『壹』 從供電制式來看,牽引傳動系統主要有哪幾種形式我國新型動車組屬哪種形式
我國的都是交流--直流--交流的形式
『貳』 你好,你在2010-3-27 20:21回答的「現在主流的地鐵動車牽引電機,採用是交流還是直流」問題中
北京地地鐵四號線由京港地鐵運營,採用南方四方機車車輛公司的版車輛,傳動機構由常州權軌道車輛牽引傳動工程技術研究中心提供,龐巴迪運輸瑞典有限公司簽下四號線《電動車輛及牽引與制動系統采購合同》,四號線新車將全部由南車四方製造,但牽引與制動系統由龐巴迪提供。龐巴迪一貫採用大功率IGBT技術,也就是變頻變壓技術(VVVF)將直流電轉換為交流電提供牽引,牽引電機為交流電機!
您聽到的噪音一般是列車加速時的噪音,這個噪音源是電機牽引輸出時發出的!列車運行時的噪音包括以下方面,車輪與鋼軌摩擦的嘯叫聲,空調運行時的震動聲,以及在地下洞內列車運行時外面活塞風發出的聲音!
經過改造加裝震動吸收裝置後列車加速啟動時的噪音明顯降低了!並不是更換了電機,僅僅是增加了震動吸收裝置!有效降噪!希望以上說明對您有用!
『叄』 高鐵牽引傳動系統用什麼樣的薄膜電容和氮化鎵器件
用於氮化鎵生長的最理想的襯底自然是氮化鎵單晶材料,這樣可以大大提高外延回膜的晶體質量,降低位錯密度答,提高器件工作壽命,提高發光效率,提高器件工作電流密度.可是,制備氮化鎵體單晶材料非常困難,到目前為止尚未有行之有效的辦法.有研究人員通過HVPE方法在其他襯底(如Al2O3、SiC、LGO)上生長氮化鎵厚膜,然後通過剝離技術實現襯底和氮化鎵厚膜的分離,分離後的氮化鎵厚膜可作為外延用的襯底.這樣獲得的氮化鎵厚膜優點非常明顯,即以它為襯底外延的氮化鎵薄膜的位錯密度,比在Al2O3、SiC上外延的氮化鎵薄膜的位錯密度要明顯低;但價格昂貴.因而氮化鎵厚膜作為半導體照明的襯底之用受到限制.
『肆』 關於軌道車輛牽引制動過程中的問題(共兩個大問題)
機車車輛的牽引制動性能是關繫到車輛運行安全與否的一個重要因素。機車車輛的牽引制動系統的牽引制動性能除了要考慮牽引電機、傳動系統、制動系統之外,還要考慮輪軌接觸的影響。通過MSC.ADAMS/Rail可以對機車車輛的牽引制動性能進行精確的模擬。利用ADAMS/Rail的模板建模方式可以很方便的建立牽引制動系統的模板,然後建立牽引制動子系統,再與轉向架和車體等其它子系統組裝成整車模型。在ADAMS/Rail中可以定義輪軌之間非線性的摩擦特性,隨著蠕滑率的變化而變化的摩擦系數是進行牽引或制動性能分析至關重要的特性。同時,還可以定義隨著軌道長度方向變化的摩擦系數,這樣可以分析鋼軌表面乾燥/潮濕的影響。下面是這方面的應用實例。
實例1 :Voith Turbo是德國鐵道車輛傳動系統的一級供應商,主要開發、製造並組裝機械、液壓及電動系統。他們提供鐵道動車的驅動系統,可使機械繫統運轉更有效,使車輛運營速度更高,更舒適,並節省能源,減少噪音。(摘自: http://www.voithturbo.com)
Voith Turbo公司的分析部門需要研究驅動系統和動車系統之間在牽引或制動時的相互耦合作用,如在牽引/制動時的軸系的諧振問題。ADAMS/Rail、ADAMS/Flex、ADAMS/Exchange使得Voith Turbo實現了在其產品開發流程內虛擬產品開發的技術。ADAMS/Rail的模版建模方式使得Voith Turbo能夠將其建立的驅動系統模型與其他的供應商提供的車輛模型(包括轉向架和車身子系統)聯合起來建立一個包含驅動系統的整車模型,非常容易測試配置不同驅動系統的車輛的動力學性能。其意義在於可以對驅動系統的諧振和穩定性進行研究,並進行優化,以使驅動系統的懸掛裝置所受的沖擊加速度不超過許可的范圍。
所示為考慮傳動系統的整車模型在通過濕滑軌面啟動時牽引電機的輸出扭矩隨著模擬時間的變化過程,通過模擬發現了由於軌面的濕滑而導致輸出扭矩的振動現象,這一現象是由於機車經過濕滑軌面時產生了打滑現象,引起了傳動系統的扭振,所以電機的輸出扭矩出現了上下的波動。
實例2 :龐巴迪運輸公司在運輸行業處於領先地位,其產品包括長短途的機車、客車及貨車,2002年收購Adtranz是一項重要的戰略,奠定了龐巴迪成為鐵路車輛運輸及服務方面在全球設計、製造及銷售方面的世界領先地位。通過合並重組,龐巴迪公司可以為用戶提供創造性的解決方案以滿足用戶的各種需求
一台電力機車可以看作是包含電力系統、機械繫統和控制系統的復雜系統。為開發一個新的車型,需要各方面專家團隊共同合作。電能需要轉化為機械能,電力驅動系統需要滿足機械部分空間的要求,這一部分被稱作傳動系,包括:電機轉換器控制部分、非同步電機、機械驅動系統(特指齒輪箱)、輪軌接觸等。龐巴迪運輸公司的蘇伊士分部負責開發製造機車轉向架驅動系統,在實踐中逐步認識到驅動系統是一個整體,單純改變其中某一個部分而不考慮其他部分是不行的。正因為如此,龐巴迪運輸公司的蘇伊士分部採用了將各個模擬軟體的功能結合起來的方式,結果是使用不同的工具聯合模擬來綜合考慮整個系統的影響。
『伍』 城軌車輛牽引傳動系統的組成是……和CRH2型動車組有什麼區別
凡是電力牽引的機車和動車,都類似,只是個別不同。像電壓類型,受流方式,整流原理,控制原理,牽引力傳遞。。。。。
『陸』 常見的傳動裝置又( ).( )和( )。
常見傳動裝置:
1.皮帶傳動:分為平皮帶傳動,三角皮帶傳動;
(2)鏈條傳動;
(3)齒輪傳動:分為圓柱齒輪傳動,斜齒輪傳動,齒條傳動,蝸輪傳動.
相信我!
『柒』 電力機車牽引電動機和傳動裝置常用的懸掛方式有哪幾種
你好,常用的懸掛方式有:軸懇式、架懸式、全體懸式和半體懸式。希望能夠幫到你
『捌』 軌道交通動力裝置是什麼
1 概述
城市軌道交通具有安全、快速、准時、高效、節能、無污染和佔地少的特點,能滿足城市發展和環境保護的現實要求。發展城市軌道交通是解決城市公共交通問題的根本途徑,也是城市可持續發展戰略的必然選擇。現代快速城市軌道交通系統採用全封閉車道、自動信號控制調度系統和輕型快速電動車組,行車密度大,h~ 40 km 平均旅行速度一般為30 km /h,最高運行h~ 90 km 速度為80 km /h,單向最大載客能力可達6 萬人h~ 8 萬人h。城市軌道交通車輛有三大關鍵技術:VVV F 調頻調壓交流傳動與控制技術;輕量化車體技術;輕量化、高性能、高可靠性轉向架技術。
現代城市軌道交通車輛的類型一般可以分為A 型、B 型、C 型和低地板輕軌車。其中,低地板輕軌車又可分為70% 低地板和100% 低地板2 種。目前,同時具有發展城市軌道交通的現實需要和經濟實力的多為客流量大的大中型城市,其快速軌道交通系統發展的主流是以A 型車或B 型車為基礎,基本編組單元為2M + 1T 或1M+ 1T 的電動車組立體化運行。整個軌道交通系統正朝著地下鐵道、高架輕軌和近郊地面三位一體的立體化、網路化方向發展。採用VVV F 交流傳動技術和輕量化耐候鋼或不銹鋼車體的B 型車,能夠滿足我國一些城市軌道交通系統的發展要求,並有一定的技術經濟性,其走行部為輕量化、低雜訊的無搖枕轉向架。
2 轉向架選型分析
2. 1 城市軌道交通對轉向架的特殊要求
與干線鐵路相比,城市軌道交通有以下特點:
(1) 間距短,啟停頻繁,對牽引和制動性能要求很高;
(2) 曲線半徑小,對走行部要求高;
(3) 線路坡度大,可達30‰~ 60‰;
(4) 載重從1816 t (310 人) 到26 t (432 人),空重車重量差大;
(5) 行車密度大,最短行車間隔可達115 m in~ 2 m in,自動控製程度高;
(6) 運行環境特殊,安全可靠性要求極高;
(7) 對雜訊要求嚴格;
(8) 需滿足城市總體風格和居民的審美要求,車輛造型和色彩要求極富創造性。
對於轉向架的運行穩定性、輕量化、低雜訊、高可靠性、易維護及特殊的運行環境必須給予足夠的重視。轉向架對車輛的運行性能和行車安全至關重要,對軌道交通系統運行的經濟性有重大影響。
2. 2 國內既有轉向架的特點
目前,國內地鐵、輕軌電動客車用轉向架除國產的外,還有引進國外技術的,主要有2 種:一種是上海地鐵1 號線、2 號線和廣州地鐵1 號線用轉向架,為從歐洲整機進口的產品;另一種是北京復八線地鐵用轉向架,為引進韓國韓進重工技術研製生產的產品。其中,上海2 號線地鐵車輛也用於我國第一條高架輕軌—— 明珠線。為便於分析比較,將各種轉向架的主要技術特徵和參數列於表1。
表1 現有地鐵、輕軌轉向架的主要技術特徵和參數
註:上海地鐵1 號線用轉向架為橡膠彈性聯軸器
2. 3 轉向架的發展方向
縱觀國內外情況,A 型或B 型城市軌道交通車輛走行部的發展趨勢是輕量化、低雜訊的無搖枕轉向架,一系懸掛為橡膠彈簧,二系懸掛為空氣彈簧與抗側滾扭桿並用,牽引電機橫向架懸,採用單元式基礎制動裝置。城市軌道交通車輛的線路條件和走行特性與干線鐵路車輛有很大不同,如轉向架的結構設計空間十分苛刻;採用交流傳動技術,齒輪傳動比很高;載客量很素的綜合作用給城市軌道交通車輛轉向架的設計帶來大,運行環境特殊,安全可靠性要求極高,等等。這些因了特殊的困難。
3 轉向架總體設計要求和主要技術參數
3. 1 轉向架總體設計要求
(1) 轉向架的綜合性能應符合規定的限界和線路條件,能夠滿足地下鐵道、高架線路和近郊地面大容量、快速城市軌道交通系統的運用要求。
(2) 轉向架具有適宜的運行穩定性和良好的曲線通過能力。
(3) 運行平穩性指標按GB5599—1985 《鐵道車輛動力學性能評定和試驗鑒定規范》的規定執行:車輛在空載和滿載之間的任何載荷條件及各種運營速度下,其垂向和橫向平穩性指標均小於或等於215,且性能穩定。
(4) 轉向架的安全性指標按GB5599—1985 《鐵道車輛動力學性能評定和試驗鑒定規范》的規定執行:脫軌系數Q ?P ≤1. 0;輪重減載率?P ?P ≤016;傾覆系數D ≤018。
(5) 轉向架關鍵零部件的靜強度、動強度符合有關國際標准或TB1335—1996 《鐵道車輛強度設計及試驗鑒定規范》的要求。
(6) 適當採取輕量化措施,轉向架總重約415t(不含驅動裝置)。
(7) 可靠性高,對可能的故障均採取安全措施。
(8) 可維護性好。
3. 2 轉向架主要技術參數
4 轉向架主要結構設計特點
B 型城市軌道交通車輛轉向架為輕量化、低雜訊、無搖枕轉向架。軸箱彈簧為無磨耗圓錐疊層橡膠彈簧,採用H 型鋼板壓型焊接構架,中央懸掛為空氣彈簧直接支承車體的三無結構,採用單元式單側閘瓦踏面制動裝置,牽引電機橫向架懸。轉向架分為動車轉向架(圖1) 和拖車轉向架(圖2)。在動車轉向架的每根車軸上裝有1 台交流牽引電動機、齒輪傳動箱和聯軸器。動車轉向架與拖車轉向架相比,除軸箱彈簧的特性參數不同外,其他零部件可完全互換。
圖1 動車轉向架裝配圖
圖2 拖車轉向架裝配圖
首次採用I2DEA S 軟體對轉向架直接進行三維裝配設計。構架、軸箱等的三維造型設計為後續的有限元強度計算打下了基礎。對各零部件進行了准確的質量、轉動慣量、重心和主慣性軸位置的計算,以便為轉向架的動力學性能計算提供可靠的基礎數據。
4. 1 輪對軸箱定位裝置
輪對軸箱定位裝置採用圓錐疊層橡膠彈簧(圖3) ,橡膠彈簧的優點在於具有非線性剛度特性,並有隔離高頻振動和降低輪軌雜訊的作用。對三向彈簧參數進行優化選擇,在獲得轉向架適宜的蛇行運動穩定性和滿足傳遞制動力、牽引力要求的前提下,注重提高轉向架的曲線通過能力。在軸箱彈簧與軸箱之間設有調整墊片,以便於落車調整。軸箱蓋與構架之間設有安全吊環。
圖3 輪對軸箱彈簧裝配圖
採用我國現行標準的H SD 型車輪,車輪滾動圓直徑為<840 mm ,踏面為LM 型磨耗形踏面。遠期有條件時將採用雜訊優化車輪和大等效斜度圓弧踏面。車軸為非標RC3 軸,軸頸直徑為<120 mm,軸頸中心距為1 930 mm 。採用<120mm ×<240mm ×160mm 雙列圓柱滾子軸承,軸箱材料為鑄鋼,有條件時將採用鋁合金。
4. 2 構架組成
構架為H 型輕量化低合金高強度鋼板焊接結構,主要由2 根側梁和2 根橫梁組成(圖4)。側樑上蓋板、下蓋板和立板的厚度分別為12 mm 、14 mm 、10 mm,側梁內部設有多塊厚度為8 mm 的筋板。構架橫梁採用直徑<180 mm 、壁厚14 mm 的無縫鋼管,可提高構架主體結構的可靠性。側梁與橫梁的連接處和兩橫梁之間設有縱向加強梁。
圖4 構架裝配圖
構架側樑上焊有制動缸安裝座、軸箱彈簧定位座等,橫樑上焊有牽引電機吊座、齒輪箱吊桿座、牽引拉桿座和橫向緩沖器座等。所有關鍵安裝座的位置精度均通過對轉向架構架的整體加工獲得。採用三維有限元分析法進行了構架應力和振動模態分析。計算表明,構架整體應力分布合理,不存在薄弱環節。模態分析採用了L anczo s 方法,最低階模態振型為構架扭曲,頻率為3011 H z 。正常運用情況下,轉向架構架的使用壽命不低於車體壽命(30 a),在此期間內不需要對轉向架進行結構修整。轉向架焊接製造完工後需進行消除焊接內應力的處理。
4. 3 中央懸掛裝置
中央懸掛裝置採用低橫向剛度、大扭轉變形的空氣彈簧直接支承車體的三無結構,垂向用可變阻尼節流閥減振,橫向安裝油壓減振器,還設有非線性橫向緩沖止擋和新型抗側滾扭桿裝置(圖5)。動車頭部轉向架裝設排障器和信號天線托架。當採用第三軌受電時,還需裝設第三軌受流器。
圖5 無搖枕型中央懸掛裝配
牽引裝置由中心銷、牽引梁、復合彈簧和新結構Z 形牽引拉桿組成,牽引點距軌面高度為385 mm 。新結構Z 形牽引拉桿具有低的橫向及垂向附加剛度,提高了車輛的橫向及垂向動力學性能,實現了無磨耗、無間隙牽引。
4. 4 基礎制動裝置
動車、拖車轉向架均採用單側單元式踏面制動裝置,制動力優先由動車的再生制動負擔。每軸設1 個帶彈簧停放制動器的單元制動缸,停放制動能力滿足用戶規定的最大限制坡道要求。此方案的優點在於,動車、拖車轉向架的制動裝置(除制動倍率外) 完全相同。與軸裝盤形制動和輪裝盤形制動相比,該轉向架具有較低的簧下質量,有利於減小輪軌之間的動作用力。單元制動缸的主要技術參數見表3。
4. 5 齒輪傳動裝置採用斜齒輪一級減速,以使傳動平穩,降低傳動雜訊。為降低簧下質量,齒輪箱材料採用高強度鑄造鋁合金。採用剛性可移式鼓形齒聯軸器或TD 型撓性板式聯軸器(圖6)。齒輪箱採用具有雙面密封效果的機械式迷宮密封,免維護,無磨損。傳動裝置的傳動比等主要技術參數將依據列車基本單元的配置和牽引電機的選擇來確定。
圖6 牽引電機傳動裝置
4. 6 其他裝置
5 轉向架動力學性能參數優化
鐵道車輛是一個復雜的多體動力學系統,不但有各個部件之間的相互作用力和相對運動關系,還有輪軌之間復雜的相互作用關系。在轉向架設計過程中,筆者與北方交通大學合作,利用德國鐵路專用軟體S IM 2 PA CK 建立了車輛系統的多體動力學模型,對影響車輛動力學性能的轉向架主要參數進行了優化計算。包括:一系圓錐橡膠彈簧的三向剛度、二系橫向減振器阻尼、抗蛇行減振器阻尼、抗側滾扭桿剛度和車輪踏面斜度的變化等。車輛系統的每種參數對車輛的動態響應、蛇行運動穩定性和曲線通過性能三個方面的影響是不同的,而且,提高車輛蛇行運動臨界速度和改善車輛曲線通過性能這兩者對懸掛參數的要求是有矛盾的。因此,車輛懸掛系統的結構設計和參數選擇,只能按實際運用條件進行綜合考慮。這些條件包括最高運營速度、曲線半徑和超高以及線路不平順等。通過多方案的參數優化選擇,轉向架蛇行運動的計算臨界速度為220 km /h,動車、拖車的運行平穩性指標小於2. 5,曲線通過能力和運行安全性指標滿足有關標準的要求。
6 結論與建議
立足於國內技術,研製出具有國際先進水平的轉向架,對我國城市軌道交通的發展具有重大意義。轉向架的結構設計受車輛限界、地板高度、車輛寬度和軸重等的嚴格限制。通過B 型城市軌道交通車輛轉向架的設計,筆者有以下幾點體會:
(1) 雖然完成了轉向架的設計和理論分析計算,但結構設計的合理性、關鍵零部件的疲勞強度以及運行性能仍有待於進一步試驗和長期的運用考驗。
(2) 對於採用VVV F 交流傳動的A 型和B 型城市軌道交通車輛來說,踏面單元制動是較理想的基礎制動方式。
(3) 車輪直徑大小及其輻板形式不僅影響輪軌之滑防空轉控制感測器、接地電刷裝置和固體輪緣潤滑間的相互作用,也關繫到轉向架傳動裝置的設計和牽引電機的選擇。應盡快研製車輪直徑和輻板形式合理的雜訊優化車輪。
(4) 有關單位應研製專門適用於城市軌道交通車輛的大等效斜度圓弧踏面,以提高城市軌道交通系統運營的經濟性。
(5) 城市軌道交通車輛轉向架的研製是一個復雜的系統工程。轉向架的設計與線路、限界條件、傳動技術的發展以及轉向架基礎零部件的技術水平密切相關。
(6) B 型城市軌道交通車輛轉向架的基本結構和技術完全可以用於A 型車,只需根據A 型車鋁合金車體的設計特點對轉向架固定軸距和空氣彈簧上支承面高度進行適當調整即可。
『玖』 城市軌道交通車輛牽引電動機的傳動和配置方式有哪幾類
軸重較大
原因是牽引電機的重量由輪對(車輪)承擔,而動力集中式牽引電機布置在一起,所以有電機處的車輪對鋼軌壓力大