摄氏度的高温,与此同时还会产生强大的辐射能,以现在的 科技 ,人类根本制造不出能够扛得住这种极端“折磨”的材料。

但是聪明的科学家想出了另外的办法,在高温环境下,原子中的电子与原子核之间的连接会被打破,在这种情况下电子会挣脱原子核的束缚,这种现象被称之为“电离”。失去电子之后,剩下那些原子核就变成了“等离子体”,由于等离子体是带正电的,所以它们可以被磁场约束。基于这种理论,上世纪50年代,前苏联的库尔恰托夫研究所发明了“托卡马克”装置,使人类在可控核聚变的领域迈出了从无到有的第一步。

然而用磁场来约束等离子体,在实际操作上难度是极大的。要让核聚变持续、稳定的进行,就必须要保证磁场要长时间的、非常均匀的分布,而事实上这是目前 科技 水平不能做到的。任何不均匀的磁场都会对等离子体造成扰动,这些扰动会在电磁作用下瞬间放大,从而使整个核聚变反应变得不受控制,要么反应太激烈,要么停止反应。

可控核聚变的难度远不止于如何约束等离子体,在很多细节上都有难以突破的瓶颈,比如说要用约束等离子体,就必须要有很强的磁场,而要制造很强的磁场就需要有强大的电流,因此只能用超导体来完成这个磁场的建设。要知道超导体必须在超低温下工作,一般的温度都需要零下200摄氏度,但它们要约束的又是温度至少是5000万摄氏度的高温物质……其中的难度可想而知。

在可控核聚变中有一个专业术语叫“第一壁”,它指的是在核聚变中面对等离子体的第一层固体隔离结构,“第一壁”起的是封闭能量的作用,如果没有了它,收集核聚变产生的能量也就无从谈起。“第一壁”也是技术上的一大难题,在几千万甚至上亿摄氏度的高温以及巨大的辐射能面前,目前人类所能制造的任何材料挺不了多长时间。

值得一提的是,在可控核聚变的研究领域,我国在全世界上是处于领先的水平, 2018年11月12日,中科院合肥物质科学研究院宣布,我国的全超导托卡马克核聚变实验装置EAST实现了“1亿摄氏度等离子体运行”等多项重大成就。

虽然可控核聚变之路困难重重,但是全世界的科学家对此热情不减,2006年,中国、美国、欧盟、俄罗斯、日本、韩国和印度启动了“国际热核聚变反应堆计划”(简称ITER),该计划参与各方投入了大量的人力物力,致力于攀登这座“人类 科技 的巅峰”。相信随着 科技 的进步,“50年之后,可控核聚变可以得到实现”。

阅读全文

与合肥核聚变实验装置相关的资料

热点内容
阳江薄砂铸造厂怎么选 浏览:938
水管阀门安装在什么地方 浏览:481
给水阀门pi是什么阀 浏览:207
大阀门上的拧头叫什么 浏览:405
检测技术与自动化装置的问题 浏览:812
继电保护及自动装置运行管理 浏览:871
煤气阀门关闭记录表 浏览:116
后轮轴承怎么打磨 浏览:552
数控机床怎么磨球 浏览:563
含有差压式变送器的仪器有哪些 浏览:214
某传动装置采用 浏览:228
超声波过焊发脆怎么办 浏览:142
自行车的主要传动装置是什么 浏览:340
手机设备无法验证失败怎么办 浏览:444
排气阀门调教程 浏览:258
五金制品电镀锌 浏览:879
万向传动装置的应用主要有 浏览:586
铸造拔模有什么要求 浏览:446
重力工具箱没响应 浏览:730
石膏厂都有什么设备 浏览:516