『壹』 該怎麼把他發明出來
您好,根據來您所述,您自的朋友只是有很多想法,具體還沒做出來。所以首先要確認你朋友所做的東西又沒有價值,然後再查有沒有被申請專利,如果沒有被申請而且很有市場,就繼續研究把他做出來,技術方面也可以請人幫忙做
『貳』 大亞灣中微子實驗的大亞灣實驗的國際學術影響
由於科學意義重大,國際上先後有7個國家提出了8個實驗方案,最終進入建設階段的共有3個。中國科學院高能物理研究所的科研人員2003年提出設想,利用我國大亞灣核反應堆群產生的大量中微子,來尋找中微子的第三種振盪,並提出了實驗和探測器設計的總體方案。
由於這一方案具有獨特的地理優勢和獨到的設計,得到了國際上的廣泛支持,目前匯集了來自中國大陸、美國、俄羅斯、捷克、中國香港和中國台灣等6個國家和地區的200多名科學家共同參與。
據介紹,大亞灣實驗是一個中微子「消失」的實驗,它通過分布在三個實驗大廳的8個全同的探測器來獲取數據。每個探測器為直徑5米、高5米的圓柱形,裝滿透明的液體閃爍體,總重110噸。周圍緊鄰的核反應堆產生海量的電子反中微子,近點實驗大廳中的探測器將會測量這些中微子的初始通量,而遠點實驗大廳的探測器將負責尋找預期中的通量減少。
在2011年12月24日至2012年2月17日的實驗中,科研人員使用了6個中微子探測器,完成了實驗數據的獲取、質量檢查、刻度、修正和數據分析。結果表明中微子第三種振盪幾率為9.2%,誤差為1.7%,從而首次發現了這種新的中微子振盪模式。
中科院高能所原所長陳和生院士認為,大亞灣實驗發現的新中微子振盪,是目前世界上最好、最精確的中微子振盪測量結果,它為未來中微子研究指明了方向。
中國物理學會理事長、中科院副院長詹文龍院士高度評價大亞灣中微子實驗取得的重大發現,支持中微子後續實驗裝置建造和項目推進,並希望大亞灣中微子實驗項目進一步發展,成為下一代中國大型國際科學研究裝置。
「大亞灣實驗的結果具有極為重要的科學意義。它不僅使我們更深入了解了中微子的基本特性,也決定了我們是否能夠進行下一代中微子實驗,以了解宇宙中物質-反物質不對稱現象,即宇宙中『反物質消失之謎』。」中國高能物理學會理事長趙光達院士說。
2012年美國《科學》雜志評出十大科技進展 , 大亞灣中微子合作項目位列其中。
『叄』 科學家的小故事
牛頓一人在家中的果園抄中,由於邊走路邊思考問題,無意間撞到園中的蘋果樹,這時一個蘋果正好砸在牛頓的頭上。牛頓突然從問題中醒悟過來,撿起了蘋果,這時他又陷入一個問題:為什麼蘋果會落到地上,而不是飄上天空。最終牛頓提出一個最簡單的現象產生的舉世定律:萬有引力。
『肆』 中科院高能物理研究所怎麼樣
能進中科院的都是IQ特別高的,我當年也考中科院高分子材料研究生滑檔內下來的,題目大多是容超綱題。
工作生活前期基本在實驗室,後期有成果之後召開發表,刊登在世界著名的科學期刊上,去全國各地高校做演講,一是獲取學術地位,二是賺點生活費。搞科研很辛苦的,特別是前期,有成果就不一樣了
__________________________________分割線—————————————————
兩年過去了,我現在在中科院等離子體物理所,高能所的情況我不大了解,中科院的國家經費都不低就對了,現在每個月(碩士)3000-4000左右,不用學費(返還),專心科研。據我所知國內高校幾乎沒有幾個比中科院給的多。
生活基本上都是差不多的,前期就混個二作共同一作啥的,後面有成果了就寫論文,半年左右一片,科研狗枯燥乏味,論文都是相互引用,水文章從講師評職稱到教授,所以說為什麼中國高校中流傳一句話:一流的本科,二流的碩博,三流的教授,有那麼點意思在裡面,不過並不能以偏概全,至少我現在的導師是碩果累累(核聚變等離子體約束行為方向)。
『伍』 科學家的小故事
在網路上找到的:供你參考!
門 捷 列 夫
元素周期律的發現
1867年,俄國彼德聖堡大學里來了一個年輕的化學教授,他就是門捷列夫。身為化學教授的門捷列夫大部分時間不是在實驗室度過,而是將自己關在書房裡。手裡總捏著一副紙牌,顛來倒去,整好又打亂,亂了又重排。不邀牌友,也不去上別人家的牌桌。
兩年後的一天,俄羅斯化學會專門邀請專家進行一次學術討論。學者們有的帶著論文,有的帶著樣品,只有門捷列夫兩手空空,學術討論進行了三天,三天來討論會場大家各抒己見,好不熱鬧,只有門捷列夫一個人一直一言不發,只是瞪著一雙大眼睛看,豎起耳朵聽,有時皺皺眉頭想想。
眼看討論就要結束了,主持人躬身說道:「門捷列夫先生,不知可有什麼高見?」門捷列夫也不說話,起身走到桌子的中央,右手從口袋裡取出,隨即一副紙牌甩在桌子上,在場的人都大吃一驚,門捷列夫愛玩紙牌,化學界的朋友已早有所聞,但總不至於鬧到這種地步,到這么嚴肅的場合來開玩笑吧?
只見門捷列夫將那一把亂紛紛的牌捏在手裡,三下兩下便整理好,並一一亮給大家看。大家這時才發現這並不是一副普通的撲克,每張牌上寫的是一種元素的名稱、性質、原子量等,共63張,代表著當時已發現的63種元素。更怪的是,這副牌中有紅、橙、黃、綠、青、藍、紫七種顏色。
門捷列夫真不愧為玩紙牌的老手,一會兒功夫就在桌子上列成一個牌陣:豎看就是紅、橙、黃、綠、青、藍、紫分別各一列,橫看那七種顏色的紙牌就像畫出的光譜段,有規律地每隔七張就重復一次。然後門捷列夫口中念念有詞地講著每一個元素的性質,滾瓜爛熟,如數家寶。周圍的人都傻眼了。他們在實驗室里鑽了十年、幾十年,想不到一個年輕人玩玩紙牌就能得出這番道理,要說不服氣吧,好象有理,要說真是這樣,又有些不甘心。
這時一直坐在旁邊觀看的門捷列夫的老師鬍子氣得撅起來了,一拍桌子站起來,以師長的嚴厲聲調說道:「快收起你這套魔術吧,身為教授、科學家,不在實驗室里老老實實地做實驗,卻異想天開,擺擺紙牌就要發現什麼規律,這些元素難道就由你這樣隨便擺布嗎?……」老人越說越激動,一邊還收拾東西准備離去,其他人見狀也紛紛站起,這場討論就這樣不了了之。
門捷列夫堅信自己是對的,回家後繼續推著這副紙牌,遇到什麼地方接連不上時,他就斷定還有新元素沒被發現,他就暫時補一張空牌,這樣他一口氣預言了11種未知元素,那副牌已是74張。這就是最早的元素周期表。
在隨後的幾年中,門捷列夫預言的11種元素陸續被發現,乖乖地住進他的元素周期表,特別是後來發現的氦、氖、氬、氪、氙和氡又給元素周期表增加了新的一族。元素世界一目瞭然,它就像一幅大地圖,以後化學的研究就全靠這幅指南圖了。
牛 頓
少年時代的牛頓不像高斯、維納那樣,從小就顯露出引人注目的科學天才;也不像莫扎特那樣表現了令人驚嘆的藝術稟賦。他跟普通人一樣,輕松愉快地度過了中學時代。
如果說他和別的孩子有什麼不同的話,那就是他的動手能力相當強。他做過會活動的水車;做過能測出准確時間的水鍾;還做過一種水車風車聯動裝置,它使風車可以在無風時藉助水力驅動。
15歲那年,一場罕見的暴風雨侵襲英格蘭。狂風怒吼,牛頓家的房子直晃悠,就像要倒了似的。牛頓為大自然的威力迷住了,不禁想測驗颶風的力量。他冒著狂風暴雨來到後院,一會兒逆風跑,一會兒順風跳。為了接受更多的風力,他索性敞開斗篷向上跳躍,認准起落點,仔細量距離,看狂風把他吹出多遠。
1661年牛頓考上了劍橋大學,盡管在中學里是個優等生,可是劍橋大學集中了各地的尖子學生,他的學習成績趕不上別人,特別是數學的差距更大。但是他並不氣餒,就像他少年時代喜歡思考問題一樣,踏踏實實地學習,直到透徹地理解為止。
在大學的頭兩年裡,他除學習算術、代數、三角外,還認真學習了歐幾里得《幾何原本》,彌補了過去的不足。他又鑽研笛卡兒的《幾何學》,熟練地掌握了坐標法。這些數學知識,為牛頓後來的科學研究打下了堅實的基礎。
四年後,他從劍橋大學畢業了。1666年的一天,牛頓請母親和弟妹到自己房間里來。房間里黑洞洞的,只從窗子的一個小孔中透過一線陽光,在牆上照出一個白色的光點。牛頓讓他們注意看牆上的光點。他手裡拿著自製的三棱鏡,放在光線入口處,使光折射到對面牆上,光點附近突然映出一條瑰麗的綵帶。這條綵帶同雨後晴空中出現的彩虹一樣,由紅、橙、黃、綠、青、藍、紫等七種顏色組成。牛頓和自己的親人共同觀賞了人工復現的自然景象。後來,牛頓又用第二個三棱鏡把七種單色光合成白光。他用白光分解實驗宣告了光譜學的誕生。
牛頓在探索光色之謎的同時,還在探索引力之謎。他從蘋果從樹上掉了下來的事實發現萬有引力定律,而且從數學上論證了萬有引力定律,並且把力學確立為完整、嚴密、系統的學科。他在概括和總結前人研究成果的基礎上,通過自己的觀察和實驗,提出了「運動三定律」。這三條定律和萬有引力定律共同構成了宏偉壯麗的力學大廈的主要支柱。這座力學大廈是近代天文學和力學發展的基地,是機械、建築等工程技術發展的基地,也是機械唯物論統治自然科學領域的基地。構造了宏偉壯麗的力學大廈。
瓦 特
瓦特出生於英國的格林諾克,由於家境貧窮沒機會上學,先是到一家鍾錶店當學徒,後又到格拉斯哥大學去當儀器修理工,瓦特聰明好學,他常抽空旁聽教授們講課,再加上他整日親手擺弄那些儀器,學識也就積累的不淺了。
1764年,格拉斯哥大學收到一台要求修理的紐可門蒸汽機,任務交給了瓦特。瓦特將它修好後,看看他工作那麼吃力,就象一個老人在喘氣,顛顛顫顫地負重行走,覺得實在應該將它改進一下。
他注意到毛病主要是缸體隨著蒸汽每次熱了又冷,冷了又熱,白白浪費了許多熱量。能不能讓它一直保持不冷而活塞又照常工作呢?於是他自己出錢租了一個地窖,收集了幾台報廢的蒸汽機,決心要造出一台新式機器來。
從此,瓦特整日擺弄這些機器,兩年後,總算弄出個新機樣子。可是點火一試,那汽缸到處漏氣,瓦特想盡辦法,用氈子包,用油布裹,幾個月過去了,還是治不了這個毛病。
一天他又趴到汽缸前觀察漏氣的原因,不小心一股熱氣沖出,他急忙躲閃,右肩上已是紅腫一片,就像被一把熱刀削過一樣,辣辣地疼起來,弄得他心煩意亂。他真有些灰心了,這時,是他的妻子給了他勇氣,妻子用激將法又激起了繼續研究下去的雄心。
他又回到地下實驗室,將過去的資料重新翻閱一番,打起精神又幹了起來,干累了就守著爐子燒一壺水喝茶。一天,他一邊喝茶,一邊看著那一動一動的壺蓋。他看看爐子上的壺又看看手中的杯子,突然靈感來了:茶水要涼,倒在杯里;蒸汽要冷,何不也把它從汽缸里也「倒」出來呢?
這樣想著,瓦特立即設計了一個和汽缸分開的冷凝器,這下熱效率提高了三倍,用的煤只有原來的四分之一。這關鍵的地方一突破,瓦特頓然覺得前程光明。他又到大學里向布萊克教授請教了一些理論問題,教授又介紹他認識了發明鏜床的威爾金技師,這位技師立即用鏜炮筒的方法制了汽缸和活塞,解決了那個最頭疼的漏氣問題。
1784年,瓦特的蒸汽機已裝上曲軸、飛輪,活塞可以靠從兩邊進來的蒸汽連續推動,再不用人力去調節活門,世界上第一台真正的蒸汽機誕生了。
楊 振 寧
楊振寧生於安徽合肥,讀小學時,數學和語文成績都很好。中學還沒有畢業,就考入了西南聯大,那是他才16歲。20歲那年大學畢業後,旋即進入西南聯大的研究院。兩年後,以優異成績獲得了碩士學位,並考上了公費留美生,於1945年赴美進芝加哥大學,1948年獲博士學位。1949年,楊振寧進入普林斯頓高等研究院做博士後,開始同李政道合作進行粒子物理的研究工作。
楊振寧是理論物理學家,他對理論物理學的貢獻范圍很廣,包括基本粒子、統計力學和凝聚態物理學等領域,其中在粒子物理學方面貢獻最大。
在粒子物理學方面,他最傑出的貢獻是1954年與密耳斯共同提出的楊--密耳斯場理論,開辟了非阿貝爾規范場的新研究領域,為包括電弱統一理論、量子色動力學理論、大統一理論、引力場的規范理論等現代規范場理論打下了堅實基礎。
另一項傑出貢獻是1956年和李政道合作,深入研究了當時令人困惑的θ-τ之謎,即後來所謂的K 介子有兩種不同的衰變方式,一種衰變成偶宇稱態,一種衰變成奇宇稱態;如果弱衰變過程宇稱守恆,則他們必定是兩種宇稱狀態不同的 K介子。但從質量和壽命來看,它們又應是同一種介子。
楊振寧和李政道通過分析認識到,很可能在弱相互作用中宇稱不守恆。他們仔細檢查了過去的所有實驗,確認這些實驗並未證明弱相互作用中宇稱守恆。在此基礎上他們進一步提出了幾種檢驗弱相互作用中宇稱不守恆的實驗途徑。次年, 這一理論預見得到吳健雄小組的實驗證實,他們也因次獲得了1957年諾貝爾物理學獎。
在粒子物理學方面,楊振寧的貢獻還有費密--楊模型,與李政道合作的二分量中微子理論,與李政道和R.奧赫梅合作的關於電荷共軛變換和時間反演變換不守恆的分析,與李政道合作的高能中微子實驗分析和關於W 粒子的研究。與吳大峻合作的宇稱不守恆分析,規范場的積分形式理論,與吳大峻合作的規范場與纖維叢的關系。與鄒祖德合作的高能碰撞理論等等。
楊振寧謹記父親楊武之的遺訓:有生應記國恩隆。他在1971年夏,是美國科學家中率先訪華的。他說:「作為一名中國血統的美國科學家,我有責任幫助這兩個與我休戚相關的國家建立一座了解和友誼的橋梁。在中國科技發展的道途中,我應該貢獻一些力量」。楊振寧是這樣說,也是這樣做的。20多年來,他頻繁穿梭往來於中美之間,做了許多卓有成效的學術聯系工作。
戴 維
戴維小時候是一個出名的浪子,雖聰明,但就是不願學習。他上學時總是一個口袋裡裝魚鉤魚線,另一個口袋裡裝彈弓,上學前總要到河邊打幾只鳥,釣幾條魚。
父親死後,母親拖著五個孩子實在無法活下去,母親只好把戴維送進一家葯店當學徒。到月底時,別人領了工資,卻沒有戴維的份。戴維就伸手向老闆要,老闆卻當著眾人狠狠地打了戴維一下,還說:「讓你抓葯不識葯方,讓你送葯認不得門牌,你還好意思伸手來要錢?」店裡的師徒鬨堂大笑。
戴維哪裡受過這種羞辱,從此他下定決心要浪子回頭、發奮讀書,他利用葯房的條件研究起化學。這時恰好有個貝多斯教授成立了一個氣體療養院,戴維被邀請一塊兒工作,在這里,戴維發現了一種「笑氣」,從此戴維的名聲大振。
1803年,戴維當選為英國皇家學會的會員。他知道機會難得,於是更加刻苦研究。在許多研究題目中,戴維對伏打電池的電解作用尤感興趣。他想電能將水分解成氫、氧,那麼一定也能將其他物質分解出新元素。而化學中常用的就是苛性鹼,不妨拿它試一試。
於是他將一塊苛性鹼配成水溶液,然後通上電,溶液立即沸騰發熱,兩根導線附近都出現了氣泡。開始戴維以為苛性鹼分解了,可是後來發現跑出去的氣體是氫氣和氧氣,也就是說分解的只是水,苛性鹼根本沒動。
戴維的倔勁上來了,水攻不行,那就用火攻。這回他將苛性鹼熔化後,然後通上電,嘿!在導線同苛性鹼接觸的地方出現了小小的火舌,淡淡的紫色。這可使戴維高興壞了,但他很快又犯愁了,怎麼收集這種物質呢?熔融物溫度太高,這東西又易燃,一分解出來就著火了。看來火攻也不是個好辦法。
11月19日是皇家學會一年一度貝開爾報告會的日子,戴維滿心希望這次能拿一樣新發現的元素。可是眼看報告日期就要到了,電解苛性鹼還是沒有眉目。他苦苦思索了十幾天,這天他突然想出了一個好法子:把苛性鹼稍稍打濕,讓它剛能導電又不含剩餘水分。
要將苛性鹼打濕很簡單,只要把它放在空氣中片刻,它就會自動吸潮,表面形成濕糊糊的一層。這次戴維真的成功了,他電解出了金屬鉀。
錢三強
在法國留學期間,錢三強在巴黎大學鐳學研究所居里實驗室和法蘭西學院原子核化學實驗室從事原子核物理的研究工作。這期間,錢三強在原子核物理學領域中做出了很多成就。
首先,他與約里奧·居里合作,用中子打擊鈾和釷得到放射性的鑭同位素,從它們的β射線能譜證明它們是同一種同位素。這對解釋當時發現不久的核裂變現象是有力的支持。
他還首次從理論和實驗上確定了 50000電子伏特以下的中低能電子的射程與能量的關系。並且與布依西愛和巴什萊合作,首次測出了鏷的α射線的精細結構,並與電子內轉換的γ譜線符合得很好。
他最大的成就是與妻子何澤慧、兩個法國研究生沙士戴勒和微聶隆合作,發現了鈾的三分裂和四分裂現象。這個發現使他們異常興奮,但他們並沒有立即發表,因為當時科學家們一致認為原子核分裂只有二分裂的可能。錢三強根據實驗繼續分析研究,最終得出了能量與角分布等的關系,對三分裂現象從實驗與理論兩方面作出了全面的論述。
經過十幾年的考驗,這一發現已得到公認,尤其是到50年代獲得新的實驗手段後,從第二裂片的同位素質量譜、射程、發射角度等都說明他的解釋與實驗證據以及電子計算機計算結果相符合。這一發現被人們認為是第二次世界大戰後居里實驗室和法蘭西學院原子核化學實驗室第一個重要成果。
在錢三強要返回祖國時,約里奧·居里夫婦送給他一份鑒定書,上面寫著:十年期間,在那些到我們實驗室來由我們指導工作的同代人中,錢三強最優秀,我們這樣說,並不言過其實。
錢三強回國後培養了一批從事研究原子核科學的人才,並且建立起中國研究原子核科學的基地。從1955年起,他參加了原子能事業的建立和組織工作,將近代物理研究所改良為原子能研究所,領導並促進了這一事業的發展以及有關科技工作的開展,對中國科學院和中國原子能事業的建設、計劃和學術領導都作出了貢獻。
諾貝爾
諾貝爾的父親是一位頗有才乾的發明家,傾心於化學研究,尤其喜歡研究炸葯。受父親的影響,諾貝爾從小就表現出頑強勇敢的性格,他經常和父親一起去實驗炸葯。多年隨父親研究炸葯的經歷,也使他的興趣很快轉到應用化學方面。
1862年夏天,他開始了對硝化甘油的研究。這是一個充滿危險和犧牲的艱苦歷程。死亡時刻都在陪伴著他。 在一次進行炸葯實驗時發生了爆炸事件,實驗室被炸的無影無蹤,5個助手全部犧牲,連他最小的弟弟也未能倖免。這次驚人的爆炸事故,使諾貝爾的父親受到了十分沉重的打擊,沒有多久就去世了。他的鄰居們出於恐懼,也紛紛向政府控告諾貝爾,此後,政府不準諾貝爾在市內進行實驗。
但是諾貝爾百折不撓,他把實驗室搬到市郊湖中的一艘船上繼續實驗。經過長期的研究,他終於發現了一種非常容易引起爆炸的物質--雷酸汞,他用雷酸汞做成炸葯的引爆物,成功地解決了炸葯的引爆問題,這就是雷管的發明。它是諾貝爾科學道路上的一次重大突破。
礦山開發、河道挖掘、鐵路修建及隧道的開鑿,都需要大量的烈性炸葯,所以硝化甘油炸葯的問世受到了普遍的歡迎。諾貝爾在瑞典建成了世界上第一座硝化甘油工廠,隨後又在國外建立了生產炸葯的合資公司。但是,這種炸葯本身有許多不完善之處。存放時間一長就會分解,強烈的振動也會引起爆炸。在運輸和貯藏的過程中曾經發生了許多事故,針對這些情況,瑞典和其他國家的政府發布了許多禁令,禁止任何人運輸諾貝爾發明的炸葯,並明確提出要追究諾貝爾的法律責任。
面對這些考驗,諾貝爾沒有被嚇倒,他又在反復研究的基礎上,發明了以硅藻土為吸收劑的安全炸葯,這種被稱為黃色炸葯的安全炸葯,在火燒和錘擊下都表現出極大的安全性。這使人們對諾貝爾的炸葯完全解除了疑慮,諾貝爾再度獲得了信譽,炸葯工業也很快地獲得了發展。
在安全炸葯研製成功的基礎上,諾貝爾又開始了對舊炸葯的改良和新炸葯的生產研究。兩年以後,一種以火葯棉和硝化甘油混合的新型膠質炸葯研製成功。這種新型炸葯不僅有高度的爆炸力,而且更加安全,既可以在熱輥子間碾壓,也可以在熱氣下壓製成條繩狀。膠質炸葯的發明在科學技術界受到了普遍的重視。諾貝爾在已經取得的成績面前沒有停步,當他獲知無煙火葯的優越性後,又投入了混合無煙火葯的研製,並在不長的時間里研製出了新型的無煙火葯。
諾貝爾一生的發明極多,獲得的專利就有255種,其中僅炸葯就達129種,就在他生命的垂危之際,他仍念念不忘對新型炸葯的研究。
李 政 道
李政道出生於上海,他自幼酷愛讀書,整天手不釋卷,連上衛生間都帶著書看,有時手紙沒帶,書卻從未忘帶。抗戰爭時期,他輾轉到大西南求學,一路上把衣服丟得精光,但書卻一本未丟,反而一次比一次多。
1946年,20歲的李政道到美國留學,當時他只有大二的學歷,但經過嚴格的考試,竟然被芝加哥大學研究生院錄取。3 年後便以「有特殊見解和成就」通過了博士論文答辨,被譽為「神童博士」,當時他才23歲。
李政道對近代物理學的傑出貢獻是:1956 年和楊振寧合作,深入研究了當時令人困惑的θ-τ之謎,並且提出了「李一楊假說」,即在基本粒子的弱相互作用中宇稱可能是不守恆的,後來這一假說被華裔女物理學家吳健雄用實驗所證實,從而推翻了過去在物理學界被奉為金科玉律的宇稱守恆定律,為人類在探索微觀世界的道路上打開了一扇新的大門。他因此也獲得了1957年度諾貝爾物理學獎。
一項科學工作在發表的第二年就獲得諾貝爾獎,這還是第一次。李政道又是到那時為止歷史上第二個最年輕的諾貝爾獎獲得者。
李政道在其他方面的重要工作還有:
1949年與M.羅森布拉斯和楊振寧合作提出普適費密弱作用和中間玻色子的存在。
1951年提出水力學中二維空間沒有湍流。
1952年與D.派尼斯合作研究固體物理中極化子的構造。同年與楊振寧合作,提出統計物理中關於相變的楊振寧-李政道定理和李-楊單圓定理。
『陸』 來自宇宙的「高能信號」,究竟告訴我們什麼
這次的極高能中微子事件發生於2017年9月22日,它的能量約為290 TeV,遠超以往的任何一次高能中微子的觀測值。
很巧合的是,大約兩周後,一些監測極高能光子的望遠鏡紛紛觀測到,在這顆極高能中微子來源方向幾十億光年開外,一個超大質量黑洞導致的「耀變體」,亮度比平時增強了6倍左右。
這一事件在國內天文學界也引起發了廣泛關注和熱議。我們就此采訪了國內相關領域的幾位科學家,請他們談了談對於這次極高能中微子事件的看法——
本期科學家
曹俊:中國科學院高能物理所研究員,從事大亞灣反應堆中微子實驗研究
陳學雷:中國科學院國家天文台研究員
張帆:北京師范大學天文系副教授並兼任美國西弗吉利亞大學助理教授
苟利軍:中國科學院國家天文台研究員,中國科學院大學教授
這次的發現主要說明了什麼?
曹俊:
自從1912年發現宇宙線以來,它的起源一直困擾著我們。對這些能量極其大的宇宙粒子,我們既不知道它們從哪兒來,也不知道什麼機制能將它們加速到那麼高的能量。南極的「冰立方」天文台就是為尋找宇宙線起源而建。它利用了中微子不帶電,不受宇宙中磁場影響,能夠直指源頭的特點。
上世紀80年代晚期開始,Francis
Halzen提出在南極冰層下建立天文台。在90年代「阿曼達實驗」、2000年代「阿曼達」二代的基礎上,2010年建成了冰立方天文台,佔地一立方公里。2013年找到了兩個超高能中微子事件,後來又發現了更多事件,但似乎沒什麼規律,跟天上的哪個源都對不上。2016年有一些模糊的證據。這次終於找到了一個比較可靠的證據,證實巨大黑洞產生的噴流是超高能宇宙線粒子的源頭之一。
張帆:
這次的研究不僅解開了高能中微子的源本身的謎團,伽馬射線的協同觀測也說明類星體可以把質子加速到很高的能量。
陳學雷:
在這項研究之前探測到的天體源中微子,主要包括宇宙線粒子與地球大氣作用形成的中微子、太陽核反應產生的中微子,以及超新星爆發產生的中微子,還有一些不知道來源的中微子。而這次探測到的中微子能量極高,並可能來自黑洞。
苟利軍:
這項研究首次確認了高能中微子的產生源頭,所以非常重要,之前僅僅是探測到了太陽系之外的中微子,但是不知道是哪個天體產生的。
『柒』 科學家的科學故事
門 捷 列 夫
元素周期律的發現
1867年,俄國彼德聖堡大學里來了一個年輕的化學教授,他就是門捷列夫。身為化學教授的門捷列夫大部分時間不是在實驗室度過,而是將自己關在書房裡。手裡總捏著一副紙牌,顛來倒去,整好又打亂,亂了又重排。不邀牌友,也不去上別人家的牌桌。
兩年後的一天,俄羅斯化學會專門邀請專家進行一次學術討論。學者們有的帶著論文,有的帶著樣品,只有門捷列夫兩手空空,學術討論進行了三天,三天來討論會場大家各抒己見,好不熱鬧,只有門捷列夫一個人一直一言不發,只是瞪著一雙大眼睛看,豎起耳朵聽,有時皺皺眉頭想想。
眼看討論就要結束了,主持人躬身說道:「門捷列夫先生,不知可有什麼高見?」門捷列夫也不說話,起身走到桌子的中央,右手從口袋裡取出,隨即一副紙牌甩在桌子上,在場的人都大吃一驚,門捷列夫愛玩紙牌,化學界的朋友已早有所聞,但總不至於鬧到這種地步,到這么嚴肅的場合來開玩笑吧?
只見門捷列夫將那一把亂紛紛的牌捏在手裡,三下兩下便整理好,並一一亮給大家看。大家這時才發現這並不是一副普通的撲克,每張牌上寫的是一種元素的名稱、性質、原子量等,共63張,代表著當時已發現的63種元素。更怪的是,這副牌中有紅、橙、黃、綠、青、藍、紫七種顏色。
門捷列夫真不愧為玩紙牌的老手,一會兒功夫就在桌子上列成一個牌陣:豎看就是紅、橙、黃、綠、青、藍、紫分別各一列,橫看那七種顏色的紙牌就像畫出的光譜段,有規律地每隔七張就重復一次。然後門捷列夫口中念念有詞地講著每一個元素的性質,滾瓜爛熟,如數家寶。周圍的人都傻眼了。他們在實驗室里鑽了十年、幾十年,想不到一個年輕人玩玩紙牌就能得出這番道理,要說不服氣吧,好象有理,要說真是這樣,又有些不甘心。
這時一直坐在旁邊觀看的門捷列夫的老師鬍子氣得撅起來了,一拍桌子站起來,以師長的嚴厲聲調說道:「快收起你這套魔術吧,身為教授、科學家,不在實驗室里老老實實地做實驗,卻異想天開,擺擺紙牌就要發現什麼規律,這些元素難道就由你這樣隨便擺布嗎?……」老人越說越激動,一邊還收拾東西准備離去,其他人見狀也紛紛站起,這場討論就這樣不了了之。
門捷列夫堅信自己是對的,回家後繼續推著這副紙牌,遇到什麼地方接連不上時,他就斷定還有新元素沒被發現,他就暫時補一張空牌,這樣他一口氣預言了11種未知元素,那副牌已是74張。這就是最早的元素周期表。
在隨後的幾年中,門捷列夫預言的11種元素陸續被發現,乖乖地住進他的元素周期表,特別是後來發現的氦、氖、氬、氪、氙和氡又給元素周期表增加了新的一族。元素世界一目瞭然,它就像一幅大地圖,以後化學的研究就全靠這幅指南圖了。
牛 頓
少年時代的牛頓不像高斯、維納那樣,從小就顯露出引人注目的科學天才;也不像莫扎特那樣表現了令人驚嘆的藝術稟賦。他跟普通人一樣,輕松愉快地度過了中學時代。
如果說他和別的孩子有什麼不同的話,那就是他的動手能力相當強。他做過會活動的水車;做過能測出准確時間的水鍾;還做過一種水車風車聯動裝置,它使風車可以在無風時藉助水力驅動。
15歲那年,一場罕見的暴風雨侵襲英格蘭。狂風怒吼,牛頓家的房子直晃悠,就像要倒了似的。牛頓為大自然的威力迷住了,不禁想測驗颶風的力量。他冒著狂風暴雨來到後院,一會兒逆風跑,一會兒順風跳。為了接受更多的風力,他索性敞開斗篷向上跳躍,認准起落點,仔細量距離,看狂風把他吹出多遠。
1661年牛頓考上了劍橋大學,盡管在中學里是個優等生,可是劍橋大學集中了各地的尖子學生,他的學習成績趕不上別人,特別是數學的差距更大。但是他並不氣餒,就像他少年時代喜歡思考問題一樣,踏踏實實地學習,直到透徹地理解為止。
在大學的頭兩年裡,他除學習算術、代數、三角外,還認真學習了歐幾里得《幾何原本》,彌補了過去的不足。他又鑽研笛卡兒的《幾何學》,熟練地掌握了坐標法。這些數學知識,為牛頓後來的科學研究打下了堅實的基礎。
四年後,他從劍橋大學畢業了。1666年的一天,牛頓請母親和弟妹到自己房間里來。房間里黑洞洞的,只從窗子的一個小孔中透過一線陽光,在牆上照出一個白色的光點。牛頓讓他們注意看牆上的光點。他手裡拿著自製的三棱鏡,放在光線入口處,使光折射到對面牆上,光點附近突然映出一條瑰麗的綵帶。這條綵帶同雨後晴空中出現的彩虹一樣,由紅、橙、黃、綠、青、藍、紫等七種顏色組成。牛頓和自己的親人共同觀賞了人工復現的自然景象。後來,牛頓又用第二個三棱鏡把七種單色光合成白光。他用白光分解實驗宣告了光譜學的誕生。
牛頓在探索光色之謎的同時,還在探索引力之謎。他從蘋果從樹上掉了下來的事實發現萬有引力定律,而且從數學上論證了萬有引力定律,並且把力學確立為完整、嚴密、系統的學科。他在概括和總結前人研究成果的基礎上,通過自己的觀察和實驗,提出了「運動三定律」。這三條定律和萬有引力定律共同構成了宏偉壯麗的力學大廈的主要支柱。這座力學大廈是近代天文學和力學發展的基地,是機械、建築等工程技術發展的基地,也是機械唯物論統治自然科學領域的基地。構造了宏偉壯麗的力學大廈。
瓦 特
瓦特出生於英國的格林諾克,由於家境貧窮沒機會上學,先是到一家鍾錶店當學徒,後又到格拉斯哥大學去當儀器修理工,瓦特聰明好學,他常抽空旁聽教授們講課,再加上他整日親手擺弄那些儀器,學識也就積累的不淺了。
1764年,格拉斯哥大學收到一台要求修理的紐可門蒸汽機,任務交給了瓦特。瓦特將它修好後,看看他工作那麼吃力,就象一個老人在喘氣,顛顛顫顫地負重行走,覺得實在應該將它改進一下。
他注意到毛病主要是缸體隨著蒸汽每次熱了又冷,冷了又熱,白白浪費了許多熱量。能不能讓它一直保持不冷而活塞又照常工作呢?於是他自己出錢租了一個地窖,收集了幾台報廢的蒸汽機,決心要造出一台新式機器來。
從此,瓦特整日擺弄這些機器,兩年後,總算弄出個新機樣子。可是點火一試,那汽缸到處漏氣,瓦特想盡辦法,用氈子包,用油布裹,幾個月過去了,還是治不了這個毛病。
一天他又趴到汽缸前觀察漏氣的原因,不小心一股熱氣沖出,他急忙躲閃,右肩上已是紅腫一片,就像被一把熱刀削過一樣,辣辣地疼起來,弄得他心煩意亂。他真有些灰心了,這時,是他的妻子給了他勇氣,妻子用激將法又激起了繼續研究下去的雄心。
他又回到地下實驗室,將過去的資料重新翻閱一番,打起精神又幹了起來,干累了就守著爐子燒一壺水喝茶。一天,他一邊喝茶,一邊看著那一動一動的壺蓋。他看看爐子上的壺又看看手中的杯子,突然靈感來了:茶水要涼,倒在杯里;蒸汽要冷,何不也把它從汽缸里也「倒」出來呢?
這樣想著,瓦特立即設計了一個和汽缸分開的冷凝器,這下熱效率提高了三倍,用的煤只有原來的四分之一。這關鍵的地方一突破,瓦特頓然覺得前程光明。他又到大學里向布萊克教授請教了一些理論問題,教授又介紹他認識了發明鏜床的威爾金技師,這位技師立即用鏜炮筒的方法制了汽缸和活塞,解決了那個最頭疼的漏氣問題。
1784年,瓦特的蒸汽機已裝上曲軸、飛輪,活塞可以靠從兩邊進來的蒸汽連續推動,再不用人力去調節活門,世界上第一台真正的蒸汽機誕生了。
楊 振 寧
楊振寧生於安徽合肥,讀小學時,數學和語文成績都很好。中學還沒有畢業,就考入了西南聯大,那是他才16歲。20歲那年大學畢業後,旋即進入西南聯大的研究院。兩年後,以優異成績獲得了碩士學位,並考上了公費留美生,於1945年赴美進芝加哥大學,1948年獲博士學位。1949年,楊振寧進入普林斯頓高等研究院做博士後,開始同李政道合作進行粒子物理的研究工作。
楊振寧是理論物理學家,他對理論物理學的貢獻范圍很廣,包括基本粒子、統計力學和凝聚態物理學等領域,其中在粒子物理學方面貢獻最大。
在粒子物理學方面,他最傑出的貢獻是1954年與密耳斯共同提出的楊--密耳斯場理論,開辟了非阿貝爾規范場的新研究領域,為包括電弱統一理論、量子色動力學理論、大統一理論、引力場的規范理論等現代規范場理論打下了堅實基礎。
另一項傑出貢獻是1956年和李政道合作,深入研究了當時令人困惑的θ-τ之謎,即後來所謂的K 介子有兩種不同的衰變方式,一種衰變成偶宇稱態,一種衰變成奇宇稱態;如果弱衰變過程宇稱守恆,則他們必定是兩種宇稱狀態不同的 K介子。但從質量和壽命來看,它們又應是同一種介子。
楊振寧和李政道通過分析認識到,很可能在弱相互作用中宇稱不守恆。他們仔細檢查了過去的所有實驗,確認這些實驗並未證明弱相互作用中宇稱守恆。在此基礎上他們進一步提出了幾種檢驗弱相互作用中宇稱不守恆的實驗途徑。次年, 這一理論預見得到吳健雄小組的實驗證實,他們也因次獲得了1957年諾貝爾物理學獎。
在粒子物理學方面,楊振寧的貢獻還有費密--楊模型,與李政道合作的二分量中微子理論,與李政道和R.奧赫梅合作的關於電荷共軛變換和時間反演變換不守恆的分析,與李政道合作的高能中微子實驗分析和關於W 粒子的研究。與吳大峻合作的宇稱不守恆分析,規范場的積分形式理論,與吳大峻合作的規范場與纖維叢的關系。與鄒祖德合作的高能碰撞理論等等。
楊振寧謹記父親楊武之的遺訓:有生應記國恩隆。他在1971年夏,是美國科學家中率先訪華的。他說:「作為一名中國血統的美國科學家,我有責任幫助這兩個與我休戚相關的國家建立一座了解和友誼的橋梁。在中國科技發展的道途中,我應該貢獻一些力量」。楊振寧是這樣說,也是這樣做的。20多年來,他頻繁穿梭往來於中美之間,做了許多卓有成效的學術聯系工作。
戴 維
戴維小時候是一個出名的浪子,雖聰明,但就是不願學習。他上學時總是一個口袋裡裝魚鉤魚線,另一個口袋裡裝彈弓,上學前總要到河邊打幾只鳥,釣幾條魚。
父親死後,母親拖著五個孩子實在無法活下去,母親只好把戴維送進一家葯店當學徒。到月底時,別人領了工資,卻沒有戴維的份。戴維就伸手向老闆要,老闆卻當著眾人狠狠地打了戴維一下,還說:「讓你抓葯不識葯方,讓你送葯認不得門牌,你還好意思伸手來要錢?」店裡的師徒鬨堂大笑。
戴維哪裡受過這種羞辱,從此他下定決心要浪子回頭、發奮讀書,他利用葯房的條件研究起化學。這時恰好有個貝多斯教授成立了一個氣體療養院,戴維被邀請一塊兒工作,在這里,戴維發現了一種「笑氣」,從此戴維的名聲大振。
1803年,戴維當選為英國皇家學會的會員。他知道機會難得,於是更加刻苦研究。在許多研究題目中,戴維對伏打電池的電解作用尤感興趣。他想電能將水分解成氫、氧,那麼一定也能將其他物質分解出新元素。而化學中常用的就是苛性鹼,不妨拿它試一試。
於是他將一塊苛性鹼配成水溶液,然後通上電,溶液立即沸騰發熱,兩根導線附近都出現了氣泡。開始戴維以為苛性鹼分解了,可是後來發現跑出去的氣體是氫氣和氧氣,也就是說分解的只是水,苛性鹼根本沒動。
戴維的倔勁上來了,水攻不行,那就用火攻。這回他將苛性鹼熔化後,然後通上電,嘿!在導線同苛性鹼接觸的地方出現了小小的火舌,淡淡的紫色。這可使戴維高興壞了,但他很快又犯愁了,怎麼收集這種物質呢?熔融物溫度太高,這東西又易燃,一分解出來就著火了。看來火攻也不是個好辦法。
11月19日是皇家學會一年一度貝開爾報告會的日子,戴維滿心希望這次能拿一樣新發現的元素。可是眼看報告日期就要到了,電解苛性鹼還是沒有眉目。他苦苦思索了十幾天,這天他突然想出了一個好法子:把苛性鹼稍稍打濕,讓它剛能導電又不含剩餘水分。
要將苛性鹼打濕很簡單,只要把它放在空氣中片刻,它就會自動吸潮,表面形成濕糊糊的一層。這次戴維真的成功了,他電解出了金屬鉀。
錢三強
在法國留學期間,錢三強在巴黎大學鐳學研究所居里實驗室和法蘭西學院原子核化學實驗室從事原子核物理的研究工作。這期間,錢三強在原子核物理學領域中做出了很多成就。
首先,他與約里奧·居里合作,用中子打擊鈾和釷得到放射性的鑭同位素,從它們的β射線能譜證明它們是同一種同位素。這對解釋當時發現不久的核裂變現象是有力的支持。
他還首次從理論和實驗上確定了 50000電子伏特以下的中低能電子的射程與能量的關系。並且與布依西愛和巴什萊合作,首次測出了鏷的α射線的精細結構,並與電子內轉換的γ譜線符合得很好。
他最大的成就是與妻子何澤慧、兩個法國研究生沙士戴勒和微聶隆合作,發現了鈾的三分裂和四分裂現象。這個發現使他們異常興奮,但他們並沒有立即發表,因為當時科學家們一致認為原子核分裂只有二分裂的可能。錢三強根據實驗繼續分析研究,最終得出了能量與角分布等的關系,對三分裂現象從實驗與理論兩方面作出了全面的論述。
經過十幾年的考驗,這一發現已得到公認,尤其是到50年代獲得新的實驗手段後,從第二裂片的同位素質量譜、射程、發射角度等都說明他的解釋與實驗證據以及電子計算機計算結果相符合。這一發現被人們認為是第二次世界大戰後居里實驗室和法蘭西學院原子核化學實驗室第一個重要成果。
在錢三強要返回祖國時,約里奧·居里夫婦送給他一份鑒定書,上面寫著:十年期間,在那些到我們實驗室來由我們指導工作的同代人中,錢三強最優秀,我們這樣說,並不言過其實。
錢三強回國後培養了一批從事研究原子核科學的人才,並且建立起中國研究原子核科學的基地。從1955年起,他參加了原子能事業的建立和組織工作,將近代物理研究所改良為原子能研究所,領導並促進了這一事業的發展以及有關科技工作的開展,對中國科學院和中國原子能事業的建設、計劃和學術領導都作出了貢獻。
諾貝爾
諾貝爾的父親是一位頗有才乾的發明家,傾心於化學研究,尤其喜歡研究炸葯。受父親的影響,諾貝爾從小就表現出頑強勇敢的性格,他經常和父親一起去實驗炸葯。多年隨父親研究炸葯的經歷,也使他的興趣很快轉到應用化學方面。
1862年夏天,他開始了對硝化甘油的研究。這是一個充滿危險和犧牲的艱苦歷程。死亡時刻都在陪伴著他。 在一次進行炸葯實驗時發生了爆炸事件,實驗室被炸的無影無蹤,5個助手全部犧牲,連他最小的弟弟也未能倖免。這次驚人的爆炸事故,使諾貝爾的父親受到了十分沉重的打擊,沒有多久就去世了。他的鄰居們出於恐懼,也紛紛向政府控告諾貝爾,此後,政府不準諾貝爾在市內進行實驗。
但是諾貝爾百折不撓,他把實驗室搬到市郊湖中的一艘船上繼續實驗。經過長期的研究,他終於發現了一種非常容易引起爆炸的物質--雷酸汞,他用雷酸汞做成炸葯的引爆物,成功地解決了炸葯的引爆問題,這就是雷管的發明。它是諾貝爾科學道路上的一次重大突破。
礦山開發、河道挖掘、鐵路修建及隧道的開鑿,都需要大量的烈性炸葯,所以硝化甘油炸葯的問世受到了普遍的歡迎。諾貝爾在瑞典建成了世界上第一座硝化甘油工廠,隨後又在國外建立了生產炸葯的合資公司。但是,這種炸葯本身有許多不完善之處。存放時間一長就會分解,強烈的振動也會引起爆炸。在運輸和貯藏的過程中曾經發生了許多事故,針對這些情況,瑞典和其他國家的政府發布了許多禁令,禁止任何人運輸諾貝爾發明的炸葯,並明確提出要追究諾貝爾的法律責任。
面對這些考驗,諾貝爾沒有被嚇倒,他又在反復研究的基礎上,發明了以硅藻土為吸收劑的安全炸葯,這種被稱為黃色炸葯的安全炸葯,在火燒和錘擊下都表現出極大的安全性。這使人們對諾貝爾的炸葯完全解除了疑慮,諾貝爾再度獲得了信譽,炸葯工業也很快地獲得了發展。
在安全炸葯研製成功的基礎上,諾貝爾又開始了對舊炸葯的改良和新炸葯的生產研究。兩年以後,一種以火葯棉和硝化甘油混合的新型膠質炸葯研製成功。這種新型炸葯不僅有高度的爆炸力,而且更加安全,既可以在熱輥子間碾壓,也可以在熱氣下壓製成條繩狀。膠質炸葯的發明在科學技術界受到了普遍的重視。諾貝爾在已經取得的成績面前沒有停步,當他獲知無煙火葯的優越性後,又投入了混合無煙火葯的研製,並在不長的時間里研製出了新型的無煙火葯。
諾貝爾一生的發明極多,獲得的專利就有255種,其中僅炸葯就達129種,就在他生命的垂危之際,他仍念念不忘對新型炸葯的研究。
李 政 道
李政道出生於上海,他自幼酷愛讀書,整天手不釋卷,連上衛生間都帶著書看,有時手紙沒帶,書卻從未忘帶。抗戰爭時期,他輾轉到大西南求學,一路上把衣服丟得精光,但書卻一本未丟,反而一次比一次多。
1946年,20歲的李政道到美國留學,當時他只有大二的學歷,但經過嚴格的考試,竟然被芝加哥大學研究生院錄取。3 年後便以「有特殊見解和成就」通過了博士論文答辨,被譽為「神童博士」,當時他才23歲。
李政道對近代物理學的傑出貢獻是:1956 年和楊振寧合作,深入研究了當時令人困惑的θ-τ之謎,並且提出了「李一楊假說」,即在基本粒子的弱相互作用中宇稱可能是不守恆的,後來這一假說被華裔女物理學家吳健雄用實驗所證實,從而推翻了過去在物理學界被奉為金科玉律的宇稱守恆定律,為人類在探索微觀世界的道路上打開了一扇新的大門。他因此也獲得了1957年度諾貝爾物理學獎。
一項科學工作在發表的第二年就獲得諾貝爾獎,這還是第一次。李政道又是到那時為止歷史上第二個最年輕的諾貝爾獎獲得者。
李政道在其他方面的重要工作還有:
1949年與M.羅森布拉斯和楊振寧合作提出普適費密弱作用和中間玻色子的存在。
1951年提出水力學中二維空間沒有湍流。
1952年與D.派尼斯合作研究固體物理中極化子的構造。同年與楊振寧合作,提出統計物理中關於相變的楊振寧-李政道定理和李-楊單圓定理。
『捌』 高能粒子的實驗
1930年,美國物理學家勞倫斯發明了迴旋加速器,並因此獲得了諾貝爾獎,但由於相對論效應,粒子的加速會使質量增大,從而只能使粒子獲得幾百keV的能量。
同步加速器的發明克服了這一缺點,美國費米實驗室的質子同步加速器軌道半徑為1km,利用超導磁場,可將質子加速到1TeV。
同步加速器產生的同步輻射進一步限制了粒子能量的增大,故近年來物理學家們又開始發展直線加速器,因為直線運動的粒子沒有同步輻射。20世紀的最後幾十年是對撞機的時代,弱點統一理論預言的中間玻色子也在對撞機中被發現。歐洲質子對撞機對撞能量已達14TeV,並且已經開始建造更大型的對撞機,希望能夠找到與質量起源聯系密切的希格斯玻色子。對撞機還可以利用兩個重粒子的對撞模擬宇宙大爆炸。
電子感應加速器是一種利用感生電場來加速電子的新型加速器,同步加速器適合加速重粒子(如質子),但是很難加速電子,感應加速器克服了這一困難。如今感應加速器中產生的γ射線可以做光核反應研究,還可以用於工業無損、探傷和醫療等領域。先進的高能加速器和對撞機主要用於前沿科學,而低能加速器卻已經廣泛轉為民用,在材料科學、固體物理、分子生物學、地理、考古等學科有重要應用。
被加速的粒子可以通過輻照改變材料的性質或者誘發植物基因的突變培育新品種,可以診斷並治療腫瘤,還可以生產大量同位素,用於工、農業生產。當然,加速器只能加速帶電粒子,現如今廣泛應用的中子探傷技術、中子干涉測量技術、中子非彈性散射等所用的中子是由核反應堆中產生的。 在高能粒子物理散射實驗中,僅僅有高能粒子還不夠,還必須有先進的粒子探測器來收集信息。粒子探測器是利用粒子與物質的相互作用原理來產生信號的。帶電粒子在物質中運動的主要能量損失是電離損失,通過測量單位路程的能量損失可以判別粒子的類型。
低能在物質中運動的主要能量損失是光電效應,其次較弱的因素還有康普敦散射、瑞利散射、布里淵散射、拉曼散射等,能量大於1MeV的光子能量損失主要原因是產生了正負電子對。高能電子入射到物質中時,由於突然減速,會產生高能軔致輻射,高能光子又會激發正負電子對……如此產生一連串的連鎖反應,可以形成電磁簇射,簇射深度稱為輻射長度,與粒子能量和介質密度有關,高能光子也可以形成簇射。
當帶電粒子在介質中的速度大於介質中的光速時,會產生一種類似於聲學中的「沖擊波」一樣的輻射,稱為切連科夫輻射。切連科夫因為發現這種輻射而獲得了諾貝爾獎。 高能粒子實驗裝置指的是用以發現高能粒子並研究和了解其特性的主要實驗工具。高能物理實驗需要三大條件:一是粒子源;其次是探測器,用以觀察、記錄各種高能粒子,大體上可以分成電探測器和徑跡探測器兩類;第三是用於信息獲取和處理的核電子學系統。
徑跡探測器包括雲室、泡室等探測裝置。在歷史上,人們曾利用這類探測器在科學上得到重要成果。例如,1932年,C.D.安德森用雲室發現了正電子。1960年,中國科學家王淦昌發現反西格馬負超子所用的探測器就是24升丙烷泡室。但是,這類探測器已不屬於現代的主要實驗裝置。
在同步加速器上進行高能物理實驗,常使用前向譜儀。這是在束流前進方向上有目的地安排一系列電探測器,包括閃爍描跡器、多絲正比室、漂移室、契侖科夫計數器、全吸收量能器等探測裝置。例如,用來發現J粒子的雙臂譜儀就是一種前向譜儀。
在對撞機上進行高能物理實驗時,所用譜儀的安排則另有特點。探測器在結構上應盡可能地從各方麵包住對撞區,形成接近4π的立體角。例如,束流管道外包以漂移室,再包以閃爍計數器,外面再包以簇射計數器。簇射計數器外面有大型磁鐵形成軸向磁場。磁鐵外麵包以μ子計數器等,形成多層疊套結構。中國正在興建的第一台正負電子對撞機上所用的探測裝置即屬此類型。
所有這些探測高能粒子的實驗裝置,一般體積都在100~200米3以上,重量達數百噸。然而,其定位精度要求達到10-4米量級,定時精度達到10-10 秒量級,信號通道數達104~105,數據率到107位每秒量級,連續工作時間達103小時以上。因此,完成這樣高指標的信息測量工作,必須擁有龐大、復雜、精密的核電子學系統。 利用這些相互作用原理,針對不同的要求,可以設計出不同類型和功能的粒子探測器。較早的有威爾遜雲室,後來又發明了氣泡室、乳膠室、多絲正比室、漂移室等,最後又發明了切連科夫探測器。
超級神岡中微子探測器是專門用來探測宇宙中最難束縛的幽靈:中微子的,探測器用了50500噸水作為切連科夫探測器,探測到的光(切連科夫輻射)輸入計算機。實驗結果證實了中微子振盪的存在,並且揭示了太陽中微子的失蹤之謎。這些探測器配合粒子加速器可以用來探測多種粒子的軌跡、能量、類型等,它們是加速器的眼睛。
粒子物理實驗所得到的粒子散射截面等數據,結合大爆炸宇宙學恰好可以解釋宇宙中元素的組成和相對豐度。
137億年前,宇宙誕生並開始膨脹,原始宇宙處於超高溫和超高密度的狀態,超高能光子激發出大量的粒子,光子們走不了幾步就會與某個粒子(比如電子)碰撞,光根本透不出來,不得不與其它粒子形成了熱平衡(平衡輻射又叫普朗克輻射)。