❶ 電阻定律演示器是電阻定律實驗器嗎
是同一種儀器。
1、有的叫做電阻定律演示器,命名時側重演示用
❷ 四探針法消除接觸電阻的原理
KDY—1型四探針電阻率/方阻測試儀
使 用 說 明 書
廣州市昆德科技有限公司
1、概述
KDY-1型四探針電阻率/方阻測試儀(以下簡稱電阻率測試儀)是用來測量半導體材料(主要是硅單晶、鍺單晶、矽片)電阻率,以及擴散層、外延層、ITO導電薄膜、導電橡膠方塊電阻的測量儀器。它主要由電氣測量部份(簡稱:主機)、測試架及四探針頭組成。
本儀器的特點是主機配置雙數字表,在測量電阻率的同時,另一塊數字表(以萬分之幾的精度)適時監測全程的電流變化,免除了測量電流/測量電阻率的轉換,更及時掌控測量電流。主機還提供精度為0.05%的恆流源,使測量電流高度穩定。本機配有恆流源開關,在測量某些薄層材料時,可免除探針尖與被測材料之間接觸火花的發生,更好地保護箔膜。儀器配置了本公司的專利產品:「小游移四探針頭」,探針游移率在0.1~0.2%。保證了儀器測量電阻率的重復性和准確度。本機如加配HQ-710E數據處理器,測量矽片時可自動進行厚度、直徑、探針間距的修正,並計算、列印出矽片電阻率、徑向電阻率的最大百分變化、平均百分變化、徑向電阻率不均勻度,給測量帶來很大方便。
2、測試儀結構及工作原理
測試儀主機由主機板、電源板、前面板、後背板、機箱組成。電壓表、電流表、電流調節電位器、恆流源開關及各種選擇開關均裝在前面板上(見圖2)。後背板上只裝有電源插座、電源開關、四探針頭連接插座、數據處理器連接插座及保險管(見圖3)。機箱底座上安裝了主機板及電源板,相互間均通過接插件聯接。儀器的工作原理如圖1所示:
測試儀的基本原理仍然是恆流源給探針頭(1、4探針)提供穩定的測量電流I(由DVM1監測),探針頭(2、3)探針測取電位差V(由DVM2測量),由下式即可計算出材料的電阻率:
厚度小於4倍探針間距的樣片均可按下式計算
式中:V——DVM2的讀數,mV。
I——DVM1的讀數,mA。
W——被測樣片的厚度值以cm為單位。
F(W/S)——厚度修正系數,數值可查附錄二。
F(S/D)——直徑修正系數,數值可查附錄三。
Fsp——探針間距修正系數。
Ft——溫度修正系數,數值可查附錄一。
由於本機中已有小數點處理環節,因此使用時無需再考慮電流、電壓的單位問題。如果用戶配置了HQ-710E數據處理器只要置入厚度W、FSP、測量電流I等有關參數,一切計算、記錄均由它代勞了。如果沒有數據處理器(HQ-710E),用戶同樣可以依據上式用普通計算器算出准確的樣片電阻率。
對厚度大於4倍探針間距的樣片或晶錠,電阻率可按下式計算:
ρ=2πSV/I (2)
這是大家熟悉的樣品厚度和任一探針離樣品邊界的距離均大於4倍探針間距(近似半無穹大的邊界條件),無需進行厚度、直接修正的經典公式。此時如用間距S=1mm的探頭,電流I選擇0.628;用S=1.59mm的探頭,電流I選擇0.999,即可從本儀器的電壓表(DVM2)上直接讀出電阻率。
用KDY-1測量導電薄膜、硅的異型外延層、擴散層、導電薄膜的方塊電阻時,計身算公式為:
R = V/I F(D/S) F(W/S)FSP
由於導電層非常薄故F(W/S)=1,所以只要選取電流 I=F(D/S) FSP, ,F(D/S)=4.532
測量時電流調節到04532,ρ/R選擇在R燈亮
從KDY-1右邊的電壓表(DVM2)上即可直接讀出擴散薄層的方塊電阻R 。
備註:在測量方塊電阻時ρ/R選擇要在R,僅在電流0.01mA檔時電壓表最後一位數溢出(其它檔位可以正常讀數),故讀數時需要注意,如電流在0.01檔時電壓表讀數為00123,實際讀數應該是001230.。
3、使用方法
(1)主機面板、背板介紹
儀器除電源開關在背板外其它控制部分均安裝在面板上,面板的左邊集中了所有與測量電流有關的顯示和控制部份,電流表(DMV1)顯示各檔電流值,電流選擇值(隨運按鈕)供電流選檔用,~220V電源接通後儀器自動選擇在常用的1.0mA檔,此時1.0上方的紅色指示燈亮,隨著選擇開關的按動,指示燈在不同的檔位亮起,直選到檔位合適為止。打開恆流源,上方指示燈亮,電流表顯示電流值,調節粗調旋鈕使前三位數達到目標值,再調細調旋鈕使後兩位數達到目標值。這樣就完成了電流調節工作,此時我們可以把注意力集中到右邊,面板的右邊集中了所有電壓測量有關的控制部件,電壓表(DMV2)顯示各檔(ρ/R手動/自動)的正向、反向電壓測量值。ρ/R鍵必須選對,否則測量值會相差10倍;同樣手/自動檔也必須選對,否則儀器拒絕工作。
後背板上主要安裝的是電纜插座,圖上標得很清楚,安裝時請注意插頭與插座的對位標志。因為在背後容易漏插,松動時不易被發現,所以安裝必須插全、插牢。
(2)使用儀器前將電源線、測試架聯接線、主機與數據處理器的聯接線(如使用處理器)聯接好,並注意一下測試架上是否已接好探針頭。電源線插頭插入~220V座插後,開啟背板上的電源開關,此時前面板上的數字表、發光二極體都會亮起來。探針頭壓在被測單晶上,打開恆流源開關,左邊的表顯示從1、4探針流入單晶的測量電流,右邊的表顯示電阻率(測單晶錠時)或2、3探針間的電位差。電流大小通過旋轉前面板左下方的兩個電位器旋鈕加以調節,其它正、反向測量、ρ/R選擇、自動/手動測量都通過前面板上可自鎖的按鈕開關控制。
(3)儀器測量電流分五檔:0.01mA(10μA)、0.1mA(100μA)、1mA、10mA、100mA,讀數方法如下:
在0.01mA檔顯示5位數時:10000 表示電流為:0.01mA(10μA)
又如在0.01mA檔顯示:06282 即表示電流為:6.28μA
在0.1mA檔顯示5位數時:10000 表示電流為:0.1mA(100μA)
又如在0.1mA檔顯示:04532 表示電流為:45.32μA
在1mA檔顯示5位數時:10000 表示電流為:1mA
又如在1mA檔顯示:06282 表示電流為:0.6282mA
同樣在10mA檔顯示:10000 表示電流為:10mA
顯示:04532 表示電流為:4.532mA
100mA檔顯示:10000 表示電流為:100mA
顯示:06282 表示電流為:62.82mA
電流檔的選擇採用循環步進式的選擇方式,在儀器面板上有一個電流選擇按鈕,每按一次進一檔,儀器通電後自動設定在常用的1.0mA檔,如果你不斷地按下「電流選擇」按鈕,電流檔位按下列順序不斷地循環。
1.0mA→10mA→100mA→0.01mA→0.1mA→1.0mA→10mA→……
可以快速找到你所需的檔位。
(4)電壓表讀數:因為為了方便直接用電壓表讀電阻率,所以我們人為改動了電壓表的小數點移位,如需要直接讀取電壓值時需注意,本電壓表為199.99mV的數值電壓表,讀電壓值時小數點是固定位置的,
例如:電壓表顯示 讀電壓值
1.9999 199.99mV
19.999 199.99mV
199.99 199.99mV
1999.9 199.99mV
19999 199.99mV
根據國標GB/T1552-1995,不同電阻率硅試樣所需要的電流值如下表所示:
電阻率,Ω.cm 電流,mA 推薦的園片測量電流值
<0.03 ≤100 100
0.03~0.30 <100 25
0.3~3 ≤10 2.5
3~30 ≤1 0.25
30~300 ≤0.1 0.025
300~3000 ≤0.01 0.0025
根據ASTM F374-84標准方法測量方塊電阻所需要的電流值如下表所示:
方塊電阻Ω 電流,mA
2.0~25 10
20~250 1
200~2500 0.1
2000~25000 0.01
(5)恆流源開關是在發現探針帶電壓接觸被測材料影響測量數據(或材料性能)時,再使用,即先讓探針頭壓觸在被測材料上,後開恆流源開關,避免接觸時瞬間打火。為了提高工作效率,如探針帶電壓接觸被測材料對測量並無影響時,恆流源開關可一直處於開的狀態。
(6)正、反向測量開關只有在手動狀態下才能工作人工控制,在自動狀態下由數據處理器控制,因此在手動正反向開關不起作用時,先檢查手動/自動開關是否處於手動狀態。相反在使用數據處理器測量材料電阻率時,儀器必須處於自動狀態,否則數據處理拒絕工作。
(7)在使用數據處理器自動計算及記錄時,必須嚴格按照使用說明操作,特別注意輸入數據的位數。有關數據處理器的使用方法請仔細閱讀KDY測量系統的操作說明。
4、主機技術能數
(1)測量范圍:
可測電阻率:0.0001~19000Ω•cm
可測方塊電阻:0.001~190000Ω•□
(2)恆流源:
輸出電流:DC 0.001~100mA 五檔連續可調
量程:0.001~0.01mA
0.01~0.10mA
0.10~1.0mA
1.0~10mA
10~100mA
恆流精度:各檔均低於±0.05%
(3)直流數字電壓表:
測量范圍:0~199.99mV
靈敏度:10μV
基本誤差:±(0.004%讀數+0.01%滿度)
輸入阻抗:≥1000MΩ
(4)供電電源:
AC 220V±10% 50/60 Hz 功率:12W
(5)使用環境:
溫度:23±2℃ 相對濕度:≤65%
無較強的電場干擾,電源隔離濾波,無強光直接照射
(6)重量、體積:
主機重量:7.5kg
體積:365×380×160(單位:mm 長度×寬度×高度)
附錄1.1
溫度修正系數表 ρT = FT *ρ23
標稱電阻率
Ω.cm
溫度 FT
ºC 0.005 0.01 0.1 1 5 10
10
0.9768 0.9969 0.9550 0.9097 0.9010 0.9010
12 0.9803 0.9970 0.9617 0.9232 0.9157 0.9140
14 0.9838 0.9972 0.9680 0.9370 0.9302 0.9290
16 0.9873 0.9975 0.9747 0.9502 0.9450 0.9440
18 0.9908 0.9984 0.9815 0.9635 0.9600 0.9596
20 0.9943 0.9986 0.9890 0.9785 0.9760 0.9758
22 0.9982 0.9999 0.9962 0.9927 0.9920 0.9920
23 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
24 1.0016 1.0003 1.0037 1.0075 1.0080 1.0080
26 1.0045 1.0009 1.0107 1.0222 1.0240 1.0248
28 1.0086 1.0016 1.0187 1.0365 1.0400 1.0410
30 1.0121 1.0028 1.0252 1.0524 1.0570 1.0606
注 :① 溫度修正系數表的數據來源於中國計量科學研究院。
附錄1.2
溫度修正系數表(續1) ρT = FT *ρ23
標稱電阻率
Ω.cm
溫度 FT
ºC 25
(17.5—49.9) 75
(50.0—127.49) 180
(127.5—214.9) 250/500/1000
( ≥ 215 )
10 0.9020 0.9012 0.9006 0.8921
12 0.9138 0.9138 0.9140 0.9087
14 0.9275 0.9275 0.9278 0.9253
16 0.9422 0.9425 0.9428 0.9419
18 0.9582 0.9580 0.9582 0.9585
20 0.9748 0.9750 0.9750 0.9751
22 0.9915 0.9920 0.9922 0.9919
23 1.0000 1.0000 1.0000 1.0000
24 1.0078 1.0080 1.0082 1.0083
26 1.0248 1.0251 1.0252 1.0249
28 1.0440 1.0428 1.0414 1.0415
30 1.0600 1.0610 1.0612 1.0581
附錄2.
厚度修正系數F(W/S)為圓片厚度W與探針間距S之比的函數
W/S F(W/S) W/S F(W/S) W/S F(W/S) W/S F(W/S)
0.40 0.9993
0.41 0.9992
0.42 0.9990
0.43 0.9989
0.44 0.9987
0.45 0.9986
0.46 0.9984
0.47 0.9981
0.48 0.9978
0.49 0.9976
0.50 0.9975
0.51 0.9971
0.52 0.9967
0.53 0.9962
0.54 0.9958
0.55 0.9953
0.56 0.9947
0.57 0.9941
0.58 0.9934
0.59 0.9927 0.60 0.9920
0.61 0.9912
0.62 0.9903
0.63 0.9894
0.64 0.9885
0.65 0.9875
0.66 0.9865
0.67 0.9853
0.68 0.9842
0.69 0.9830
0.70 0.9818
0.71 0.9804
0.72 0.9791
0.73 0.9777
0.74 0.9762
0.75 0.9747
0.76 0.9731
0.77 0.9715
0.78 0.9699
0.79 0.9681 0.80 0.9664
0.81 0.9645
0.82 0.9627
0.83 0.9608
0.84 0.9588
0.85 0.9566
0.86 0.9547
0.87 0.9526
0.88 0.9505
0.89 0.9483
0.90 0.9460
0.91 0.9438
0.92 0.9414
0.93 0.9391
0.94 0.9367
0.95 0.9343
0.96 0.9318
0.97 0.9293
0.98 0.9263
0.99 0.9242 1.0 0.921
1.2 0.864
1.4 0.803
1.6 0.742
1.8 0.685
2.0 0.634
2.2 0.587
2.4 0.546
2.6 0.510
2.8 0.477
3.0 0.448
3.2 0.422
3.4 0.399
3.6 0.378
3.8 0.359
4.0 0.342
註:①厚度修正系數表的數據來源於國標 GB/T1552-1995
《硅、鍺單晶電阻率測定直排四探針法》
附錄3.
修正系數F2為探針間距S與圓片直徑D之比的函數
S/D F(S/D) S/D F(S/D) S/D F(S/D)
0 4.532
0.005 4.531
0.010 4.528
0.015 4.524
0.020 4.517
0.025 4.508
0.030 4.497 0.035 4.485
0.040 4.470
0.045 4.454
0.050 4.436
0.055 4.417
0.060 4.395
0.065 4.372 0.070 4.348
0.075 4.322
0.080 4.294
0.085 4.265
0.090 4.235
0.095 4.204
0.100 4.171
註:①厚度修正系數表的數據來源於國標 GB/T1552-1995
《硅、鍺單晶電阻率測定直排四探針法》
❸ 介紹幾種低電阻率、高磁導率的材料
磁性材料
一. 磁性材料的基本特性
1. 磁性材料的磁化曲線
磁性材料是由鐵磁性物質或亞鐵磁性物質組成的,在外加磁場H 作用下,必有相應的磁化強度M 或磁感應強度B,它們隨磁場強度H 的變化曲線稱為磁化曲線(M~H或B~H曲線)。磁化曲線一般來說是非線性的,具有2個特點:磁飽和現象及磁滯現象。即當磁場強度H足夠大時,磁化強度M達到一個確定的飽和值Ms,繼續增大H,Ms保持不變;以及當材料的M值達到飽和後,外磁場H降低為零時,M並不恢復為零,而是沿MsMr曲線變化。材料的工作狀態相當於M~H曲線或B~H曲線上的某一點,該點常稱為工作點。
2. 軟磁材料的常用磁性能參數
飽和磁感應強度Bs:其大小取決於材料的成分,它所對應的物理狀態是材料內部的磁化矢量整齊排列。
剩餘磁感應強度Br:是磁滯回線上的特徵參數,H回到0時的B值。
矩形比:Br∕Bs
矯頑力Hc:是表示材料磁化難易程度的量,取決於材料的成分及缺陷(雜質、應力等)。
磁導率μ:是磁滯回線上任何點所對應的B與H的比值,與器件工作狀態密切相關。
初始磁導率μi、最大磁導率μm、微分磁導率μd、振幅磁導率μa、有效磁導率μe、脈沖磁導率μp。
居里溫度Tc:鐵磁物質的磁化強度隨溫度升高而下降,達到某一溫度時,自發磁化消失,轉變為順磁性,該臨界溫度為居里溫度。它確定了磁性器件工作的上限溫度。
損耗P:磁滯損耗Ph及渦流損耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,
磁滯損耗Ph的方法是降低矯頑力Hc;降低渦流損耗Pe 的方法是減薄磁性材料的厚度t 及提高材料的電阻率ρ。在自由靜止空氣中磁芯的損耗與磁芯的溫升關系為:
總功率耗散(mW)/表面積(cm2)
3. 軟磁材料的磁性參數與器件的電氣參數之間的轉換
在設計軟磁器件時,首先要根據電路的要求確定器件的電壓~電流特性。器件的電壓~電流特性與磁芯的幾何形狀及磁化狀態密切相關。設計者必須熟悉材料的磁化過程並拿握材料的磁性參數與器件電氣參數的轉換關系。設計軟磁器件通常包括三個步驟:正確選用磁性材料;合理確定磁芯的幾何形狀及尺寸;根據磁性參數要求,模擬磁芯的工作狀態得到相應的電氣參數。
二、軟磁材料的發展及種類
1. 軟磁材料的發展
軟磁材料在工業中的應用始於19世紀末。隨著電力工及電訊技術的興起,開始使用低碳鋼製造電機和變壓器,在電話線路中的電感線圈的磁芯中使用了細小的鐵粉、氧化鐵、細鐵絲等。到20世紀初,研製出了硅鋼片代替低碳鋼,提高了變壓器的效率,降低了損耗。直至現在硅鋼片在電力工業用軟磁材料中仍居首位。到20年代,無線電技術的興起,促進了高導磁材料的發展,出現了坡莫合金及坡莫合金磁粉芯等。從40年代到60年代,是科學技術飛速發展的時期,雷達、電視廣播、集成電路的發明等,對軟磁材料的要求也更高,生產出了軟磁合金薄帶及軟磁鐵氧體材料。進入70年代,隨著電訊、自動控制、計算機等行業的發展,研製出了磁頭用軟磁合金,除了傳統的晶態軟磁合金外,又興起了另一類材料—非晶態軟磁合金。
2. 常用軟磁磁芯的種類
鐵、鈷、鎳三種鐵磁性元素是構成磁性材料的基本組元。
按(主要成分、磁性特點、結構特點)製品形態分類:
(1) 粉芯類: 磁粉芯,包括:鐵粉芯、鐵硅鋁粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、鐵氧體磁芯
(2) 帶繞鐵芯:硅鋼片、坡莫合金、非晶及納米晶合金
三 常用軟磁磁芯的特點及應用
(一) 粉芯類
1. 磁粉芯
磁粉芯是由鐵磁性粉粒與絕緣介質混合壓制而成的一種軟磁材料。由於鐵磁性顆粒很小(高頻下使用的為0.5~5 微米),又被非磁性電絕緣膜物質隔開,因此,一方面可以隔絕渦流,材料適用於較高頻率;另一方面由於顆粒之間的間隙效應,導致材料具有低導磁率及恆導磁特性;又由於顆粒尺寸小,基本上不發生集膚現象,磁導率隨頻率的變化也就較為穩定。主要用於高頻電感。磁粉芯的磁電性能主要取決於粉粒材料的導磁率、粉粒的大小和形狀、它們的填充系數、絕緣介質的含量、成型壓力及熱處理工藝等。
常用的磁粉芯有鐵粉芯、坡莫合金粉芯及鐵硅鋁粉芯三種。
磁芯的有效磁導率μe及電感的計算公式為: μe = DL/4N2S × 109
其中:D 為磁芯平均直徑(cm),L為電感量(享),N 為繞線匝數,S為磁芯有效截面積(cm2)。
(1) 鐵粉芯
常用鐵粉芯是由碳基鐵磁粉及樹脂碳基鐵磁粉構成。在粉芯中價格最低。飽和磁感應強度值在1.4T左右;磁導率范圍從22~100;初始磁導率μi隨頻率的變化穩定性好;直流電流疊加性能好;但高頻下損耗高。
鐵粉芯初始磁導率隨直流磁場強度的變化
鐵粉芯初始磁導率隨頻率的變化
(2). 坡莫合金粉芯
坡莫合金粉芯主要有鉬坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。
MPP 是由81%Ni、2%Mo及Fe粉構成。主要特點是:飽和磁感應強度值在7500Gs左右;磁導率范圍大,從14~550;在粉末磁芯中具有最低的損耗;溫度穩定性極佳,廣泛用於太空設備、露天設備等;磁致伸縮系數接近零,在不同的頻率下工作時無雜訊產生。主要應用於300kHz以下的高品質因素Q濾波器、感應負載線圈、諧振電路、在對溫度穩定性要求高的LC電路上常用、輸出電感、功率因素補償電路等, 在AC電路中常用, 粉芯中價格最貴。
高磁通粉芯HF是由50%Ni、50%Fe粉構成。主要特點是:飽和磁感應強度值在15000Gs 左右;磁導率范圍從14~160;在粉末磁芯中具有最高的磁感應強度,最高的直流偏壓能力;磁芯體積小。主要應用於線路濾波器、交流電感、輸出電感、功率因素校正電路等, 在DC 電路中常用,高DC 偏壓、高直流電和低交流電上用得多。價格低於MPP。
(3) 鐵硅鋁粉芯(Kool Mμ Cores)
鐵硅鋁粉芯由9%Al、5%Si, 85%Fe粉構成。主要是替代鐵粉芯,損耗比鐵粉芯低80%,可在8kHz以上頻率下使用;飽和磁感在1.05T 左右;導磁率從26~125;磁致伸縮系數接近0,在不同的頻率下工作時無雜訊產生;比MPP有更高的DC偏壓能力;具有最佳的性能價格比。主要應用於交流電感、輸出電感、線路濾波器、功率因素校正電路等。有時也替代有氣隙鐵氧體作變壓器鐵芯使用。
2. 軟磁鐵氧體(Ferrites)
軟磁鐵氧體是以Fe2O3為主成分的亞鐵磁性氧化物,採用粉末冶金方法生產。有Mn-Zn、Cu-Zn、Ni-Zn等幾類,其中Mn-Zn鐵氧體的產量和用量最大,Mn-Zn鐵氧體的電阻率低,為1~10 歐姆-米,一般在100kHZ 以下的頻率使用。Cu-Zn、Ni-Zn鐵氧體的電阻率為102~104 歐姆-米,在100kHz~10 兆赫的無線電頻段的損耗小,多用在無線電用天線線圈、無線電中頻變壓器。磁芯形狀種類豐富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圓形等。在應用上很方便。由於軟磁鐵氧體不使用鎳等稀缺材料也能得到高磁導率,粉末冶金方法又適宜於大批量生產,因此成本低,又因為是燒結物硬度大、對應力不敏感,在應用上很方便。而且磁導率隨頻率的變化特性穩定,在150kHz以下基本保持不變。隨著軟磁鐵氧體的出現,磁粉芯的生產大大減少了,很多原來使用磁粉芯的地方均被軟磁鐵氧體所代替。
國內外鐵氧體的生產廠家很多,在此僅以美國的Magnetics公司生產的Mn-Zn鐵氧體為例介紹其應用狀況。分為三類基本材料:電信用基本材料、寬頻及EMI材料、功率型材料。
電信用鐵氧體的磁導率從750~2300, 具有低損耗因子、高品質因素Q、穩定的磁導率隨溫度/時間關系, 是磁導率在工作中下降最慢的一種,約每10年下降3%~4%。廣泛應用於高Q濾波器、調諧濾波器、負載線圈、阻抗匹配變壓器、接近感測器。寬頻鐵氧體也就是常說的高導磁率鐵氧體,磁導率分別有5000、10000、15000。其特性為具有低損耗因子、高磁導率、高阻抗/頻率特性。廣泛應用於共模濾波器、飽和電感、電流互感器、漏電保護器、絕緣變壓器、信號及脈沖變壓器,在寬頻變壓器和EMI上多用。功率鐵氧體具有高的飽和磁感應強度,為4000~5000Gs。另外具有低損耗/頻率關系和低損耗/溫度關系。也就是說,隨頻率增大、損耗上升不大;隨溫度提高、損耗變化不大。廣泛應用於功率扼流圈、並列式濾波器、開關電源變壓器、開關電源電感、功率因素校正電路。
(二) 帶繞鐵芯
1. 硅鋼片鐵芯
硅鋼片是一種合金,在純鐵中加入少量的硅(一般在4.5%以下)形成的鐵硅系合金稱為硅鋼。該類鐵芯具有最高的飽和磁感應強度值為20000Gs;由於它們具有較好的磁電性能,又易於大批生產,價格便宜,機械應力影響小等優點,在電力電子行業中獲得極為廣泛的應用,如電力變壓器、配電變壓器、電流互感器等鐵芯。是軟磁材料中產量和使用量最大的材料。也是電源變壓器用磁性材料中用量最大的材料。特別是在低頻、大功率下最為適用。常用的有冷軋硅鋼薄板DG3、冷軋無取向電工鋼帶DW、冷軋取向電工鋼帶DQ,適用於各類電子系統、家用電器中的中、小功率低頻變壓器和扼流圈、電抗器、電感器鐵芯,這類合金韌性好,可以沖片、切割等加工,鐵芯有疊片式及卷繞式。但高頻下損耗急劇增加,一般使用頻率不超過400Hz。從應用角度看,對硅鋼的選擇要考慮兩方面的因素:磁性和成本。對小型電機、電抗器和繼電器,可選純鐵或低硅鋼片;對於大型電機,可選高硅熱軋硅鋼片、單取向或無取向冷軋硅鋼片;對變壓器常選用單取向冷軋硅鋼片。在工頻下使用時,常用帶材的厚度為0.2~0.35毫米;在400Hz下使用時,常選0.1毫米厚度為宜。厚度越薄,價格越高。
2. 坡莫合金
坡莫合金常指鐵鎳系合金,鎳含量在30~90%范圍內。是應用非常廣泛的軟磁合金。通過適當的工藝,可以有效地控制磁性能,比如超過105的初始磁導率、超過106的最大磁導率、低到2‰奧斯特的矯頑力、接近1或接近0的矩形系數,具有面心立方晶體結構的坡莫合金具有很好的塑性,可以加工成1μm的超薄帶及各種使用形態。常用的合金有1J50、1J79、1J85等。1J50 的飽和磁感應強度比硅鋼稍低一些,但磁導率比硅鋼高幾十倍,鐵損也比硅鋼低2~3倍。做成較高頻率(400~8000Hz)的變壓器,空載電流小,適合製作100W以下小型較高頻率變壓器。1J79 具有好的綜合性能,適用於高頻低電壓變壓器,漏電保護開關鐵芯、共模電感鐵芯及電流互感器鐵芯。1J85 的初始磁導率可達十萬105以上,適合於作弱信號的低頻或高頻輸入輸出變壓器、共模電感及高精度電流互感器等。
3. 非晶及納米晶軟磁合金(Amorphous and Nanocrystalline alloys)
硅鋼和坡莫合金軟磁材料都是晶態材料,原子在三維空間做規則排列,形成周期性的點陣結構,存在著晶粒、晶界、位錯、間隙原子、磁晶各向異性等缺陷,對軟磁性能不利。從磁性物理學上來說,原子不規則排列、不存在周期性和晶粒晶界的非晶態結構對獲得優異軟磁性能是十分理想的。非晶態金屬與合金是70年代問世的一個新型材料領域。它的制備技術完全不同於傳統的方法,而是採用了冷卻速度大約為每秒一百萬度的超急冷凝固技術,從鋼液到薄帶成品一次成型,比一般冷軋金屬薄帶製造工藝減少了許多中間工序,這種新工藝被人們稱之為對傳統冶金工藝的一項革命。由於超急冷凝固,合金凝固時原子來不及有序排列結晶,得到的固態合金是長程無序結構,沒有晶態合金的晶粒、晶界存在,稱之為非晶合金,被稱為是冶金材料學的一項革命。這種非晶合金具有許多獨特的性能,如優異的磁性、耐蝕性、耐磨性、高的強度、硬度和韌性,高的電阻率和機電耦合性能等。由於它的性能優異、工藝簡單,從80年代開始成為國內外材料科學界的研究開發重點。目前美、日、德國已具有完善的生產規模,並且大量的非晶合金產品逐漸取代硅鋼和坡莫合金及鐵氧體湧向市場。
我國自從70年代開始了非晶態合金的研究及開發工作,經過「六五」、「七五」、「八五」期間的重大科技攻關項目的完成,共取得科研成果134項,國家發明獎2項,獲專利16項,已有近百個合金品種。鋼鐵研究總院現具有4條非晶合金帶材生產線、一條非晶合金元器件鐵芯生產線。生產各種定型的鐵基、鐵鎳基、鈷基和納米晶帶材及鐵芯,適用於逆變電源、開關電源、電源變壓器、漏電保護器、電感器的鐵芯元件,年產值近2000萬元。「九五」正在建立千噸級鐵基非晶生產線,進入國際先進水平行列。
目前,非晶軟磁合金所達到的最好單項性能水平為:
初始磁導率 μo = 14 × 104
鈷基非晶最大磁導率 μm= 220 × 104
鈷基非晶矯頑力 Hc = 0.001 Oe
鈷基非晶矩形比 Br/Bs = 0.995
鈷基非晶飽和磁化強度 4πMs = 18300Gs
鐵基非晶電阻率 ρ= 270μΩ/cm
常用的非晶合金的種類有:鐵基、鐵鎳基、鈷基非晶合金以及鐵基納米晶合金。其國家牌號及性能特點見表及圖所示,為便於對比,也列出晶態合金硅鋼片、坡莫合金1J79 及鐵氧體的相應性能。這幾類材料各有不同的特點,在不同的方面得到應用。
牌號基本成分和特徵:
1K101 Fe-Si-B 系快淬軟磁鐵基合金
1K102 Fe-Si-B-C 系快淬軟磁鐵基合金
1K103 Fe-Si-B-Ni 系快淬軟磁鐵基合金
1K104 Fe-Si-B-Ni Mo 系快淬軟磁鐵基合金
1K105 Fe-Si-B-Cr(及其他元素)系快淬軟磁鐵基合金
1K106 高頻低損耗Fe-Si-B 系快淬軟磁鐵基合金
1K107 高頻低損耗Fe-Nb-Cu-Si-B 系快淬軟磁鐵基納米晶合金
1K201 高脈沖磁導率快淬軟磁鈷基合金
1K202 高剩磁比快淬軟磁鈷基合金
1K203 高磁感低損耗快淬軟磁鈷基合金
1K204 高頻低損耗快淬軟磁鈷基合金
1K205 高起始磁導率快淬軟磁鈷基合金
1K206 淬態高磁導率軟磁鈷基合金
1K501 Fe-Ni-P-B 系快淬軟磁鐵鎳基合金
1K502 Fe-Ni-V-Si-B 系快淬軟磁鐵鎳基合金
400Hz: 硅鋼鐵芯 非晶鐵芯
功率(W) 45 45
鐵芯損耗(W) 2.4 1.3
激磁功率(VA) 6.1 1.3
總重量(g) 295 276
(1)鐵基非晶合金(Fe-based amorphous alloys)
鐵基非晶合金是由80%Fe及20%Si,B類金屬元素所構成,它具有高飽和磁感應強度(1.54T),鐵基非晶合金與硅鋼的損耗比較
磁導率、激磁電流和鐵損等各方面都優於硅鋼片的特點,特別是鐵損低(為取向硅鋼片的1/3-1/5),代替硅鋼做配電變壓器可節能60-70%。鐵基非晶合金的帶材厚度為0.03mm左右,廣泛應用於配電變壓器、大功率開關電源、脈沖變壓器、磁放大器、中頻變壓器及逆變器鐵芯, 適合於10kHz 以下頻率使用
2)鐵鎳基、鈷基非晶合金(Fe-Ni based-amorphous alloy)
鐵鎳基非晶合金是由40%Ni、40%Fe及20%類金屬元素所構成,它具有中等飽和磁感應強度〔0.8T〕、較高的初始磁導率和很高的最大磁導率以及高的機械強度和優良的韌性。在中、低頻率下具有低的鐵損。空氣中熱處理不發生氧化,經磁場退火後可得到很好的矩形回線。價格比1J79便宜30-50%。鐵鎳基非晶合金的應用范圍與中鎳坡莫合金相對應, 但鐵損和高的機械強度遠比晶態合金優越;代替1J79,廣泛用於漏電開關、精密電流互感器鐵芯、磁屏蔽等。鐵鎳基非晶合金是國內開發最早,也是目前國內非晶合金中應用量最大的非晶品種,年產量近200噸左右.空氣中熱處理不發生氧化鐵鎳基非晶合金( 1K503) 獲得國家發明專利和美國專利權。
(4) 鐵基納米晶合金(Nanocrystalline alloy)
鐵基納米晶合金是由鐵元素為主,加入少量的Nb、Cu、Si、B元素所構成的合金經快速凝固工藝所形成的一種非晶態材料,這種非晶態材料經熱處理後可獲得直徑為10-20 nm的微晶,彌散分布在非晶態的基體上,被稱為微晶、納米晶材料或納米晶材料。納米晶材料具有優異的綜合磁性能:高飽和磁感(1.2T)、高初始磁導率(8×104)、低Hc(0.32A/M), 高磁感下的高頻損耗低(P0.5T/20kHz=30W/kg),電阻率為80μΩ/cm,比坡莫合金(50-60μΩ/cm)高, 經縱向或橫向磁場處理,可得到高Br(0.9)或低Br 值(1000Gs)。是目前市場上綜合性能最好的材料;適用頻率范圍:50Hz-100kHz,最佳頻率范圍:20kHz-50kHz。廣泛應用於大功率開關電源、逆變電源、磁放大器、高頻變壓器、高頻變換器、高頻扼流圈鐵芯、電流互感器鐵芯、漏電保護開關、共模電感鐵芯。
(三)常用軟磁磁芯的特點比較
1. 磁粉芯、鐵氧體的特點比較:
MPP 磁芯:使用安匝數< 200,50Hz~1kHz, μe :125 ~ 500 ; 1 ~ 10kHz; μe :125 ~ 200; > 100kHz:μe: 10 ~ 125
HF 磁芯:使用安匝數< 500,能使用在較大的電源上,在較大的磁場下不易被飽和,能保證電感的最小直流漂移,μe :20 ~ 125
鐵粉芯:使用安匝數>800, 能在高的磁化場下不被飽和, 能保證電感值最好的交直流疊加穩定性。在200kHz以內頻率特性穩定;但高頻損耗大,適合於10kHz以下使用。
FeSiAlF磁芯:代替鐵粉芯使用,使用頻率可大於8kHz。DC偏壓能力介於MPP與HF之間。
鐵氧體:飽和磁密低(5000Gs),DC偏壓能力最小
3. 硅鋼、坡莫合金、非晶合金的特點比較:
硅鋼和FeSiAl 材料具有高的飽和磁感應值Bs,但其有效磁導率值低,特別是在高頻范圍內;
坡莫合金具有高初始磁導率、低矯頑力和損耗,磁性能穩定,但Bs 不夠高,頻率大於20kHz時,損耗和有效磁導率不理想,價格較貴,加工和熱處理復雜;
鈷基非晶合金具有高的磁導率、低Hc、在寬的頻率范圍內有低損耗,接近於零的飽和磁致伸縮系數,對應力不敏感,但是Bs 值低,價格昂貴;
鐵基非晶合金具有高Bs值、價格不高,但有效磁導率值較低。
納米晶合金的磁導率、Hc值接近晶態高坡莫合金及鈷基非晶,且飽和磁感Bs與中鎳坡莫合金相當,熱處理工藝簡單,是一種理想的廉價高性能軟磁材料;雖然納米晶合金的Bs值低於鐵基非晶和硅鋼,但其在高磁感下的高頻損耗遠低於它們,並具有更好的耐蝕性和磁穩定性。納米晶合金與鐵氧體相比,在低於50kHz時,在具有更低損耗的基礎上具有高2至3倍的工作磁感,磁芯體積可小一倍以上。
四、幾種常用磁性器件中磁芯的選用及設計
開關電源中使用的磁性器件較多,其中常用的軟磁器件有:作為開關電源核心器件的主變壓器(高頻功率變壓器)、共模扼流圈、高頻磁放大器、濾波阻流圈、尖峰信號抑制器等。不同的器件對材料的性能要求各不相同,如表所示為各種不同器件對磁性材料的性能要求。
(一)、高頻功率變壓器
變壓器鐵芯的大小取決於輸出功率和溫升等。變壓器的設計公式如下:
P=KfNBSI×10-6T=hcPc+hWPW
其中,P為電功率;K為與波形有關的系數;f為頻率;N為匝數;S為鐵芯面積;B為工作磁感;I為電流;T為溫升;Pc為鐵損;PW為銅損;hc和hW為由實驗確定的系數。
由以上公式可以看出:高的工作磁感B可以得到大的輸出功率或減少體積重量。但B值的增加受到材料的Bs值的限制。而頻率f可以提高幾個數量級,從而有可能使體積重量顯著減小。而低的鐵芯損耗可以降低溫升,溫升反過來又影響使用頻率和工作磁感的選取。一般來說,開關電源對材料的主要要求是:盡量低的高頻損耗、足夠高的飽和磁感、高的磁導率、足夠高的居里溫度和好的溫度穩定性,有些用途要求較高的矩形比,對應力等不敏感、穩定性好,價格低。單端式變壓器因為鐵芯工作在磁滯回線的第一象限,對材料磁性的要求有別於前述主變壓器。它實際上是一隻單端脈沖變壓器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大; 同時要求高的脈沖磁導率。特別是對於單端反激式開關主變壓器,或稱儲能變壓器,要考慮儲能要求。
線圈儲能的多少取決於兩個因素: 一個是材料的工作磁感Bm值或電感量L, 另一個是工作磁場Hm或工作電流I,儲能W=1/2LI2。這就要求材料有足夠高的Bs值和合適的磁導率,常為寬恆導磁材料。對於工作在±Bm之間的變壓器來說,要求其磁滯回線的面積,特別是在高頻下的回線面積要小,同時為降低空載損耗、減小勵磁電流,應有高磁導率,最合適的為封閉式環形鐵芯,其磁滯回線見圖所示,這種鐵芯用於雙端或全橋式工作狀態的器件中。
通常,金屬晶態材料要降低高頻下的鐵損是不容易的,而對於非晶合金來說,它們由於不存在磁晶各向異性、金屬夾雜物和晶界等,此外它不存在長程有序的原子排列,其電阻率比一般的晶態合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄帶,特別適用於高頻功率輸出變壓器。已廣泛應用於逆變弧焊電源、單端脈沖變壓器、高頻加熱電源、不停電電源、功率變壓器、通訊電源、開關電源變壓器和高能加速器等鐵芯,在頻率20-50kHz、功率50kW以下,是變壓器最佳磁芯材料。
近年來發展起來的新型逆變弧焊電源單端脈沖變壓器,具有高頻大功率的特點,因此要求變壓器鐵芯材料具有低的高頻損耗、高的飽和磁感Bs和低的Br以獲得大的工作磁感B,使焊機體積和重量減小。常用的用於高頻弧焊電源的鐵芯材料為鐵氧體,雖然由於其電阻率高而具有低的高頻損耗, 但其溫度穩定性較差,工作磁感較低,變壓器體積和重量較大,已不能滿足新型弧焊機的要求。採用納米晶環形鐵芯後,由於其具有高的Bs 值(Bs>1.2T),高的ΔB 值(ΔB>0.7T),很高的脈沖磁導率和低的損耗,頻率可達100kHz. 可使鐵芯的體積和重量大為減小。近年來逆變焊機已應用納米晶鐵芯達幾萬只,用戶反映用納米晶變壓器鐵芯再配以非晶高頻電感製成的焊機,不僅體積小、重量輕、便於攜帶,而且電弧穩定、飛濺小、動態特性好、效率高及可靠性高。這種環形納米晶鐵芯還可用於中高頻加熱電源、脈沖變壓器、不停電電源、功率變壓器、開關電源變壓器和高能加速器等裝置中。可根據開關電源的頻率選用磁芯材料。
環形納米晶鐵芯具有很多優點,但它也有繞線困難的不利因素。為了在匝數較多時繞線方便,可選用高頻大功率C 型非晶納米晶鐵芯。採用低應力粘結劑固化及新的切割工藝製成的非晶納米晶合金C 型鐵芯的性能明顯優於硅鋼C 型鐵芯。目前這種鐵芯已批量用於逆變焊機和切割機等。逆變焊機主變壓器鐵芯和電抗器鐵芯系列有: 120A、160A、200A、250A、315A、400A、500A、630A 系列。
(二)、脈沖變壓器鐵芯
脈沖變壓器是用來傳輸脈沖的變壓器。當一系列脈沖持續時間為td (μs)、脈沖幅值電壓
為Um (V)的單極性脈沖電壓加到匝數為N 的脈沖變壓器繞組上時,在每一個脈沖結束時,鐵芯中的磁感應強度增量ΔB (T)為: ΔB = Um td / NSc × 10-2 其中Sc為鐵芯的有效截面積(cm2)。即磁感應強度增量ΔB 與脈沖電壓的面積(伏秒乘積)成正比。對輸出單向脈沖時,ΔB=Bm-Br , 如果在脈沖變壓器鐵芯上加去磁繞組時,ΔB = Bm + Br 。在脈沖狀態下,由動態脈沖磁滯回線的ΔB 與相應的ΔHp 之比為脈沖磁導率μp。理想的脈沖波形是指矩形脈沖波,由於電路的參數影響,實際的脈沖波形與矩形脈沖有所差異,經常會發生畸變。比如脈沖前沿的上升時間tr 與脈沖變壓器的漏電感Ls、繞組和結構零件導致的分布電容Cs 成比例,脈沖頂降λ 與勵磁電感Lm成反比,另外渦流損耗因素也會影響輸出的脈沖波形。
脈沖變壓器的漏電感 Ls = 4βπN21 lm / h
脈沖變壓器的初級勵磁電感 Lm = 4μπp Sc N2 / l ×10-9
渦流損耗 Pe = Um d2td lF / 12 N21 Scρ
β為與繞組結構型式有關的系數,lm為繞組線圈的平均匝長,h 為繞組線圈的寬度,N1為初級繞組匝數,l為鐵芯的平均磁路長度,Sc為鐵芯的截面積,μp為鐵芯的脈沖磁導率,ρ 為鐵芯材料的電阻率,d為鐵芯材料的厚度,F為脈沖重復頻率。
從以上公式可以看出,在給定的匝數和鐵芯截面積時,脈沖寬度愈大,要求鐵芯材料的磁感應強度的變化量ΔB 也越大;在脈沖寬度給定時,提高鐵芯材料的磁感應強度變化量ΔB,可以大大減少脈沖變壓器鐵芯的截面積和磁化繞組的匝數,即可縮小脈沖變壓器的體積。要減小脈沖波形前沿的失真,應盡量減小脈沖變壓器的漏電感和分布電容,為此需使脈沖變壓器的繞組匝數盡可能的少,這就要求使用具有較高脈沖磁導率的材料。為減小頂降,要盡可能的提高初級勵磁電感量Lm,這就要求鐵芯材料具有較高的脈沖磁導率μp。為減小渦流損耗,應選用電阻率高、厚度盡量薄的軟磁帶材作為鐵芯材料,尤其是對重復頻率高、脈沖寬度大的脈沖變壓器更是如此。
脈沖變壓器對鐵芯材料的要求為:
① 高飽和磁感應強度Bs 值;
② 高的脈沖磁導率,能用較小的鐵芯尺寸獲得足夠大的勵磁電感;
③ 大功率單極性脈沖變壓器要求鐵芯具有大的磁感應強度增量ΔB,使用低剩磁感應材料;當採用附加直流偏磁時,要求鐵芯具有高矩形比,小矯頑力Hc。
④ 小功率脈沖變壓器要求鐵芯的起始脈沖磁導率高;
⑤ 損耗小。
鐵氧體磁芯的電阻率高、頻率范圍寬、成本低,在小功率脈沖變壓器中應用較多,但其ΔB
和μp 均較低,溫度穩定性差,一般用於對頂降和後沿要求不高的場合。
(三). 電感器磁芯
鐵芯電感器是一種基本元件,在電路中電感器對於電流的變化具有阻抗的作用, 在電子設備中應用極為廣泛。對電感器的主要要求有以下幾點:
① 在一定溫度下長期工作時,電感器的電感量隨時間的變化率應保持最小;
② 在給定工作溫度變化范圍內,電感量的溫度系數應保持在容許限度之內;
③ 電感器的電損耗和磁損耗低;
④ 非線性歧變小;
⑤ 價格低,體積小。
電感元件與電感量L、品質因素Q、鐵芯重量W、繞線的直流電阻R 有著密切的關系。
電感L 抗拒交流電流的能力用感抗值ZL來表示: ZL = 2πfL , 頻率f 越高,感抗值ZL 越大?/ca>
❹ 磁阻式電子指南針內含磁敏材料,其電阻率隨磁場強度變化。以下哪位科學家對此有直接理論貢獻
磁性材料,是古老而用途十分廣泛的功能材料,而物質的磁性早在年以前就被人們所認識和應用,例如中國古代用天然磁鐵作為指南針。現代磁性材料已經廣泛的用在我們的生活之中,例如將永磁材料用作馬達,應用於變壓器中的鐵心材料,作為存儲器使用的磁光碟,計算機用磁記錄軟盤等。可以說,磁性材料與信息化、自動化、機電一體化、國防、國民經濟的方方面面緊密相關。而通常認為,磁性材料是指由過度元素鐵、鈷、鎳及其合金等能夠直接或間接產生磁性的物質。
實驗表明,任何物質在外磁場中都能夠或多或少地被磁化,只是磁化的程度不同。根據物質在外磁場中表現出的特性,物質可分為五類:順磁性物質,抗磁性物質,鐵磁性物質,亞磁性物質,反磁性物質。 根據分子電流假說,物質在磁場中應該表現出大體相似的特性,但在此告訴我們物質在外磁場中的特性差別很大.這反映了分子電流假說的局限性。實際上,各種物質的微觀結構是有差異的,這種物質結構的差異性是物質磁性差異的原因。 磁性材料的應用--變壓器
我們把順磁性物質和抗磁性物質稱為弱磁性物質,把鐵磁性物質稱為強磁性物質。通常所說的磁性材料是指強磁性物質。磁性材料按磁化後去磁的難易可分為軟磁性材料和硬磁性材料。磁化後容易去掉磁性的物質叫軟磁性材料,不容易去碰的物質叫硬磁性材料。一般來講軟磁性材料剩磁
基本特性
1、磁性材料的磁化曲線 磁性材料是由鐵磁性物質或亞鐵磁性物質組成的,在外加磁場H 作用下,必有相應的磁化強度M 或磁感應強度B,它們隨磁場強度H 的變化曲線稱為磁化曲線(M~H或B~H曲線)。磁化曲線一般來說是非線性的,具有2個特點:磁飽和現象及磁滯現象。即當磁場強度H足夠大時,磁化強度M達到一個確定的飽和值Ms,繼續增大H,Ms保持不變;以及當材料的M值達到飽和後,外磁場H降低為零時,M並不恢復為零,而是沿MsMr曲線變化。材料的工作狀態相當於M~H曲線或B~H曲線上的某一點,該點常稱為工作點。 2、軟磁材料的常用磁性能參數 飽和磁感應強度Bs:其大小取決於材料的成分,它所對應的物理狀態是材料內部的磁化矢量整齊排列。 剩餘磁感應強度Br:是磁滯回線上的特徵參數,H回到0時的B值。 矩形比:Br∕Bs 矯頑力Hc:是表示材料磁化難易程度的量,取決於材料的成分及缺陷(雜質、應力等)。 磁導率μ:是磁滯回線上任何點所對應的B與H的比值,與器件工作狀態密切相關。 初始磁導率μi、最大磁導率μm、微分磁導率μd、振幅磁導率μa、有效磁導率μe、脈沖磁導率μp。 居里溫度Tc:鐵磁物質的磁化強度隨溫度升高而下降,達到某一溫度時,自發磁化消失,轉變為順磁性,該臨界溫度為居里溫度。它確定了磁性器件工作的上限溫度。 損耗P:磁滯損耗Ph及渦流損耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,降低磁滯損耗Ph的方法是降低矯頑力Hc;降低渦流損耗Pe 的方法是減薄磁性材料的厚度t 及提高材料的電阻率ρ。在靜止空氣中磁芯的損耗與磁芯的溫升關系為:總功率耗散(mW)/表(cm2) 3、軟磁材料的磁性參數與器件的電氣參數之間的轉換 在設計軟磁器件時,首先要根據電路的要求確定器件的電壓~電流特性。器件的電壓~電流特性與磁芯的幾何形狀及磁化狀態密切相關。設計者必須熟悉材料的磁化過程並拿握材料的磁性參數與器件電氣參數的轉換關系。設計軟磁器件通常包括三個步驟:正確選用磁性材料;合理確定磁芯的幾何形狀及尺寸;根據磁性參數要求,模擬磁芯的工作狀態得到相應的電氣參數。
編輯本段簡史
中國是世界上最先發現物質磁性現象和應用磁性材料的國家。早在戰國時期就有關於天然磁性材料(如磁鐵礦)的記載。11世紀就發明了人工永磁材料的方法。年《夢溪筆談》記載了指南針的和使用。~年有指南針用於航海的記述,同時還發現了地磁偏角的現象。 磁性材料的磁滯回線
近代,電力工業的發展促進了金屬磁性材料──硅鋼片(Si-Fe合金)的研製。永磁金屬從 19世紀的碳鋼發展到後來的稀土永磁合金,性能提高二百多倍。隨著通信技術的發展,軟磁金屬材料從片狀改為絲狀再改為粉狀,仍滿足不了頻率擴展的要求。20世紀40年代,荷蘭J.L.伊克發明電阻率高、高頻特性好的鐵氧體軟磁材料,接著又出現了價格低廉的永磁鐵氧體。50年代初,隨著電子計算機的發展,美籍華人王安首先使用矩磁合金元件作為計算機的內存儲器,不久被矩磁鐵氧體記憶磁芯取代,後者在60~70年代曾對計算機的發展起過重要的作用。50年代初人們發現鐵氧體具有獨特的微波特性,製成一系列微波鐵氧體器件。壓磁材料在第一次世界大戰時即已用於聲納技術,但由於壓電陶瓷的出現,使用有所減少。後來又出現了強壓磁性的稀土合金。非晶態(無定形)磁性材料是近代磁學研究的成果,在發明快速淬火技術後,年解決了制帶工藝,正向實用化過渡。 軟磁材料的一種--鐵粉芯
編輯本段分類
磁性材料具有磁有序的強磁性物質,廣義還包括可應用其磁性和磁效應的弱磁性及反鐵磁性物質。磁性是物質的一種基本屬性。物質按照其內部結構及其在外磁場中的性狀可分為抗磁性、順磁性、鐵磁性、反鐵磁性和亞鐵磁性物質。鐵磁性和亞鐵磁性物質為強磁性物質,抗磁性和順磁性物質為弱磁性物質。磁性材料按性質分為金屬和非金屬兩類,前者主要有電工鋼、鎳基合金和稀土合金等,後者主要是鐵氧體材料。按使用又分為軟磁材料、永磁材料和功能磁性材料。功能磁性材料主要有磁致伸縮材料、磁記錄材料、磁電阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反映磁性材料基本磁性能的有磁化曲線、磁滯回線和磁損耗等。 1、永磁材料 一經外磁場磁化以後,即使在相當大的反向磁場作用下,仍能保持一部或大部原磁化方向的磁性。對這類材料的要求是剩餘磁感應強度Br高,矯頑力BHC(即 磁性材料
抗退磁能力)強,磁能積(BH)(即給空間提供的磁場能量)大。相對於軟磁材料而言,它亦稱為硬磁材料。 軟磁材料製品
永磁材料有合金、鐵氧體和金屬間化合物三類。①合金類:包括鑄造、燒結和可加工合金。鑄造合金的主要品種有:AlNi(Co)、FeCr(Co)、FeCrMo、FeAlC、FeCo()(W);燒結合金有:Re-Co(Re代表稀土元素)、Re-Fe以及AlNi(Co)、FeCrCo等;可加工合金有:FeCrCo、PtCo、MnAlC、CuNiFe和AlMnAg等,後兩種中BHC較低者亦稱半永磁材料。②鐵氧體類:主要成分為MO·6Fe2O3,M代表Ba、Sr、Pb或SrCa、LaCa等復合組分。③金屬間化合物類:主要以MnBi為代表。 永磁材料有多種用途。①基於電磁力作用原理的應用主要有:揚聲器、話筒、電表、按鍵、電機、繼電器、感測器、開關等。②基於磁電作用原理的應用主要有:磁控管和行波管等微波電子管、顯像管、鈦泵、微波鐵氧體器件、磁阻器件、霍爾器件等。③基於磁力作用原理的應用主要有:磁軸承、選礦機、磁力分離器、磁性吸盤、磁密封、磁黑板、玩具、標牌、鎖、復印機、控溫計等。其他方面的應用還有:磁療、磁化水、磁麻醉等。 根據使用的需要,永磁材料可有不同的結構和形態。有些材料還有各向同性和各向異性之別。 2、軟磁材料 永磁材料
它的功能主要是導磁、電磁能量的轉換與傳輸。因此,對這類材料要求有較高的磁導率和磁感應強度,同時磁滯回線的或磁損耗要小。與永磁材料相反,其Br和BHC越小越好,但飽和磁感應強度Bs則越大越好。 軟磁材料的一種--鐵粉芯 軟磁材料大體上可分為四類。①合金薄帶或薄片:FeNi(Mo)、FeSi、FeAl等。②非晶態合金薄帶:Fe基、Co基、FeNi基或FeNiCo基等配以適當的Si、B、P和其他摻雜元素,又稱磁性玻璃。③磁介質(鐵粉芯):FeNi(Mo)、FeSiAl、羰基鐵和鐵氧體等粉料,經電絕緣介質包覆和粘合後按要求壓製成形。④鐵氧體:包括尖晶石型──M O·Fe2O3 (M 代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁鉛石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其復合組分)。 軟磁材料的應用甚廣,主要用於磁性天線、電感器、變壓器、磁頭、耳機、繼電器、振動子、電視偏轉軛、電纜、延遲線、感測器、微波吸收材料、電磁鐵、加速器高頻加速腔、磁場探頭、磁性基片、磁場屏蔽、高頻淬火聚能、電磁吸盤、磁敏元件(如磁熱材料作開關)等。 3、矩磁材料和磁記錄材料 主要用作信息記錄、無接點開關、邏輯操作和信息放大。這種材料的特點是磁滯回線呈矩形。 4、旋磁材料 具有獨特的微波磁性,如導磁率的張量特性、法拉第旋轉、共振吸收、場移、相移、雙折射和自旋波等效應。據此設計的器件主要用作微波能量的傳輸和轉換,常用的有隔離器、環行器、濾波器(固定式或電調式)、衰減器、相移器、調制器、開關、限幅器及延遲線等,還有尚在發展中的磁表面波和靜磁波器件(見微波鐵氧體器件)。常用的材料已形成系列,有Ni系、Mg系、Li系、YlG系和BiCa系等鐵氧體材料;並可按器件的需要製成單晶、多晶、非晶或薄膜等不同的結構和形態。 5、壓磁材料 這類材料的特點是在外加磁場作用下會發生機械形變,故又稱磁致伸縮材料,它的功能是作磁聲或磁力能量的轉換。常用於超聲波發生器的振動頭、通信機的機械濾波器和電脈沖延遲線等,與微波技術結合則可微聲(或旋聲)器件。由於合金材料的機械強度高,抗振而不炸裂,故振動頭多用Ni系和NiCo系合金;在小下使用則多用Ni系和NiCo系鐵氧體。非晶態合金中新出現的有較強壓磁性的品種,適宜於延遲線。壓磁材料的生產和應用遠不及前面四種材料。 磁性材料的應用--變壓器 磁性材料是生產、生活、國防科學技術中廣泛使用的材料。如電力技術中的各種電機、變壓器,電子技術中的各種磁性元件和微波電子管,通信技術中的濾波器和增感器,國防技術中的磁性水雷、電磁炮,各種家用電器等。此外,磁性材料在地礦探測、海洋探測以及信息、能源、生物、空間新技術中也獲得了廣泛的應用。 磁性材料的用途廣泛。主要是利用其各種磁特性和特殊效應製成元件或器件;用於存儲、傳輸和轉換電磁能量與信息,或在特定空間產生一定強度和分布的磁場;有時也以材料的自然形態而直接利用(如磁性液體)。磁性材料在電子技術領域和其他科學技術領域中都有重要的作用。 中國古代的指南針--司南
編輯本段發展及種類
1、軟磁材料的發展 軟磁材料在工業中的應用始於19世紀末。隨著電力工及電訊技術的興起,開始使用低碳鋼電機和變壓器,在線路中的電感線圈的磁芯中使用了細小的鐵粉、氧化鐵、細鐵絲等。到20世紀初,研製出了硅鋼片代替低碳鋼,提高了變壓器的效率,降低了損耗。直至現在硅鋼片在電力工業用軟磁材料中仍居首位。到20年代,無線電技術的興起,促進了高導磁材料的發展,出現了坡莫合金及坡莫合金磁粉芯等。從40年代到60年代,是科學技術飛速發展的時期,雷達、電視廣播、集成電路的發明等,對軟磁材料的要求也更高,生產出了軟磁合金薄帶及軟磁鐵氧體材料。進入70年代,隨著電訊、自動控制、計算機等行業的發展,研製出了磁頭用軟磁合金,除了傳統的晶態軟磁合金外,又興起了另一類材料--非晶態軟磁合金。 2、常用軟磁磁芯的種類 鐵、鈷、鎳三種鐵磁性元素是構成磁性材料的基本組元。 磁性材料
按(主要成分、磁性特點、結構特點)製品形態分類: (1) 粉芯類: 磁粉芯,包括:鐵粉芯、鐵硅鋁粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、鐵氧體磁芯 (2) 帶繞鐵芯:硅鋼片、坡莫合金、非晶及納米晶合金
編輯本段常用軟磁磁芯
磁粉芯是由鐵磁性粉粒與絕緣介質混合壓制而成的一種軟磁材料。由於鐵磁性顆粒很小(高頻下使用的為0.5~5 微米),又被非磁性電絕緣膜物質隔開,因此,一方面可以隔絕渦流,材料適用於較高頻率;另一方面由於顆粒之間的間隙效應,導致材料具有低導磁率及恆導磁特性;又由於顆粒尺寸小,基本上不發生集膚現象,磁導率隨頻率的變化也就較為穩定。主要用於高頻電感。磁粉芯的磁電性能主要取決於粉粒材料的導磁率、粉粒的大小和形狀、它們的填充系數、絕緣介質的含量、成型壓力及熱處理工藝等。 常用的磁粉芯有鐵粉芯、坡莫合金粉芯及鐵硅鋁粉芯三種。 磁芯的有效磁導率μe及電感的計算公式為: μe = DL/4N2S × 。其中:D 為磁芯平均直徑(cm),L為電感量(享),N 為繞線匝數,S為磁芯有效截(cm2)。 (1) 鐵粉芯 常用鐵粉芯是由碳基鐵磁粉及樹脂碳基鐵磁粉構成。在粉芯中價格最低。飽和磁感應強度值在1.4T左右;磁導率范圍從22~;初始磁導率μi隨頻率的變化穩定性好;直流電流疊加性能好;但高頻下損耗高。鐵粉芯初始磁導率隨直流磁場強度的變化。鐵粉芯初始磁導率隨頻率的變化 (2)坡莫合金粉芯 坡莫合金粉芯主要有鉬坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。 MPP 是由81%Ni、2%Mo及Fe粉構成。主要特點是:飽和磁感應強度值在Gs左右;磁導率范圍大,從14~;在粉末磁芯中具有最低的損耗;溫度穩定性極佳,廣泛用於太空設備、露天設備等;磁致伸縮系數接近零,在不同的頻率下工作時無雜訊產生。主要應用於kHz以下的高品質因素濾波器、感應負載線圈、諧振電路、在對溫度穩定性要求高的LC電路上常用、輸出電感、功率因素補償電路等, 在AC電路中常用, 粉芯中價格最貴。 高磁通粉芯HF是由50%Ni、50%Fe粉構成。主要特點是:飽和磁感應強度值在Gs 左右;磁導率范圍從14~;在粉末磁芯中具有最高的磁感應強度,最高的直流偏壓能力;磁芯體積小。主要應用於線路濾波器、交流電感、輸出電感、功率因素校正電路等, 在DC 電路中常用,高DC 偏壓、高直流電和低交流電上用得多。價格低於MPP。 (3) 鐵硅鋁粉芯(Kool Mμ Cores) 鐵硅鋁粉芯由9%Al、5%Si, 85%Fe粉構成。主要是替代鐵粉芯,損耗比鐵粉芯低80%,可在8kHz以上頻率下使用;飽和磁感在1.05T 左右;導磁率從26~;磁致伸縮系數接近0,在不同的頻率下工作時無雜訊產生;比MPP有更高的DC偏壓能力;具有最佳的性能價格比。主要應用於交流電感、輸出電感、線路濾波器、功率因素校正電路等。有時也替代有氣隙鐵氧體作變壓器鐵芯使用。 2、 軟磁鐵氧體(Ferrites) 軟磁鐵氧體 軟磁鐵氧體是以Fe2O3為主成分的亞鐵磁性氧化物,採用粉末冶金方法生產。有Mn-Zn、Cu-Zn、Ni-Zn等幾類,其中Mn-Zn鐵氧體的產量和用量最大,Mn-Zn鐵氧體的電阻率低,為1~10 歐姆-米,一般在kHZ 以下的頻率使用。Cu-Zn、Ni-Zn鐵氧體的電阻率為~ 歐姆-米,在kHz~10 兆赫的無線電頻段的損耗小,多用在無線電用天線線圈、無線電中頻變壓器。磁芯形狀種類豐富,有E、I、U、EC、ETD形、方形(RM、EP、P)、罐形(PC、RS、DS)及圓形等。在應用上很方便。由於軟磁鐵氧體不使用鎳等稀缺材料也能得到高磁導率,粉末冶金方法又適宜於大批量生產,因此成本低,又因為是燒結物硬度大、對應力不敏感,在應用上很方便。而且磁導率隨頻率的變化特性穩定,在kHz以下基本保持不變。隨著軟磁鐵氧體的出現,磁粉芯的生產大大減少了,很多原來使用磁粉芯的地方均被軟磁鐵氧體所代替。 國內外鐵氧體的生產廠家很多,在此僅以美國的Magnetics生產的Mn-Zn鐵氧體為例介紹其應用狀況。分為三類基本材料:用基本材料、寬頻及EMI材料、功率型材料。 用鐵氧體的磁導率從~, 具有低損耗因子、高品質因素、穩定的磁導率隨溫度/時間關系, 是磁導率在工作中下降最慢的一種,約每10年下降3%~4%。廣泛應用於高濾波器、調諧濾波器、負載線圈、阻抗匹配變壓器、接近感測器。寬頻鐵氧體也就是常說的高導磁率鐵氧體,磁導率分別有、、。其特性為具有低損耗因子、高磁導率、高阻抗/頻率特性。廣泛應用於共模濾波器、飽和電感、電流互感器、漏電保護器、絕緣變壓器、及脈沖變壓器,在寬頻變壓器和EMI上多用。功率鐵氧體具有高的飽和磁感應強度,為~Gs。另外具有低損耗/頻率關系和低損耗/溫度關系。也就是說,隨頻率增大、損耗上升不大;隨溫度提高、損耗變化不大。廣泛應用於功率扼流圈、並列式濾波器、開關電源變壓器、開關電源電感、功率因素校正電路。 (二) 帶繞鐵芯 1、硅鋼片鐵芯 硅鋼片是一種合金,在純鐵中加入少量的硅(一般在4.5%以下)形成的鐵硅系合金稱為硅鋼。該類鐵芯具有最高的飽和磁感應強度值為Gs;由於它們具有較好的磁電性能,又易於大批生產,價格便宜,機械應力影響小等優點,在電力電子行業中獲得極為廣泛的應用,如電力變壓器、配電變壓器、電流互感器等鐵芯。是軟磁材料中產量和使用量最大的材料。也是電源變壓器用磁性材料中用量最大的材料。特別是在低頻、大功率下最為適用。常用的有冷軋硅鋼薄板DG3、冷軋無取向電工鋼帶DW、冷軋取向電工鋼帶D,適用於各類電子系統、家用電器中的中、小功率低頻變壓器和扼流圈、電抗器、電感器鐵芯,這類合金韌性好,可以沖片、切割等加工,鐵芯有疊片式及卷繞式。但高頻下損耗急劇增加,一般使用頻率不超過Hz。從應用角度看,對硅鋼的選擇要考慮兩方面的因素:磁性和成本。對小型電機、電抗器和繼電器,可選純鐵或低硅鋼片;對於大型電機,可選高硅熱軋硅鋼片、單取向或無取向冷軋硅鋼片;對變壓器常選用單取向冷軋硅鋼片。在工頻下使用時,常用帶材的厚度為0.2~0.35毫米;在Hz下使用時,常選0.1毫米厚度為宜。厚度越薄,價格越高。 2、坡莫合金 坡莫合金鐵芯 坡莫合金常指鐵鎳系合金,鎳含量在30~90%范圍內。是應用非常廣泛的軟磁合金。通過適當的工藝,可以有效地控制磁性能,比如超過的初始磁導率、超過的最大磁導率、低到2‰奧斯特的矯頑力、接近1或接近0的矩形系數,具有面心立方晶體結構的坡莫合金具有很好的塑性,可以加工成1μm的超薄帶及各種使用形態。常用的合金有1J50、1J79、1J85等。1J50 的飽和磁感應強度比硅鋼稍低一些,但磁導率比硅鋼高幾十倍,鐵損也比硅鋼低2~3倍。做成較高頻率(~Hz)的變壓器,空載電流小,適合W以下小型較高頻率變壓器。1J79 具有好的綜合性能,適用於高頻低電壓變壓器,漏電保護開關鐵芯、共模電感鐵芯及電流互感器鐵芯。1J85 的初始磁導率可達十萬以上,適合於作弱的低頻或高頻輸入輸出變壓器、共模電感及高精度電流互感器等。 3、非晶及納米晶軟磁合金(Amorphous and Nanocrystalline alloys) 硅鋼和坡莫合金軟磁材料都是晶態材料,原子在三維空間做規則排列,形成周期性的點陣結構,存在著晶粒、晶界、位錯、間隙原子、磁晶各向異性等缺陷,對軟磁性能不利。從磁性物理學上來說,原子不規則排列、不存在周期性和晶粒晶界的非晶態結構對獲得優異軟磁性能是十分理想的。非晶態金屬與合金是70年代問世的一個新型材料領域。它的制備技術完全不同於傳統的方法,而是採用了冷卻速度大約為每秒一百萬度的超急冷凝固技術,從鋼液到薄帶成品一次成型,比一般冷軋金屬薄帶工藝減少了許多中間工序,這種新工藝被人們稱之為對傳統冶金工藝的一項革命。由於超急冷凝固,合金凝固時原子來不及有序排列結晶,得到的固態合金是長程無序結構,沒有晶態合金的晶粒、晶界存在,稱之為非晶合金,被稱為是冶金材料學的一項革命。這種非晶合金具有許多獨特的性能,如優異的磁性、耐蝕性、耐磨性、高的強度、硬度和韌性,高的電阻率和機電耦合性能等。由於它的性能優異、工藝簡單,從80年代開始成為國內外材料科學界的研究重點。目前美、日、德國已具有完善的生產規模,並且大量的非晶合金產品逐漸取代硅鋼和坡莫合金及鐵氧體湧向場。 中國自從70年代開始了非晶態合金的研究及工作,經過「六五」、「七五」、「八五」期間的重大科技攻關項目的完成,共取得科研成果項,國家發明獎2項,獲專利16項,已有近百個合金品種。鋼鐵研究總院現具有4條非晶合金帶材生產線、一條非晶合金元器件鐵芯生產線。生產各種定型的鐵基、鐵鎳基、鈷基和納米晶帶材及鐵芯,適用於逆變電源、開關電源、電源變壓器、漏電保護器、電感器的鐵芯元件,年產值近萬元。「九五」正在建立千級鐵基非晶生產線,進入國際先進水平行列。 目前,非晶軟磁合金所達到的最好單項性能水平為: 初始磁導率 μo = 14 × 鈷基非晶最大磁導率 μm= × 鈷基非晶矯頑力 Hc = 0. Oe 磁性材料
鈷基非晶矩形比 Br/Bs = 0. 鈷基非晶飽和磁化強度 4πMs = Gs 鐵基非晶電阻率 ρ= μΩ/cm 常用的非晶合金的種類有:鐵基、鐵鎳基、鈷基非晶合金以及鐵基納米晶合金。其國家牌及性能特點見表及圖所示,為便於對比,也列出晶態合金硅鋼片、坡莫合金1J79 及鐵氧體的相應性能。這幾類材料各有不同的特點,在不同的方面得到應用。 牌基本成分和特徵: 1K Fe-Si-B 系快淬軟磁鐵基合金 1K Fe-Si-B-C 系快淬軟磁鐵基合金 1K Fe-Si-B-Ni 系快淬軟磁鐵基合金 1K Fe-Si-B-Ni Mo 系快淬軟磁鐵基合金 1K Fe-Si-B-Cr(及其他元素)系快淬軟磁鐵基合金 1K 高頻低損耗Fe-Si-B 系快淬軟磁鐵基合金 1K 高頻低損耗Fe-Nb-Cu-Si-B 系快淬軟磁鐵基納米晶合金 1K 高脈沖磁導率快淬軟磁鈷基合金 1K 高剩磁比快淬軟磁鈷基合金 1K 高磁感低損耗快淬軟磁鈷基合金 1K 高頻低損耗快淬軟磁鈷基合金 1K 高起始磁導率快淬軟磁鈷基合金 1K 淬態高磁導率軟磁鈷基合金 1K Fe-Ni-P-B 系快淬軟磁鐵鎳基合金 1K Fe-Ni--Si-B 系快淬軟磁鐵鎳基合金 Hz: 硅鋼鐵芯 非晶鐵芯 功率(W) 45 45 鐵芯損耗(W) 2.4 1.3 激磁功率(A) 6.1 1.3 總重量(g)
編輯本段展望
磁電共存這一基本規律導致了磁性材料必然與電子技術相互促進而發展,例如光電子技術促進了光磁材料和磁光材料的研製。磁性半導體材料和磁敏材料和器件可以應用於遙感、遙則技術和機器人。人們正在研究新的非晶態和稀土磁性材料(如FeNa合金)。磁性液體已進入實用階段。某些新的物理和化學效應的發現(如拓撲效應)也給新材料的研製和應用(如磁聲和磁熱效應的應用)提供了條件。較小,硬磁性材料剩磁較大。
感覺還是找個專業的問問好的 或者到硬之城上面找找有沒有這個型號 把資料弄下來慢慢研究研究
❺ 織物電阻率測試儀測試原理是什麼呀急。。
根據歐姆定律,被測電阻Rx等於施加電壓V除以通過的電流I。傳統的高阻計的工作原理是測量電壓V固定,通過測量流過取樣電阻的電流I來得到電阻值。從歐姆定律可以看出,由於電流I是與電阻成反比,而不是成正比,所以電阻的顯示值是非線性的,即電阻無窮大時,電流為零,即表頭的零位處是∞,其附近的刻度非常密,解析度很低。整個刻度是非線性的。又由於測量不同的電阻時,其電壓V也會有些變化,所以普通的高阻計是精度差、解析度低。
儀器是同時測出電阻兩端的電壓V和流過電阻的電流I,通過內部的大規模集成電路完成電壓除以電流的計算,然後把所得到的結果經過A/D轉換後以數字顯示出電阻值,即便是電阻兩端的電壓V和流過電阻的電流I是同時變化,其顯示的電阻值不象普通高阻計那樣因被測電壓V的變化或電流I的變而變,所以,即使測量電壓、被測量電阻、電源電壓等發生變化對其結果影響不大,其測量精度很高(專利),從理論上講其誤差可以做到零,而實際誤差可以做到千分之幾或萬分之幾。
❻ 法拉第曾提出一種利用河流發電的設想,並進行了實驗研究.實驗裝置的示意圖如圖所示,兩塊面積均為S的矩
由平衡條件得:qvB=q
由電阻定律得:兩極板間水的電阻r=ρ
電阻R消耗的電功率P=I 2 R= (
解得:P= (
故選C. |
❼ 歐姆 提出電阻定律的背景 提出的目的 怎樣提出的 做過的實驗等
歐姆對導線中的電流進行了研究。他從傅立葉發現的熱傳導規律受到啟發,導熱桿中兩點間的熱流正比於這兩點間的溫度差。因而歐姆認為,電流現象與此相似,猜想導線中兩點之間的電流也許正比於它們之間的某種驅動力,即現在所稱的電動勢。歐姆花了很大的精力在這方面進行研究。開始他用伏打電堆作電源,但是因為電流不穩定,效果不好。後來他接受別人的建議改用溫差電池作電源,從而保證了電流的穩定性。但是如何測量電流的大小,這在當時還是一個沒有解決的難題。開始,歐姆利用電流的熱效應,用熱脹冷縮的方法來測量電流,但這種方法難以得到精確的結果。後來他把奧斯特關於電流磁效應的發現和庫侖扭秤結合起來,巧妙地設計了一個電流扭秤,用一根扭絲懸掛一磁針,讓通電導線和磁針都沿子午線方向平行放置;再用鉍和銅溫差電池,一端浸在沸水中,另一端浸在碎冰中,並用兩個水銀槽作電極,與銅線相連。當導線中通過電流時,磁針的偏轉角與導線中的電流成正比。實驗中他用粗細相同、長度不同的八根銅導線進行了測量,得出了如下的等式: X=a/(b+x)。 式中X為磁效應強度,即電流的大小;a是與激發力(即溫度差)有關的常數,即電動勢;x表示導線的長度,b是與電路其餘部分的電阻有關的常數,b+x實際上表示電路的總電阻。這個結果於1826年發表。1827年歐姆又在《動電電路的數學研究》一書中,把他的實驗規律總結成如下公式: S=γE。 式中S表示電流;E表示電動力,即導線兩端的電勢差,γ為導線對電流的傳導率,其倒數即為電阻。 歐姆定律發現初期,許多物理學家不能正確理解和評價這一發現,並遭到懷疑和尖銳的批評。研究成果被忽視,經濟極其困難,使歐姆精神抑鬱。直到1841年英國皇家學會授予他最高榮譽的科普利金牌,才引起德國科學界的重視。
歐姆在自己的許多著作里還證明了:電阻與導體的長度成正比,與導體的橫截面積和傳導性成反比;在穩定電流的情況下,電荷不僅在導體的表面上,而且在導體的整個截面上運動。
歐姆第一階段的實驗是探討電流產生的電磁力的衰減與導線長度的關系,其結果於1825年5月在他的第一篇科學論文中發表。在這個實驗中,他碰到了測量電流強度的困難。在德國科學家施威格發明的檢流計啟發下,他把斯特關於電流磁效應的發現和庫化扭秤方法巧妙地結合起來,設計了一個電流扭力秤,用它測量電流強度。歐姆從初步的實驗中發出,電流的電磁力與導體的長度有關。其關系式與今天的歐姆定律表示式之間看不出有什麼直接聯系。歐姆在當時也沒有把電勢差(或電動勢)、電流強度和電阻三個量聯系起來。 在歐姆之前,雖然還沒有電阻的概念,但是已經有人對金屬的電導率(傳導率)進行研究。1825年7月,歐姆也用上述初步實驗中所用的裝置,研究了金屬的相對電導率。他把各種金屬製成直徑相同的導線進行測量,確定了金、銀、鋅、黃銅、鐵等金屬的相對電導率。雖然這個實驗較為粗糙,而且有不少錯誤,但歐姆想到,在整條導線中電流不變的事實表明電流強度可以作為電路的一個重要基本量,他決定在下一次實驗中把它當作一個主要觀測量來研究。 在以前的實驗中,歐姆使用的電池組是伏打電堆,這種電堆的電動勢不穩定,使他大為頭痛。後來經人建議,改用鉍銅溫差電偶作電源,從而保證了電源電動勢的穩定。 1826年,歐姆用上面圖中的實驗裝置導出了他的定律。在木質座架上裝有電流扭力秤,DD'是扭力秤的玻璃罩,CC'是刻度盤,s是觀察用的放大鏡,m和m'為水銀杯,abb'a'為鉍框架,鉍、銅框架的一條腿相互接觸,這樣就組成了溫差電偶。A、B是兩個用來產生溫差的錫容器。實驗時把待研究的導體插在m和m'兩個盛水銀的杯子中,m和m'成了溫差電池的兩個極。 歐姆准備了截面相同但長度不同的導體,依次將各個導體接入電路進行實驗,觀測扭力拖拉磁針偏轉角的大小,然後改變條件反復操作,根據實驗數據歸納成下關系: x=q/(b+l)式中x表示流過導線的電流的大小,它與電流強度成正比,A和B為電路的兩個參數,L表示實驗導線的長度。 1826年4月歐姆發表論文,把歐姆定律改寫為:x=ksa/ls為導線的橫截面積,K表示電導率,A為導線兩端的電勢差,L為導線的長度,X表示通過L的電流強度。如果用電阻l'=l/ks代入上式,就得到X=a/I'這就是歐姆定律的定量表達式,即電路中的電流強度和電勢差成正而與電阻成反比。為了紀念歐姆對電磁學的貢獻,物理學界將電阻的單位命名為歐姆,以符號Ω表示。1歐姆定義為電位差為1伏特時恰好通過以安培電流的電阻。
❽ 電阻定律它對任意形狀的導體都適用嗎
電阻定律對任意形狀的導體都適用。導體的電阻等於電阻率和長度的乘積與面積的比值。即R=pL/S。