導航:首頁 > 裝置知識 > 俄核聚變實驗裝置

俄核聚變實驗裝置

發布時間:2023-08-23 12:45:48

㈠ 世界上首個全超導托卡馬克核聚變裝置是什麼

世界上首個全超導托卡馬克核聚變裝置是EAST。

全超導托卡馬克核聚變實驗裝置(EAST),有「人造太陽」之稱。其運行原理就是在裝置的真空室內加入少量氫的同位素氘或氚,通過類似變壓器的原理使其產生等離子體。然後提高其密度、溫度使其發生聚變反應,反應過程中會產生巨大的能量。

2006年9月28日,世界上首個全超導非圓截面升吵托卡馬克核聚變實驗裝置首輪物理放電實驗取得成功,標志著中國站在了世界核聚變研究的前端。2016年2月,中國EAST物理實驗獲重大突破,實現在國際上電子溫度達到5000萬度持續時間最長的等離子體放電。2018年11月12日,從中科院合肥物質科學研究院獲悉,EAST實現1億攝氏度等離子體運行等多項重大突破。

基本原理

核能是能源家族的新成員,包括裂變能和聚變能兩種主要形式。裂變能是重金屬元素的核子通過裂變而釋放的巨大能量,受控核裂變技術的發展已使裂變能的應用實現了商用化,如核(裂變)電站。

裂變需要的鈾等重金屬元素在地球上含量稀少,而且常規裂變反應堆會產生放射性較強的核廢料,這些因素限制了裂變能的發展。聚變能是兩個慎孝較輕的原子核聚合為一個較重的原子核並釋放出的能量,目前開展的受控核聚變研究正是致力於實現聚變能的和平利用。其實,寬笑稿人類已經實現了氘氚核聚變—氫彈爆炸,但那是不可控制的瞬間能量釋放,人類更需要受控核聚變。

以上內容參考:網路—全超導托卡馬克核聚變實驗裝置

㈡ 國際熱核聚變實驗裝置將建造於那個國家

是法國
索詞條
國際熱核聚變實驗堆計劃

更多圖片(11張)
「國際熱核聚變實驗版堆(ITER)計劃」是目前權全球規模最大、影響最深遠的國際科研合作項目之一,建造約需10年,耗資50億美元(1998年值)。ITER裝置是一個能產生大規模核聚變反應的超導托克馬克,俗稱「人造太陽」。2003年1月,國務院批准我國參加ITER計劃談判,2006年5月,經國務院批准,中國ITER談判聯合小組代表我國政府與歐盟、印度、日本、韓國、俄羅斯和美國共同草簽了ITER計劃協定。

㈢ 國際熱核聚變實驗堆計劃的發展歷程

由於聚變能的研究不僅關繫到最終解決人類能源問題,而且還涉及眾多最先進且非常敏感的技術,因此,ITER計劃的形成除與科學技術本身的發展有關外,還始終與主要大國在政治和外交方面的考慮分不開。本文將主要從科學和技術角度作一些分析和說明。
1985年,作為結束冷戰的標志性行動之一,前蘇聯領導人戈爾巴喬夫和美國總統里根在日內瓦峰會上倡議,由美、蘇、歐、日共同啟動國際熱核聚變實驗堆(ITER)計劃。ITER計劃的目標是要建造一個可自持燃燒(即點火)的托可馬克核聚變實驗堆,以便對未來聚變示範堆及商用聚變堆的物理和工程問題做深入探索。
最初,該計劃僅確定由美、俄、歐、日四方參加,獨立於聯合國原子能委員會(IAEA)之外,總部分設美、日、歐三處。由於當時的科學和技術條件還不成熟,四方科技人員於1996年提出的ITER初步設計很不合理,要求投資上百億美元。1998年,美國出於政治原因及國內紛爭,以加強基礎研究為名,宣布退出ITER計劃。歐、日、俄三方則繼續堅持合作,並基於上世紀90年代核聚變研究及其他高新技術的新發展,大幅度修改實驗堆的設計。2001年,歐、日、俄聯合工作組完成了ITER裝置新的工程設計(EDA)及主要部件的研製,預計建造費用為50億美元(1998年價),建造期8至10年,運行期20年。其後,三方分別組織了獨立的審查,都認為設計合理,基本上可以接受。
2002年,歐、日、俄三方以EDA為基礎開始協商ITER計劃的國際協議及相應國際組織的建立,並表示歡迎中國與美國參加ITER計劃。中國於2003年1月初正式宣布參加協商,其後美國在1月末由布希總統特別宣布重新參加ITER計劃,韓國在2005年被接受參加ITER計劃協商。以上六方於2005年6月簽訂協議,一致同意把ITER建在法國核技術研究中心Cadarache,從而結束了激烈的選址大戰。印度於2006年加入ITER協商。最終,七個成員國政府於2006年5月25日草簽了建設ITER的國際協定。目前國際組織正在組建,總幹事和副總幹事人選已確定。還有一些國家也正在考慮參加ITER計劃。
在ITER建設總投資的50億美元(1998年值)中,歐盟貢獻46%,美、日、俄、中、韓、印各貢獻約9%。根據協議,中國貢獻中的70%以上由我國製造所約定的ITER部件折算,10%由我國派出所需合格人員折算,需支付國際組織的外匯不到20%。
作為聚變能實驗堆,ITER要把上億度、由氘氚組成的高溫等離子體約束在體積達837立方米的磁籠中,產生50萬千瓦的聚變功率,持續時間達500秒。50萬千瓦熱功率已經相當於一個小型熱電站的水平。這將是人類第一次在地球上獲得持續的、有大量核聚變反應的高溫等離子體,產生接近電站規模的受控聚變能。
在ITER上開展的研究工作將揭示這種帶有氘氚核聚變反應的高溫等離子體的特性,探索它的約束、加熱和能量損失機制,等離子體邊界的行為以及最佳的控制條件,從而為今後建設商用的核聚變反應堆奠定堅實的科學基礎。對ITER裝置工程整體及各部件在50萬千瓦聚變功率長時間持續過程中產生的變化及可能出現問題的研究,不僅將驗證受控熱核聚變能的工程可行性,而且還將對今後如何設計和建造聚變反應堆提供必不可少的信息。
ITER的建設、運行和實驗研究是人類發展聚變能的必要一步,有可能直接決定真正聚變示範電站(DEMO)的設計和建設,並進而促進商用聚變電站的更快實現。
ITER裝置是一個能產生大規模核聚變反應的超導托克馬克。其裝置中心是高溫氘氚等離子體環,其中存在15兆安的等離子體電流,核聚變反應功率達50萬千瓦,每秒釋放多達1020個高能中子。等離子體環在屏蔽包層的環型包套中,屏蔽包層將吸收50萬千瓦熱功率及核聚變反應所產生的所有中子。
在包層外是巨大的環形真空室。在下側有偏慮器與真空室相連,可排出核反應後的廢氣。真空室穿在16個大型超導環向場線圈(即縱場線圈)中。
環向超導磁體將產生5.3特斯拉的環向強磁場,是裝置的關鍵部件之一,價值超過12億美元。
穿過環的中心是一個巨大的超導線圈筒(中心螺管),在環向場線圈外側還布有六個大型環向超導線圈,即極向場線圈。中心螺管和極向場線圈的作用是產生等離子體電流和控制等離子體位形。
上述系統整個被罩於一個大杜瓦中,坐落於底座上,構成實驗堆本體。
在本體外分布4個10兆瓦的強流粒子加速器,10兆瓦的穩態毫米電磁波系統,20兆瓦的射頻波系統及數十種先進的等離子體診斷測量系統。
整個體系還包括:大型供電系統、大型氚工廠、大型供水(包括去離子水)系統、大型高真空系統、大型液氮、液氦低溫系統等。
ITER本體內所有可能的調整和維修都是通過遠程式控制制的機器人或機器手完成。
ITER裝置不僅反映了國際聚變能研究的最新成果,而且綜合了當今世界各領域的一些頂尖技術,如:大型超導磁體技術,中能高流強加速器技術,連續、大功率毫米波技術,復雜的遠程式控制制技術等等。
2013年9月25日(北京時間)消息,勞倫斯·利弗莫爾國家實驗室報告稱,世界最大激光器、被稱為「人造太陽」的美國國家點火裝置(NIF)正距離其目標越來越近,顯示了一個可持續核聚變反應裝置正在由夢想逐步成為現實。不過在設施達到高度穩定前,目前仍有一個顯著障礙有待克服 。

㈣ 如何實現核聚變

可行性較大的可控核聚變反應裝置是托卡馬克裝置。
托卡馬克是一種利用磁約束來實現受控核聚變的環性容器。它的名字Tokamak 來源於環形(toroidal)、真空室(kamera)、磁(magnit)、線圈(kotushka)。最初是由位於蘇聯莫斯科的庫爾恰托夫研究所的阿齊莫維齊等人在20世紀50年代發明的。
托卡馬克的中央是一個環形的真空室,外面纏繞著線圈。在通電的時候托卡馬克的內部會產生巨大的螺旋型磁場,將其中的等離子體加熱到很高的溫度,以達到核聚變的目的。
我國也有兩座核聚變實驗裝置。

當四個氫原子在高溫下靠得很近時,四個質子會撞到一起時,其中兩個會發生衰變,釋放出兩個反中微子和正電子,變成中子。這兩個正電子會與原子核外電子相互湮滅,形成兩個光子;剩下的一共有兩個中子、兩個質子和兩個電子,恰好形成一個氦原子。絕大多數恆星都是通過質子的衰變而發出光芒,這在日常生活中用途也很大

㈤ 核聚變要在近億度高溫條件下進行,這時所有物質都被氣化,那麼怎樣產生高熱,又用什麼裝它呢

核聚變反應堆主體是用一種球形磁場來約束的。核聚變的產生條件就需要較小的原子核發生碰撞和融合,但原子核都帶正電,原子外層都帶負電。

原子核想碰一起需要很高的能量來突破電磁力的排斥,就像讓兩塊小磁鐵同極相觸一樣(但難度不是一個量級)。溫度反映了物質內部粒子的運動能量,所以高溫下才會有可能讓高速的原子核艱難碰撞在一起。

要引發氫彈首先要引發原子彈,用原子彈核裂變產生的極高溫度才能使氫核之間劇烈碰撞而發生核聚變反應,所以一般某國家在研究兩彈時,都是先研製出原子彈,再研製出氫彈。這也是為何氫彈比原子彈殺傷力強的原因之一。

(5)俄核聚變實驗裝置擴展閱讀:

熱核反應,或原子核的聚變反應,是當前很有前途的新能源。參與核反應的輕原子核,如氫(氕)、氘、氚、鋰等從熱運動獲得必要的動能而引起的聚變反應(參見核聚變)。熱核反應是氫彈爆炸的基礎,可在瞬間產生大量熱能,但尚無法加以利用。

如能使熱核反應在一定約束區域內,根據人們的意圖有控制地產生與進行,即可實現受控熱核反應。這正是在進行試驗研究的重大課題。受控熱核反應是聚變反應堆的基礎。聚變反應堆一旦成功,則可能向人類提供最清潔而又是取之不盡的能源。

冷核聚變是指:在相對低溫(甚至常溫)下進行的核聚變反應,這種情況是針對自然界已知存在的熱核聚變(恆星內部熱核反應)而提出的一種概念性『假設』。

這種設想將極大的降低反應要求,只要能夠在較低溫度下讓核外電子擺脫原子核的束縛,或者在較高溫度下用高強度、高密度磁場阻擋中子或者讓中子定向輸出,就可以使用更普通更簡單的設備產生可控冷核聚變反應,同時也使聚核反應更安全。

㈥ 中國在可控核聚變技術上的哪兩大方向,都能領先世界

核能分為核裂變能與核聚變能,前者已經被人類加以利用用來發電,而裂變堆的核燃料蘊藏極為有限,不僅產生強大的輻射,傷害人體,放射性核廢料的處理也一直是讓人頭疼的難題。

而石油、可燃冰等能源總有窮盡的一天,所以科學家就在思考,有什麼方式可以實現無窮無盡的能源。最後,科學家們將目光聚焦在了可控核聚變上。

中國之所以能夠在可控核聚變上領先世界,就是靠的先輩們的不懈努力與開拓。如果沒有王淦昌這些元勛們的高瞻遠矚,中國就只能跟在其他人後面亦步亦趨,我們應該向這些英雄科學家們致敬。

㈦ 托卡馬克詳細資料大全

托卡馬克,是一種利用磁約束來實現受控核聚變的環形容器。它的名字Tokamak 來源於環形、真空室、磁、線圈。最初是由位於蘇聯莫斯科的庫爾恰托夫研究所的阿齊莫維齊等人在20世紀50年代發明的。托卡馬克的中央是一個環形的真空室,外面纏繞著線圈。在通電的時候托卡馬克的內部會產生巨大的螺旋型磁場,將其中的電漿加熱到很高的溫度,以達到核聚變的目的。

基本介紹

裝置的主要部件和子系統,核聚變簡介,結構原理,各國概況,歷史發展,現狀及前景,鋼鐵俠中的「方舟反應堆」,

裝置的主要部件和子系統

托卡馬克(Tokamak)是一環形裝置,通過約束電磁波驅動,創造氘、氚實現聚變的環境和超高溫,並實現人類對聚變反應的控制。它的名字Tokamak來源於環形(toroidal)、真空室(kamera)、磁(mag)、線圈(kotushka)。最初是由位於蘇聯莫斯科的庫爾恰托夫研究所的阿齊莫維齊等人在20世紀50年代發明的。 受控熱核聚變在常規托卡馬克裝置上已經實現。但常規托卡馬克裝置體積龐大、效率低,突破難度大。上世紀末,科學家們把新興的超導技術用於托卡馬克裝置,使基礎理論研究和系統運行參數得到很大提高。據科學家估計,可控熱核聚變的演示性的聚變堆將於2025年實現,商用聚變堆將於2040年建成。商用堆建成之前,中國科學家還設計把超導托卡馬克裝置作為中子源,用於環境保護、科學研究及其它途徑。這一構想獲得國內外專家較高評價。 包括磁體(環向場磁體及極向場磁體)、真空室及其抽氣系統、供電系統、控制系統(裝置控制和電漿控制)、加熱與電流驅動系統(中性束和微波)、噴氣及彈丸注入系統、偏濾器及孔闌、診斷和數據採集與處理系統、包層系統、氚系統、輻射防護系統、遙控操作與維修系統等部件(子系統)。雖然強磁場能提高約束性能,但受工程技術和材料限制,環向磁場一般為2~8T;為了獲取穩定的核聚變能輸出,托卡馬克聚變堆最終要採用超導磁體(穩態運行要求),為此要增加杜瓦、冷屏和低溫製冷系統。為將電漿加熱至需要的溫度,大型裝置的總加熱功率為幾十兆瓦,國際熱核實驗堆裝置的加熱功率為73~130MW。

核聚變簡介

核聚變(nuclear fusion),又稱核融合、融合反應或聚變反應[1]核是指由質量小的原子,主要是指氘或氚,在一定條件下(如超高溫和高壓),只有在極高的溫度和壓力下才能讓核外電子擺脫原子核的束縛,讓兩個原子核能夠互相吸引而碰撞到一起,發生原子核互相聚合作用,生成新的質量更重的原子核(如氦),中子雖然質量比較大,但是由於中子不帶電,因此也能夠在這個碰撞過程中逃離原子核的束縛而釋放出轎梁巧來,閉鍵大量電子和中子的釋放所表現出來的就是巨大的能量釋放。這是一種核反應的形式。原子核中蘊藏巨大的能量,原子核的變化(從一種原子核變化為另外一種原子核)往往伴隨著能量的釋放。核聚變是核裂變相反的核反應形式。科學家正在努力研究可控核聚變,核聚變可能成為未來的能量來源。 核聚變的過程與核裂變相反,是幾個原子核聚合成一個原子核的過程。只有較輕的原子核才能發生核聚變,比如氫的同位素氘(dāo)、氚(chuān)等。核聚變也會放出巨大的能量,而且比核裂變放出的能量更大。太陽內部連續進行著氫聚變成氦過程,它的光和熱就是由核聚變產生的。 相比核裂變,核聚變幾乎不會帶來放射性污染等環境問題,而且其原料可直接取自海水中的氘,來源幾乎取之不盡,是理想的能源方式。 人類已經可以實現不受控制的核聚變,如氫彈的爆炸。但是要想能量可被人類有效利用,必須能夠合理的控制核聚變的速度和規模,實現持續、平穩的能量輸出。科學家正努力研究如何控制核聚變。

結構原理

在托卡馬克裝置渣禪中,歐姆線圈的電流變化提 *** 生、建立和維持電漿電流所需要的伏秒數(變壓器原理);極向場線圈產生的極向磁場控制電漿截面形狀和位置平衡;環向場線圈產生的環向磁場保證電漿的巨觀整體穩定性;環向磁場與電漿電流產生的極向磁場一起構成磁力線旋轉變換的和磁面結構嵌套的磁場位形來約束電漿。同時,電漿電流還對自身進行歐姆加熱。電漿的截面形狀可以是圓形,也可以與偏濾器(位於真空室內部的邊緣區域,通過產生磁分界面將約束區與邊緣區隔離開來,具有排熱、控制雜質和排除氦灰等功能的特殊部件)位形結合設計成D形。在托卡馬克裝置上,已可通過大功率中性束注入加熱和微波加熱使電漿達到和超過氘一氚有效燃燒所需的溫度(>10K),最高已達4.4×10K。加大裝置尺寸,約束時間大致按尺寸的平方增大。此外,還可通過提高環向磁場、最佳化約束位形和運行模式來提高 能量約束時間。實驗結果表明,托卡馬克裝置已基本滿足建立核聚變反應堆的要求。

各國概況

相比其他方式的受控核聚變,托卡馬克擁有不少優勢。1968年8月在蘇聯新西伯利亞召開的第三屆電漿物理和受控核聚變研究國際會議上,阿齊莫維齊宣布在蘇聯的T-3托卡馬克上實現了電子溫度1keV,質子溫度0.5keV,nτ=10的18次方m-3.s,這是受控核聚變研究的重大突破,在國際上掀起了一股托卡馬克的熱潮,各國相繼建造或改建了一批大型托卡馬克裝置。其中比較著名的有:美國普林斯頓大學由仿星器-C改建成的ST Tokamak,美國橡樹嶺國家實驗室的奧爾馬克,法國馮克奈-奧-羅茲研究所的TFR Tokamak,英國卡拉姆實驗室的克利奧(Cleo),西德馬克斯-普朗克研究所的Pulsator Tokamak。 高1米4,半徑0.785米 2006年9月28日,中國耗時8年、耗資2億元人民幣自主設計、自主建造而成的新一代熱核聚變裝置EAST首次成功完成放電實驗,獲得電流200千安、時間接近3秒的高溫電漿放電。EAST成為世界上第一個建成並真正運行的全超導非圓截面核聚變實驗裝置。

歷史發展

二戰末期,前蘇聯和美、英各國曾出於軍事上的考慮,一直在互相保密的情況下開展對核聚變的研究。幾千萬、幾億攝氏度高溫的聚變物質裝在什麼容器里一直是困擾人們的難題。二十世紀五十年代初期,前蘇聯科學家提出托卡馬克的概念。托卡馬克(TOKAMAK)在俄語中是由「環形」、「真空」、「磁」、「線圈」幾個片語合而成,這是一種形如麵包(多納)圈的環流器,依靠電漿電流和環形線圈產生的強磁場,將極高溫等離子狀態的聚變物質約束在環形容器里,以此來實現聚變反應。 托卡馬克內部 1954年,第一個托卡馬克裝置在原蘇聯庫爾恰托夫原子能研究所建成。當人們提出這種磁約束的概念後,磁約束核聚變研究在一些方面的進展順利,氫彈又迅速試驗成功,這曾使不少國家的核科學家一度對受控核聚變抱有過分樂觀的態度。但人們很快發現,約束電漿的磁場,雖然不怕高溫,卻很不穩定。另外,電漿在加熱過程中能量也不斷損失。 1985年,美國里根總統和前蘇聯戈巴契夫總統,在一次首腦會議上倡議開展一個核聚變研究的國際合作計畫,要求「在核聚變能方面進行最廣泛的切實可行的國際合作」。後來戈巴契夫、里根和法國總統密特朗又進行了幾次高層會晤,支持在國際原子能機構(IAEA)主持下,進行國際熱核實驗堆(ITER)概念設計和輔助研究開發方面的合作。這是當時也是當前開展核聚變研究的最重大的國際科學和技術合作工程項目。1987年春,IAEA總幹事邀請歐共體、日本、美國和加拿大、前蘇聯的代表在維也納開會,討論加強核聚變研究的國際合作問題,並達成了協定,四方合作設計建造國際熱核實驗堆。 1990年,中國國家科學院等離子所興建大型超導托卡馬克裝置,得到俄、美、歐盟等機構、專家大力的支持。特別是俄羅斯科學家,世界聚變研究最具權威的俄羅斯國家研究中心卡多姆采夫教授,成為裝置建設的「經常性技術指導」。 1993年HT-7建成,中國成為世界上俄、法、日(法國的Tore-Supra,俄羅斯的T-15,日本的JT-60U)之後第四個擁有同類大型裝置的國家。中國在裝置相關的超導、低溫製冷、強磁場等研究都登上新的台階。 1993年12月9日和10日,美國在TFTR裝置上使用氘、氚各50%的混合燃料,使溫度達到3億至4億攝氏度,兩次實驗釋放的聚變能分別為0.3萬千瓦和0.56萬千瓦,大約為JET輸出功率的2倍和4倍,能量增益因子Q值達0.28。與JET相比,Q值又得到很大提高。 1997年9月22日,聯合歐洲環JET又創造輸出功率為1.29萬千瓦的世界紀錄,能量增益因子Q值達0.60,持續時間2秒。僅過了39天,輸出功率又提高到1.61萬千瓦,Q值達到0.65。 1997年12月,日本方面宣布,在JT-60上成功進行了氘-氘反應實驗,換算到氘-氚反應,Q值可以達到1.00。後來,Q值又超過了1.25。在JT-60U上,還達到了更高的等效能量增益因子,大於1.3,它也是從氘-氘實驗得出的結果外推後算出的。 2000年,HT-7實驗放電時間超過10秒,標志中國在這重大基礎理論研究領域中進入世界先進行列。 2002年1月28日,在中國成都的核工業西南物理研究院與合肥西郊的中國科學院等離體物理研究所,基於超導托卡馬克裝置HT-7的可控熱核聚變研究再獲突破,實現了放電脈沖長度大於100倍能量約束時間、電子溫度2000萬攝氏度的高約束穩態運行,中心密度大於每立方米1.2×1019,運行參數居世界前兩位。本輪實驗有來自美、日等14個研究機構的18位外籍專家參與。 2006年,中國新一代「人造太陽」實驗裝置(EAST)實現了第一次「點火」——激發等離子態與核聚變。很快,它就實現了最高連續1000秒的運行,這在當時是前所未有的成就。 EAST 2012年04月22日,中國新一代「人造太陽」實驗裝置(EAST)中性束注入系統(NBI)完成了氫離子束功率3兆瓦、脈沖寬度500毫秒的高能量離子束引出實驗。本輪實驗獲得的束能量和功率創下中國國內紀錄,並基本達到EAST項目設計目標。這標志著中國自行研製的具有國際先進水平的中性束注入系統基本克服所有重大技術難關。

現狀及前景

只有同時達到密度(>10cm)、溫度(>10K)及能量約束時間(>1s)三個條件(或聚變三重積>10cm·K·s)時,才能實現氘一氚自持核聚變反應。這三個條件已經在不同的裝置上分別達到或超過,但還沒有在一個裝置上同時達到或超過。JET(見圖)和JT-60U裝置基本達到能量得失相當條件(Q≈1),JET的氘一氚實驗還得到17MW聚變功率輸出。 歐洲聯合環JET裝置結構簡圖 實驗研究還發現多種改善約束的模式,根據這些模式,托卡馬克型核聚變反應堆的經濟性能還可以進一步提高。基於50多年來在電漿理論、物理實驗研究和工程技術上取得的重大進展,由七方共同參與的超大型國際合作項目國際熱核實驗堆(ITER)計畫已經進入工程建造階段。

鋼鐵俠中的「方舟反應堆」

電影《鋼鐵俠》中的方舟反應堆與托卡馬克極為相似,有可能是根據托卡馬克改編的。

㈧ 全超導托卡馬克核聚變實驗裝置的基本原理

核能是能源家族的新成員,包括裂變能和聚變能兩種主要形式。裂變能是重金屬元素的核子通過裂變而釋放的巨大能量。受控核裂變技術的發展已使裂變能的應用實現了商用化,如核(裂變)電站。裂變需要的鈾等重金屬元素在地球上含量稀少,而且常規裂變反應堆會產生放射性較強的核廢料,這些因素限制了裂變能的發展。聚變能是兩個較輕的原子核聚合為一個較重的原子核並釋放出的能量。目前開展的受控核聚變研究正是致力於實現聚變能的和平利用。其實,人類已經實現了氘氚核聚變--氫彈爆炸,但那是不可控制的瞬間能量釋放,人類更需要受控核聚變。維系聚變的燃料是氫的同位素氘和氚,氘在地球的海水中有極其豐富的蘊藏量。經測算,l升海水所含氘產生的聚變能等同於300升汽油所釋放的能量。海水中氘的儲量可使人類使用幾十億年。特別的,聚變產生的廢料為氦氣,是清潔和安全的。因此,聚變能是一種無限的、清潔的、安全的新能源。這就是世界各國尤其是發達國家不遺餘力競相研究、開發聚變能的根本原因。
受控熱核聚變能的研究主要有兩種--慣性約束核聚變和磁約束核聚變。前者利用超高強度的激光在極短的時間內輻照氘氚靶來實現聚變,後者則利用強磁場可很好地約束帶電粒子的特性,將氘氚氣體約束在一個特殊的磁容器中並加熱至數億攝氏度高溫,實現聚變反應。
托卡馬克(Tokamak)是前蘇聯科學家於20世紀50年代發明的環形磁約束受控核聚變實驗裝置。經過近半個世紀的努力,在托卡馬克上產生聚變能的科學可行性已被證實,但相關結果都是以短脈沖形式產生的,與實際反應堆的連續運行有較大距離。超導技術成功地應用於產生托卡馬克強磁場的線圈上,是受控熱核聚變能研究的一個重大突破。超導托卡馬克使磁約束位形能連續穩態運行,是公認的探索和解決未來聚變反應堆工程及物理問題的最有效的途徑。目前建造超導裝置開展聚變研究已成為國際熱潮。
托克馬克從本質上說是一種脈沖裝置,因為等離子體電流是通過感應方式驅動的。但是,存在所謂的「先進托克馬克」運行的可能性,即它們可以利用非感應外部驅動和發生在等離子體內的自然的壓強驅動電流相結合而實現運行。它們需要仔細地調節壓強和約束使之最佳化。在理論和實驗上正在研究這種先進托克馬克,因為連續運行對聚變功率的產生是最有希望的,其相對小的尺寸導致比類ITER設計更經濟的電站。先進超導托克馬克實驗裝置是指裝置的環向磁場和極向磁場線圈都是超導材料繞制而成的,它可以大大節省供電功率,長時間維持磁體工作,並且可以得到較高的磁場。
等離子體物理研究所主要從事高溫等離子體物理、受控熱核聚變技術的研究以及相關高技術的開發研究工作,擔負著國家核聚變大科學工程的建設和研究任務,先後建成HT-6B、HT-6M等托卡馬克實驗裝置。1994年底,等離子體所成功地建成我國第一台大型超導托卡馬克裝置HT-7,使我國進入超導托卡馬克研究階段,研究成果引起了國際聚變界的廣泛關注。「九五」國家重大科學工程--大型非圓截面全超導托卡馬克核聚變實驗裝置EAST計劃的實施,標志著我國進入國際大型聚變裝置(近堆芯參數條件)的實驗研究階段,表明中國核聚變研究在國際上已佔有重要地位。

閱讀全文

與俄核聚變實驗裝置相關的資料

熱點內容
機械硬碟如何轉固態硬碟 瀏覽:377
西安進口品牌軸承需要多少錢 瀏覽:781
設計串聯校正裝置的工程方法 瀏覽:901
墊圈內徑檢測裝置b方便 瀏覽:267
設計一個樓梯燈控制裝置用一個按鈕 瀏覽:380
設備轉讓如何做會計處理 瀏覽:954
液壓儀表車油缸怎麼會越來越慢 瀏覽:968
牽引傳動裝置有哪幾種方式 瀏覽:152
爐石機械卡開什麼包 瀏覽:675
gps工具箱導入坐標 瀏覽:474
華瑞製冷設備有限公司有什麼品牌 瀏覽:533
冰箱單製冷雙循環是什麼意思 瀏覽:27
網上從哪裡買照相器材 瀏覽:753
自動切換裝置切換時間 瀏覽:835
數控機床位置檢測裝置要求 瀏覽:153
42x17x12軸承是什麼型號 瀏覽:248
冰櫃冷藏放什麼不製冷 瀏覽:93
超聲波結石什麼感覺 瀏覽:920
北京製冷工上崗證要多少錢 瀏覽:401
裝配圖中軸承的配合如何標注 瀏覽:218