『壹』 激光加工技術論文
目 錄
一、激光加工的起源和原理-------------------------------------------------------5
二、激光加工的特點---------------------------------------------------------------5
三、激光加工的應用---------------------------------------------------------------6
四、激光的發展趨勢---------------------------------------------------------------7
五、結論-----------------------------------------------------------------------------8
六、致謝-----------------------------------------------------------------------------9
現代製造技術特種加工
---激光加工
1、激光加工的起源和原理
隨著科學技術的發展和社會需求的多樣化,產品的競爭越來越激烈,更新換代的周期也越來越短。為此,要求不但能根據市場的要求盡快設計出新產品,而且能在盡可能短的時間內製造出原型,從而進行性能測試和修改,最終形成定型產品。而在傳統製造系統中,需要大量的模具設計、擾喚製造和調試等工作,成本高,周期長,已不能適應日新月異的市場變化。為了提高研發和生產速度,快速而精確地製作出高質量、低成本的模具和產品,能對市場變化做出敏捷響應,人們作了大量的研究和探索工作。隨著工業激光器價格的不斷下降和工業激光加工技術的日益成熟,給模具製造和產品生產工藝帶來了重大變革
激光加工是將激光束照射到工件的表面,以激光的高能量來切除、熔化材料以及改變物體表面性能。由於激光加工是無接觸式加工,工具不會與工件的表面直接磨察產生阻力,所以激光加工的速度極快、加工對象受熱影響的范圍較小而且不會產生噪音。由於激光束的能量和光束的移動速度均可調節,因此激光加工可應用到不同層面和范圍上。
2、激光加工的特點
激光具有的寶貴特性決定了激光在加工領域存在的優勢:
2.1由於它是無接觸加工,並且高能量激光束的能量及其移動速度均可調,因此可以實現多種加工的目的。
2.2它可以對多種金屬、非金屬加工,特別是可以加工高硬度、高脆性、及高熔點的材料。
2.3激光加工過程中無「刀具」磨損,無「切削力」作用於工件。
2.4激光加工過程中,激光束能量密度高,加工速度快,並且是局部加工,對非激光照射部位沒有影響或影響極小。因此,其熱影響區小,工件熱變形小,後續加工量小。
2.5它可以通過透明介質對密閉容器內的工件進行各種加工。
2.6由於激光束易於導向、聚集實現作各方向變換,極易與數控系統配合,對復雜工件進行加工,因此是一種極為皮山靈活的加工方法。
2.7使用激光加工,生產效率高,質量可靠,經濟效益好。
3、激光加工的應用
激光加工是利用光的能量經過透鏡聚焦後在焦點上達到很高的能量密度,靠光熱效應來加工的。激光加工不需要工具、加工速度快、表面變形小,可加工各種材料。用激光束對材料進行各種加工,如打孔、切燃李中割、焊接、熱處理等。 某些具有亞穩態能級的物質,在外來光子的激發下會吸收光能,使處於高能級原子的數目大於低能級原子的數目——粒子數反轉,若有一束光照射,光子的能量等於這兩個能相對應的差,這時就會產生受激輻射,輸出大量的光能。激光加工的應用主要有以下幾個方面:
3.1、激光打孔
採用脈沖激光器可進行打孔,脈沖寬度為0.1~1毫秒,特別適於打微孔和異形孔,孔徑約為0.005~1毫米。激光打孔已廣泛用於鍾表和儀表的寶石軸承、金剛石拉絲模、化纖噴絲頭等工件的加工。
3.2、激光切割、劃片與刻字
在造船、汽車製造等工業中,常使用百瓦至萬瓦級的連續CO2激光器對大工件進行切割,既能保證精確的空間曲線形狀,又有較高的加工效率。對小工件的切割常用中、小功率固體激光器或CO2激光器。在微電子學中,常用激光切劃矽片或切窄縫,速度快、熱影響區小。用激光可對流水線上的工件刻字或打標記,並不影響流水線的速度,刻劃出的字元可永久保持(圖1)。
圖1激光刻字
3.3、激光微調
採用中、小功率激光器除去電子元器件上的部分材料,以達到改變電參數(如電阻值、電容量和諧振頻率等)的目的。激光微調精度高、速度快,適於大規模生產。利用類似原理可以修復有缺陷的集成電路的掩模,修補集成電路存儲器以提高成品率,還可以對陀螺進行精確的動平衡調節。
3.4、激光熱處理
用激光照射材料,選擇適當的波長和控制照射時間、功率密度,可使材料表面熔化和再結晶,達到淬火或退火的目的。激光熱處理的優點是可以控制熱處理的深度,可以選擇和控制熱處理部位,工件變形小,可處理形狀復雜的零件和部件,可對盲孔和深孔的內壁進行處理。例如,氣缸活塞經激光熱處理後可延長壽命;用激光熱處理可恢復離子轟擊所引起損傷的硅材料。
激光加工的應用范圍還在不斷擴大,如用激光製造大規模集成電路,不用抗蝕劑,工序簡單,並能進行0.5微米以下圖案的高精度蝕刻加工,從而大大增加集成度。此外,激光蒸發、激光區域熔化和激光沉積等新工藝也在發展中。
3.5、激光焊接
激光焊接強度高、熱變形小、密封性好,可以焊接尺寸和性質懸殊,以及熔點很高(如陶瓷)和易氧化的材料。激光焊接的心臟起搏器,其密封性好、壽命長,而且體積小。
4、激光的發展趨勢
激光加工用於再製造業和應用於其他製造業一樣,有其不可替代的優點,並優於其它加工技術。激光加工用於再製造業是由相變硬化發展到激光表面合金化和激光熔覆,由激光合金塗層發展到復合塗層及陶瓷塗層,從而使得激光表面加工技術成為再製造的一項重要手段。它主要是採用5KW~10KWCO2高功率激光器及其系統。 與國際上激光加工系統相比,我國的激光加工系統差距甚大,僅佔全球銷售額的4%左右。主要表現為:高檔激光加工系統很少,甚至沒有;主力激光器不過關;微細激光加工裝備缺口較大;而這些領域我國的生產 加工企業正在積蓄力量穩步進入,國內應用市場有很大發展空間。預測今後2-3年內,我國激光加工銷售額將會由2008年的35億人民幣上升翻一倍,也就是說會達到70億元產值。 國內各類製造業接受了激光加工技術,它可使他們的產品增加技術含量,加快產品更新換代,為適應21世紀高新技術的產業化、滿足宏觀與微觀製造的需要,研究和開發高性能光源勢在必行。目前正在積極研製超紫外、超短脈沖、超大功率、高光束質量等特徵的激光,尤其是能適應微製造技術要求的激光光源更是倍受關注,並已形成國際性競爭。
5結論
本文對激光加工的原理、起源、應用、發展趨勢等做了詳細的介紹,並結合激光加工等常見的問題作出分析,對激光加工工藝的理解有一定的幫助。
參考文獻
[1]劉晉春、趙家齊、趙萬生.特種加工(第4版)[M].機械工業出版社,2007.
[2]宋威廉,激光加工技術的發展[M].北京:機械工業出版社,2008.
[3]趙萬生.特種加工技術[M].北京:機械工業出版社,2004.
[4]張遼遠.現代加工技術[M].北京:機械工業出版社,2002.
[5]劉振輝,楊嘉楷.特種加工[M].重慶:重慶大學出版社,1991.
『貳』 求模具畢業論文 付費也可
摘要:利用激光熔敷合金粉末的方法對模具進行了修復。研究了工藝參數對熔敷效果的影響,並對其修復過程進行了分析。結果表明,預處理、送粉量、激光的掃描速度是決定模具修復質量的關鍵。通過優化工藝參數、機體預熱的方法可以提高模具修復質量。
模具使用壽命取決於抗磨損和抗機械損傷能力,一旦磨損過度或機械損傷,須經修復才能恢復使用。目前可採用的修復技術有電鍍、電弧或火焰堆焊、熱噴塗(火焰、等離子)等。電鍍層一般很薄,不超過0.3mm,而且與基體結合差,形狀損壞部位難於修復,在堆焊、熱噴塗或噴焊時,熱量注入大,能量不集中,模具熱影響區大,易畸變甚至開裂,噴塗層稀釋率大,降低了基體和材料的性能。
利用激光熔覆的方法可實現對模具的修復。用高功率激光束以恆定功率P與熱粉流同時入射到模具表面上,一部分入射光被反射,一部分光被吸收,瞬時被吸收的能量超過臨界值後,金屬熔化產生熔池,然後快速凝固形成冶金結合的覆層。激光束根據CAD二次開發的應用程序給定的路線,來回掃描逐線逐層地修復模具。由於激光束的高能密度所產生的近似絕熱的快速加熱,對基體的熱影響較小,引起的畸變可以忽略,特別是經過修復後的模具幾乎不需再加工。
1 激光修復系統
激光修復技術是集高功率激光、計算機、數控機床、CAD/ CAM、先進材料、數控技術等多學科的應用技術。修復系統主要由硬體設備和製造過程軟體組成。硬體設備包括激光器、數控系統及工作台、送粉裝置、光路系統、水冷裝置、保護氣系統和在線控制所涉及的數據採集裝運肆羨置。軟體系統包括製造零件成型軟體擻據通訊和在線控制軟體。激光修復過程如圖2所示。CO2激光器發出的激光經CNC數控機床Z軸(垂直工作台)反射鏡後,進入三維光束成形聚焦組合鏡,再進入同軸送粉工作頭,組合鏡和工作頭都固定在機床Z軸上,由數控系統統一控制。載氣式送粉器將粉末均勻輸送到分粉器的同軸送粉工作頭。
模具位於CNC數控工作台X-Y平面上,根據CNC指令,工作台、組合鏡和送粉頭按給定的CAD程序運動。同時加入激光和粉末,逐層熔敷。在溫度檢測和控制系統作用下,使模具恢復原始尺寸。為保證熔覆材料(金屬粉末)和基體(模具)材料實現冶金結合,以及模具的尺寸精度、表面光潔度和材料性能,需將φ50mm圓形多模1kW-5kW高功率激光束變換成強度均勻分布的圓形光束,光斑尺寸可調(光路系統),並配有水冷系統和光束頭氣體保護系統,同時需重點考慮同軸送粉裝置和現場控制系統的設計。
1.1 同軸送粉裝置
穩定可靠的粉末輸送系統是金屬零件修復質量雹轎的重要保證。粉末輸送的波動將影響修復的質量。激光修復對送粉的基本要求是連續、穩定、均勻和可控地把粉末送入激光熔池。送粉裝置由送粉器和同軸送粉嘴組成。在送粉器的粉斗下部,由於平衡氣壓的作用形成氣固兩相流化,並從導管開孔,隨載氣輸送粉末。送粉量由輸送氣體的壓力調節,拓寬了送粉范圍,實現從5g/min-150g/min均勻連續可調送粉,送粉精度高達±5。設計的載氣同軸粉嘴,消旁拍除了氣體壓力波動引起的4路送粉不均勻,並使工作距離加大,且連續可調。
1.2 模具修復過程的控制
在理論上,熔池溫度場決定修復過程的宏觀與微觀質量,因此在激光熔覆層質量控制過程中,表徵熔覆層熔池溫度場的實時檢測非常重要。採用紅外測溫技術來檢測激光加工區域的溫度場,結合溫度場標定結果推導出實際的溫度場信息,來控制激光器功率輸出值以及CNC機床的運動速度,以保持熔池溫度穩定,避免零件由於過熱或溫度不均產生裂紋氣孔等缺陷。虛線范圍內所示的是比色測溫儀,光路系統選用單台相機,切換不同濾色片的單通道圖像記錄方式。濾光片及其控制保證兩個濾光片(804.5nm和894.6n m)交替置於數字相機圖像記錄光路中,移動響應時間<10ms,由計算機控制的高精度步進電機實現准確定位。軟體包括三部分:①控制濾光片轉入記錄光路機械控制部分;②進行實時的同步圖像採集、處理以及溫度場標定和計算;③用測量溫度變化量所得到的過程參數,調節激光功率和機床運動速度。
1.3 激光修復模具工藝參數
激光修復伴隨著傳熱、輻射、固化、分子取相及結晶等物理和化學變化,是個多參數過程。激光功率P、掃描速度、送粉量、熔池溫度等都會對其產生影響。因此必須把參數合理地組合,以確保修復工作是在塗覆特性可知的情況下進行。在激光熔敷過程中,如果不採用特殊的工藝過程對基材的熱輸入量進行控制,將會使熔敷層與基體結合程度不理想,或在熔層表面和熔敷層與基材的過渡區產生裂紋。因此,合理地選擇工藝參數是激光熔覆技術用於模具維修的關鍵因素。
根據物理冶金原理,熔敷材料和基體材料必須加熱到足夠高的溫度才能滿足實現冶金反應所無原則的條件,最終形成幾何外形規則的熔敷層,見圖1,根據經驗,應盡可能使熔敷材料加熱到較低的溫度,這樣可以減小熔敷裂紋、畸變傾向,也可避免熔敷材料的燒損和蒸發,需控制熔化材料的熔點(取基體、粉末材料兩者最高熔點)Tm+(50-100)℃。參考溫度場計逄,理論上P取值為1KW-2KW、為2mm/s-4mm/s可滿足上述要求,至於熔覆層表面不平度,可通過調節送粉量實現其最小化。
2.2 試驗方法
試驗用橫流連續波5kW-CO2激光器,光束模式為多模,光斑直徑為4mm,基體材料(模具)為5CrMnMo鋼,試樣尺寸80mm×60mm×10mm,由於Ni合金粉流動性好,與基材相結合後表面光潔,價格適中,故選用了Ni60鎳基合金粉末材料。試驗選定激光功率P為1.5kW 。
3 試驗結果分析
3. 1工藝參數對模具修復性能的影響
從熔覆層組織可以看出,激光與粉末材料相互作用充分,稀釋率適中,在熔覆層內各層間組織與層內組織稍有差別,層內組織均勻細小緻密,層間組織較粗大。由此可知,激光修復可以在相當寬的范圍內獲得組織均勻、細小緻密和性能優異的修復層。測量1~3層硬度變化為85HV0.2。
試驗結果表明,粉末在與激光相互作用時,如果激光功率P>5kW且掃描速度<1mm/s,基體因加熱溫度過高而被燒損,表面出現折皺以及氣孔等質量問題。究其原因熔覆過程熔池內攪拌加劇,基體元素與金屬粉末元素相互擴散嚴重,熔覆層開裂、變形敏感性明顯上升。當激光功率P=1kW~2kW、掃描速度=2mm/s~4mm/s范圍內均可得到較理想的激光熔覆層。此外,若加熱溫度過低無法充分熔化,難於達到修復模具的目的。掃描速度過大時出現熔覆層不連續現象,其結合強度不夠。稀釋率隨掃描速度的增加,呈減小的趨勢,而隨送粉量的增大使稀釋率有增加的趨勢。
3.2 工藝參數對模具修復宏觀形貌的影響
試驗表明,在P和變化不大時,激光熔覆表面宏觀形貌與送粉量關系密切,在其它條件相同的情況下,隨的增大,熔覆層寬度有所變化(有變小的趨勢),而熔覆層厚度明顯增加,接觸角加大。完全可以利用調節的方法改善熔覆層表面不平度。
4 結論
在激光修復模具過程中,通過理論計算並結合試驗,在工藝參數P=1.5kW, gs1 =3.2mm/s ,=310mg/s,熔覆層厚度1mm~2mm,可以得到較理想的表面質量。為防止出現裂紋,可以對模具進行200℃×2h的預熱處理。在修復過程中可以使用氫氣側吹保護激光熔覆部位。實際用於模具修復需要藉助於激光修復系統的控制部分,不斷調節送粉量,克服熔覆層表面的凹凸不平。
『叄』 激光熔覆成形(LCF)是什麼技術呢
1.利用激光束掃描金屬板材誘發的內部非均勻分布的熱應力,使板材發生局部塑性屈服,從而使板材產生一定角度的彎曲變形。激光加熱彎曲成形是基於材料的熱脹冷縮特性,利用高能激光束掃描金屬薄板表面,在熱作用區產生強烈的溫度梯度,導致非均勻分布的熱應力,使金屬板材發生塑性變形的工藝方法。
2.可以通過調整激光加工工藝參數來控制熱作用區域內變形的程度,從而控制薄板變形的大小和方向,最終實現無模成形。由於板材激光彎曲成形是一種無外力成形,因此成形中只需根據板材的形狀尺寸及成形工件的變形要求進行簡單的固定即可。由於板材激光彎曲成形對激光束的模式無特定的要求,因此成形在常規的切割、焊接等激光加工機上即可進行。板材激光彎曲成形的過程很簡單,但是影響激光成形的因素很多,不同的掃描軌跡和工藝參數組合能夠產生不同的成形效果和不同程度的變形量,工藝參數的選擇依賴於所要求的形狀和板材的幾何尺寸及材料的性能等。激光快速成型(Laser Rapid Prototyping:LRP)是將CAD、CAM、CNC、激光、精密伺服驅動和新材料等先進技術集成的一種全新製造技術。與傳統製造方法相比具有:原型的復制性、互換性高;製造工藝與製造原型的幾何形狀無關;加工周期短、成本低,一般製造費用降低50%,加工周期縮短70%以上;高度技術集成,實現設計製造一體化。
『肆』 激光熔覆技術的工藝領域
激光熔覆技術是—種涉及光、機、電、計算機、材料、物理、化學等多門學科的跨學科高新技術。它由上個世紀60年代提出,並於1976年誕生了第一項論述高能激光熔覆的專利。進入80年代,激光熔覆技術得到了迅速的發展,結合CAD技術興起的快速原型加工技術,為激光熔覆技術又添了新的活力。
已成功開展了在不銹鋼、模具鋼、可鍛鑄鐵、灰口鑄鐵、銅合金、鈦合金、鋁合金及特殊陵謹合金錶面鈷基、鎳基、鐵基等自熔合金粉末及陶瓷相的激光熔覆。激光熔覆鐵基合金粉末適用於要求局部耐磨而且容易變形的零件。鎳基合金粉末適用於要求局部耐磨、耐熱腐蝕及抗熱疲勞的構件。鈷基合金粉末適用於要求耐磨、耐蝕及抗熱疲勞的零件。陶瓷塗層在高溫下有較高的強度,熱穩定性好,化學穩定性高,適用於要求耐磨、耐蝕、耐高溫和抗氧化性的零件。在滑動磨損、沖擊磨損和磨粒磨損嚴重的條件下,純的鎳基、鈷基和鐵基合金粉末已經滿足不了使用工況的要求,因此在合金錶面激光熔覆金屬陶瓷復合塗層已經成為國內外學者研究的熱點,已經進行了鋼、鈦合金及鋁合金錶面激光熔覆多種陶瓷或金屬陶瓷塗層的研究。
激光熔覆的應用主要在兩個方面,即耐腐蝕(包括耐高溫腐蝕)和耐磨損,應用的范圍很廣泛,例如內燃機的閥門和閥座的密封面,水、氣或蒸汽分離器的激光熔覆等。
同時提高材料的耐磨和耐腐蝕性,可以採用Co基合金(如Co-Cr-Mo-Si系)進行激光熔覆。基體中物相成份范圍中Co3Mo2SI硬質金屬間相的存在可保證耐磨性能,而Cr則提供了耐腐蝕性。 評價激光熔覆層質量的優劣,主要從兩個方面來考慮。一是宏觀上,考察熔覆道形狀、表面不平度、裂紋、氣孔及稀釋州戚率等;二是微觀上,考察是否形成良好的組織,能否提供所要求的性能。此外,還應測定表面熔覆層化學元素的種類和分布,注意分析過渡層的情況是否為冶金結合,必要時要進行質量壽命檢測。
研究工作的重點是熔覆設備的研製與開發、熔池動力學、合金成分的設計、裂紋的形成、擴展和控制方法、以及熔覆層與基體之間的結合力等。
激光熔敷技術進一步應用面臨的主冊汪陵要問題是:
①激光熔覆技術在國內尚未完全實現產業化的主要原因是熔覆層質量的不穩定性。激光熔覆過程中,加熱和冷卻的速度極快,最高速度可達1012℃/s.由於熔覆層和基體材料的溫度梯度和熱膨脹系數的差異,可能在熔覆層中產生多種缺陷,主要包括氣孔、裂紋、變形和表面不平度.
②光熔敷過程的檢測和實施自動化控制。
③激光熔覆層的開裂敏感性,仍然是困擾國內外研究者的一個難題,也是工程應用及產業化的障礙,雖然已經對裂紋的形成擴進行了研究,但控制方法方面還不成熟。 進入20世紀80年代以來,激光熔覆技術得到了迅速的發展,已成為國內外激光表面改性研究的熱點。激光熔敷技術具有很大的技術經濟效益,廣泛應用於機械製造與維修、汽車製造、紡織機械、航海與航天和石油化工等領域。
激光熔覆技術已經取得一定的成果,正處於逐步走向工業化應用的起步階段。今後的發展前景主要有以下幾個方面:
(1)激光熔覆的基礎理論研究。
(2)熔覆材料的設計與開發。
(3)激光熔覆設備的改進與研製。
(4)理論模型的建立。
(5)激光熔覆的快速成型技術。
(6)熔覆過程式控制制的自動化。
『伍』 求「淺談激光加工技術在模具製造中的應用」的畢業論文。。
《模具工業》2001. No . 4 總 242 40
激 光 加 工 技 術 在 模 具 制 造 中 的 應 用
江蘇理工大學(江蘇鎮江 212013) 張 瑩 周建忠 戴亞春
[摘要]隨著激光加工技術的日趨成熟和工業用大功率激光設備價格的逐漸下降 ,給產品和
模具的製造工藝帶來了新的變革 ,在模具製造、 模具表面強化與維修、 取代模具等 3個方面 ,就
激光優化模具製造工藝作了較為詳細的分析和探討。
關鍵詞 模具 激光 工藝優化
[ Abstract ]Wi t h t he mat uri ng of t he las e r p r oces si ng t echnology and t he dec r easi ng of p rice of t he
i ns t rial la r ge - p owe r las e r e quipme nt , a new i nnovat ion was br ought t o t he manuf act uri ng
t echnology of t he p r oct s and t he dies and moulds . A r elat ively de t ailed analysis and dis cus sion
was made on t he las e r op t imized manuf act uri ng p r oces s f or dies and moulds f r om t hr e e asp ect s of
manuf act uri ng , s urf ace r ei nf orceme nt and mai nt e nance , and s ubs t i t ut ive dies or moulds .
Key words die and mould , las e r , t echnological p r oces s op t imizat ion
1 引 言
激烈的市場競爭使製造企業對快速響應市場
需求和一次製造成功等要求日益迫切。而在常規制
造系統中 , 產品生產所需大量模具的設計、製造和
裝配調試不僅耗費大量資金 , 更嚴重的是延長了產
品生產的准備時間 , 從而延長了新產品開發周期 ,
形成製造過程中的瓶頸。因此 , 如何快速有效地制
造出高質量、低成本的模具及產品 , 就成為人們不
斷探索的課題。隨著激光加工技術的日趨成熟和工
業用大功率激光器設備價格的下降 , 給產品和模具
製造工藝帶來了重大變革。本文在模具製造、模具
表面強化與維修、取代模具等 3個方面 , 就激光加
工在模具製造中的應用作一些探討。
2 模游信具製造
2. 1 模具的激光疊加製造
1982年 ,日本東京大學的中川教授等人提出用
薄片疊加法製造拉伸模 , 1985年 , 美國加州某公司
推出了模具的激光疊加製造法 , 並獲得專利 , 其工
藝流程見圖 1 ,原理為將激光切割的多層薄板疊加 ,
並使其形狀逐漸發生變化 , 最終獲得所需的模具立
體幾何形狀。日本在沖模的激光疊加製造方面已達
到實用階段 ,所制的凸、 凹模質量高 ,加工尺寸精度
— — —— — —— — —— — —— — —— — ——
收稿激陪日期:2000年8月10日
已達 ±0. 01mm ,切割厚度為 12mm。 經激光切割後 ,
在切口表面形成深 0. 1~0. 2mm、 硬度為 800HV 的
硬化層 ,用來沖裁 1mm 厚的鋼板 ,單憑自冷硬化層
就可沖壓 10 000 件 , 如在激光切割後再經火焰淬
火 ,則可沖壓 3~5萬件。 由於各薄板間的連接簡單 ,
故用疊加法製作沖模 ,成本可降低一半 ,生產周期大
大縮短。用來製造復合模、落料模和級進模等都取
得了顯著的經濟效益。
圖 1 激光疊加模具製造工藝流程
由模具 CAD 和激光切割相結合構成一個完整
的模具 CAD/ CAM 系統 ,實現板料切割的 FMS ,適
用於多品種小批量生產。用激光切割的薄板來疊加
合成任意三維曲面的製造系統 , 不僅為在塑性加工
和模具領域中實行 FMS 提供了思路 , 而且對於內
部結構復雜的模具製造 ,如型孔、 中孔體及復雜的冷
卻管道等 ,也是快速而經濟的製造模具的有效方法 ,
並且能帶動其他技術如固神鉛輪相擴散等的發展。
2. 2 快速模具製造
模具 CAD
三維設計
二維外形
NC 程序
激光
切割
去除
梯級
創層面
精加工
成形
模具
裝
配
薄片
連結
精加工
NC 程序
模 具 制 造 技 術《模具工業》2001. No . 4 總 242 41
快速成型製造技術(RPM)是 80年代後期出現
的一項製造技術 , 目前 RPM 技術已發展了十幾種
工藝方法。基於 RPM 技術快速製造模具的方法多
為間接制模法 , 即利用 RPM 原型間接地翻制模
具。
(1) 軟質簡易模具 (如汽車覆蓋件模具) 的制
作。採用硅橡膠、低熔點合金等將原型准確復製成
模具 , 或對原型表面用金屬噴塗法或物理蒸發沉積
法鍍上一層熔點極低的合金來製作模具。這些簡易
模具的壽命為 50~5 000件 ,由於其製造成本低 ,制
作周期短 , 特別適用於產品試制階段的小批量生
產。
(2) 鋼質模具製作。RPM 原型 — — — 三維砂輪
— — — 整體石墨電極 — — — 鋼模 ,一個中等大小、 較為復
雜的電極一般 4~8h 即可完成。 美國福特汽車公司
用此技術製造汽車覆蓋件模具取得了滿意的效果 ,
與傳統機械加工製作模具相比 , 快速模具製造省去
了耗時、 昂貴的 CNC加工 ,加工成本及周期大大降
低 ,具有廣闊的應用前景。
3 模具表面強化與修復
為提高模具的使用壽命 , 常常需對模具表面進
行強化處理。常用的模具表面強化處理工藝有化學
處理 (如滲碳、 碳氮共滲等) 、 表層復合處理 (如堆
焊、 熱噴塗、 電火花表面強化、 PVD 和 CVD 等) 以
及表面加工強化處理(如噴丸等) 。這些方法大多工
藝較為復雜 , 處理周期較長 , 且處理後存在較大的
變形。採用激光技術來強化和修復模具 , 具有柔性
大 , 表面硬度高 , 工藝周期短 , 工作環境潔凈等優
點 ,因此具有很強的生命力。
3. 1 激光相變硬化
激光相變硬化 (激光淬火) 是利用激光輻照到
金屬表面 , 使其表面以很高的升溫速度達到相變溫
度 (但低於熔化溫度) 而形成奧氏體 ,當激光束離開
後 , 利用金屬表面本身熱傳導而發生自淬火 , 使金
屬表面發生馬氏體轉變 , 形成硬度高、抗磨損的表
層 , 從而使金屬表面得到強化。所用設備為三軸聯
動的數控激光加工機。
影響激光強化的主要因素有激光功率、光斑尺
寸和掃描速度。在強化過程中要對這些參數進行優
化 , 並對具體材料選擇合適的激光處理參數。對於
CrWMn、 Cr12MoV、 Cr12、 T10A 及 Cr-Mo 鑄鐵等
的常用模具材料 , 在激光處理後 , 其組織性能較常
規熱處理普遍改善。 例如 ,CrWMn 鋼在常規加熱時
易在奧氏體晶界上形成網狀的二次碳化物 , 顯著增
加工件脆性 ,降低沖擊韌性 ,使用在模具刃口或關鍵
部位壽命較低。採用激光淬火後可獲得細馬氏體和
彌散分布的碳化物顆粒 ,清除網狀 ,並獲得最大硬化
層深度以及最大硬度 1 017. 2HV。Cr12MoV 鋼激
光淬火後的硬度、抗塑性變形和抗粘磨損能力均較
常規熱處理有所提高。對 T8A 鋼製造的凸模和
Cr12Mo 鋼製造的凹模 ,激光硬化深 0. 12mm ,硬度
1 200HV , 壽命提高 4~6倍 , 既由沖壓 2萬件提高
到 10~14萬件。 對於 T10鋼 ,激光淬火後可獲得硬
度 1 024HV、 深 0. 55mm 的硬化層;對於 Cr12 ,激光
淬火後可獲得硬度 1 000HV、 深 0. 4mm 的硬化層 ,
使用壽命均得到了較大的提高。
3. 2 激光塗覆
激光塗覆是用激光在基體表面覆蓋一層薄的具
有一定性能的塗覆材料 , 這類材料可以是金屬或合
金 ,也可以是非金屬 ,還可以是化合物及其混合物。
在塗覆過程中 , 塗覆層在激光作用下與基體表面通
過熔合迅速結合在一起。它與激光合金化的主要區
別在於經激光作用後塗層的化學成分基本上不變
化 , 基體的成分基本上不進入塗層內。激光塗覆工
藝實用的材料范圍很廣 , 正在研究的母體材料有低
碳鋼、 合金鋼、 鑄鐵、 鎳鉻鈦耐熱合金等 ,研究的添加
材料有鈷基合金、 鐵基合金和鎳基合金等。
採用激光技術在有送粉器的 2kW CO2 激光器
上 , 對 4Cr5MoV1Si 鋼基體表面塗覆一層由鎳基高
溫合金和 WC + W2C 粒子組成的高溫耐磨合金粉
末 ,在激光功率 P = 1 500W ,送粉量為 10g/ min ,工
件移動速度為 2~3mm/ s 條件下 ,獲得多道搭接的
大面積高溫耐磨合金。 在試驗溫度為 600℃ 時 ,硬度
為 550~580HV0 .2 ; 在溫度為 950℃時 , 硬度為
100~200HV0 .2。 可見在 1 000℃ 左右高溫下 ,塗覆層
仍有很高的強硬性 , 是較理想的高溫模具耐磨合
金。另外 , 採用激光塗覆方法來修復已磨損的沖模
及拉伸模等 ,可大大延長模具的使用壽命 ,降低模具
的使用成本。
3. 3 激光堆焊
對於一些汽車覆蓋件沖裁修邊模具 , 為提高使
用壽命 ,節省優質模具材料 ,刃口往往採用在較差的
基體材料上堆焊一層性能優異的合金。 過去 ,堆焊大
多採用人工氧 — 乙炔火焰堆焊法 ,這種方法雖然設備《模具工業》2001. No . 4 總 242 42
費用低 ,但功率密度不高(10
2
~10
3
W/ cm 2
) ,且難以
進行精確控制 , 因而堆焊質量和生產率都較低。70
年代以來 , 開發成功了等離子粉末堆焊技術 , 由於
其具有較高的功率密度且控制性能也較好 , 因而得
到了廣泛的應用。但等離子堆焊存在著電極壽命
短、 堆焊層母材稀釋率較高等問題。80年代以來出
現的激光堆焊法與使用同一材料的氧 —乙炔火焰
堆焊法相比 ,激光堆焊層組織細微、 緻密 ,不良品率
僅為前者的 1/ 10。激光堆焊的速度快 ,生產率比氧
— 乙炔火焰堆焊高 1. 75倍 , 而堆焊的材料使用量
僅為其 1/ 2。而且激光堆焊層的室溫硬度比氧 — 乙
炔火焰堆焊的高 50HV 左右。 激光堆焊質量與激光
的光束模式、 功率及堆焊速度等因素有關。
4 激光加工替代模具沖壓加工
4. 1 激光切割替代薄板件的沖裁模
激光切割替代鈑金件及汽車車身製造中的沖
裁修邊模大有可為。三維激光切割技術 , 由於其本
身具有加工靈活和保證質量的特性 , 在 80 年代就
開始在汽車車身製造中應用。切割時只需用平直的
支撐塊來支撐工件 , 因此夾具的製作不僅成本低而
且快速。由於與 CAD/ CAM 技術相結合 ,切割過程
易於控制 , 可實現連續生產和並行加工 , 從而實現
高效率的切割生產。
切割板材所使用的激光器主要有兩大類 , 即
CO2 激光器和 Nd : YA G激光器 ,功率為 100~1 500
W , 因為功率小於 1 500W 的激光器其振動模式為
單模 , 切縫寬度為 0. 1~0. 2mm , 切割面也很整潔 ,
而輸出功率大於 1 500W 時激光器的振動模式為多
模 , 割縫寬度近 1mm , 切割面質量較差。因 Nd :
YA G的激光可通過光導纖維輸送 , 比較靈活方便 ,
適用於機器人手執激光噴嘴配程序控制進行精確
操作 , 因此在三維切割時大多採用。影響激光切割
工件質量的主要因素有切割速度、焦點位置、輔助
氣體壓力、 激光輸出功率及模式。
美國福特和通用汽車公司以及日本的豐田、日
產等汽車公司 , 在汽車生產線上普遍採用激光切割
技術 , 它不必採用各種規格的金屬模具 , 除了快速
方便地切割各種不同形狀的坯料外 , 還用來大量切
割加工因規格不同需要更改的零件安裝孔位置 , 如
汽車標志燈、 車架、 車身兩側裝飾線等。通用汽車公
司生產的卡車僅車門就有直徑為 <2. 8~<39mm 的
20種孔 , 公司採用 Rofin- Sinar 的 500W 激光器通
過光纖連接到裝在機械手的焊頭上 , 用以切割這些
孔 ,1min 就完成一扇門開孔的加工 ,孔邊緣光滑 ,背
面平整 。<2. 8mm 孔的公差為 0. 03~0. 08mm ,
<12mm 孔的公差為 - 0. 25mm~ + 0. 03mm。該公
司生產的卡車和客車有 89 種孔徑和孔位配置不同
的底盤 ,經過優化設計 ,現在只需要沖壓 5種不同的
底盤 ,然後再由激光切割出配置不同的孔 ,簡化了工
藝 ,提高了效率 ,降低了成本。
我國自然科學基金委在 1997 年把大功率 CO2
及 YA G激光三維焊接和切割理論與技術作為重點
項目進行資助 , 國家產學研激光技術中心的課題組
成員對此進行了系統的研究 , 為在我國汽車車身制
造業中應用三維激光立體加工技術做出了很大貢
獻。該中心為一汽轎車公司、寶山鋼鐵公司等國有
大型企業的技術改造開展了重大工程項目攻關 , 其
中開發紅旗加長型轎車覆蓋件的三維激光製造工藝
技術 , 在我國轎車生產中是首次採用。在汽車用薄
厚鋼板激光大拼板拼接工藝試驗研究中首次採用了
激光切割替代精裁工藝技術 , 取得了較好的技術經
濟效果。三維激光切割在車身裝配後的加工也十分
有用 ,例如開行李架固定孔、 頂蓋滑軌孔、 天線安裝
孔、修改車輪擋泥板形狀等。在新車試制中用於切
割輪廓和修正 ,既縮短了試制周期又節省了模具 ,充
分體現出採用激光切割加工的優點。
4. 2 激光打標替代沖模打標
企業在其生產的零部件上常常需要打上企業自
己的標志或特定的符號與數字 , 以往的方法是使用
沖模打標或用鑄模成型 , 打標質量不高。採用數控
激光機打標不僅速度快 , 而且克服了沖模打標中常
見的毛邊、尖銳的邊緣和畸變。由於採用計算機控
制 , 因此可以打出任意復雜的圖案 , 省去了模具設
計、 製造及調試等環節 ,大大縮短了產品的開發製造
周期 , 同時也降低了成本。因激光打標機所需功率
小 ,成本低 ,打出的標記美觀、 漂亮 ,現已為大多數企
業所採用。
4. 3 激光成形替代彎曲模成形
金屬板料的激光成形技術是一種利用聚焦光束
以一定的速度掃描金屬板料表面 (掃描速度應足夠
快以防止表面熔化) ,使熱作用區內的材料產生明顯
的溫度梯度 ,導致非均勻分布的熱應力 ,從而使板料
塑性變形的方法。與常規成形方法相比 , 激光成形《模具工業》2001. No . 4 總 242 43
具有許多優點: ① 屬於無模成形 ,生產周期短 ,柔性
大 , 可不受加工環境限制 , 通過優化激光加工工藝
參數 , 精確控制熱作用區域以及熱應力的分布 , 將
板料無模成形; ② 因其是一種僅靠熱應力而不用模
具使板料變形的塑性加工方法 , 因此屬無外力成
形; ③ 為非接觸式成形 ,所以不存在模具製作、 磨損
和潤滑等問題 ,也不存在貼模、 回彈現象 ,成形精度
高; ④ 可使板料通過復合成形得到形狀復雜的異形
件(如球形件、 錐形件和拋物形件等) 。
激光成形機理的實質就是彎曲機理。當激光加
熱板料時 , 一方面在激光作用區及其周圍產生熱應
力 , 同時降低了被加熱區域板料的屈服極根 , 從而
使熱應力作用區的熱態材料產生非均勻的塑性變
形 ,實現板料的彎曲成形。試驗表明 ,激光每掃描一
道次 ,金屬板料可彎曲 1° ~5° ,不同的掃描軌跡和工
藝參數組合能夠產生不同的成形效果和不同程度
的變形量 , 即可得到各種復雜形狀的工件。圖 2表
示在工藝參數為激光速功率 1. 5kW , 激光束直徑
5. 4mm , 材料 SUS304 , 厚 1mm , 碳塗覆面的條件
下 ,激光掃面速度與材料彎曲角之間的變化關系。
圖 2 激光掃描速度對彎曲角的影響
現在世界上許多國家都投入較大的人力、物力
對激光成形技術進行專項研究 , 在某些領域現已開
始了初步的工業應用。波蘭基礎技術研究所的
HFrackiewicz 教授利用激光成形先後製造出了筒
形件、 球形件、 波紋管和金屬管的擴口縮口、 彎曲成
形等;德國學者 MGeiger 等將激光成形與其他加工
工序復合運用於汽車製造業 , 進行了汽車覆蓋件的
柔性校平和其他成形件的成形 , 而且對彎曲成形過
程進行計算機閉環控制 , 提高了成形精度。德國
Trumpf 公司於 1997 年開發了商品化激光成形多
用機床 Trumat ic L 3030。 相信隨著研究的不斷深入
以及其他相關技術的發展 , 激光成形技術將逐趨成
熟 ,進入實用化階段。
5 結束語
激光加工技術作為一種先進的加工工藝 , 在國
外各行業已得到了廣泛的應用 ,我國機械行業在 「九
五」期間也將其作為十大技術之一。國家自然科學
基金委也把激光加工工藝和激光加工設備的研究作
為重點研究項目進行資助 , 並明確指出其主要應用
領域應該在汽車製造業。模具作為一種工具 , 其生
產周期、質量和成本直接影響產品的製造過程和銷
售。而激光作為一種萬能加工工具 , 在減少模具制
造裝備 ,縮短模具製造周期 ,降低製造成本和保證模
具質量等方面具有很大的優勢。如何在實際生產中
應用激光加工技術來優化模具製造工藝 , 對傳統的
模具製造工藝進行改進和組合 , 需要我們做出不斷
的努力。
參 考 文 獻
1 陳大明 ,徐有容 . 模具鋼表面激光熔覆硬面合金層改性
研究.金屬熱處理 ,1998 , (1)
2 李懦荀 ,平雪良.連續激光強化模具刃口的工藝研究.電
加工 ,1995 , (6)
3 孫中發 . 我國激光產業發展對策.上海交通大學學報 ,
1997 , (10)
4 曹 能 ,馮 梅.激光加工技術在汽車工業中的應用 ,寶
鋼技術 ,1998 , (3)
5 管延錦 ,孫升.激光快速成形與製造技術及其在汽車工
業中的應用.汽車工藝與材料 ,1999 , (9)
6 A Domenico . 加工汽車車身部件的三維激光切割技術 .
機電信息 ,1999 , (6)
7 周建忠 ,袁國定.應用激光強化技術提高覆蓋件模具壽
命.模具工業 ,2000 , (4)
8 胡曉峰 . 基於數控激光切割的快速制模方法研究 . 江
蘇理工大學碩士論文 ,1997.
9 M Geiger ,F Voll tert sen. Flexible St raightening of
car Body Shells by laser .
10 Bob Trving. Welding Tailorde Blanks. Welding Jou-
rnal ,1995 , (8)
11 M Geiger . Synergy of laser Material Porcessing and
Metal Forming. Annals of t he CIRP ,1994 ,43(2)
12 H Arnet ,F Vollert sen. Extending Laset bending
for t he generation of convex shapes. Porc . Inst n.
Mech. Engrs. ,1995 , (209)
13 Trumf Lt d. The heat is on for laser profiler . Sheet
Metal Inst ries ,1997 , (1)
『陸』 機械設計製造及其自動化本科生畢業設計課題
數控專業-模型車輪
我
幫您的。
『柒』 機械類專業畢業設計一般做什麼題目
程設計 帶式輸送機傳動裝置 7畢業論文 橋式起重機副起升機構設計
8畢業論文 兩齒輥破碎機設計 9 63CY14-1B軸向柱塞泵改進設計(共32頁,19000字)
10畢業設計 連桿孔研磨裝置設計
11畢業設計 旁承上平面與下心盤上平面垂直距離檢測裝置的設計
12.. 機械設計課程設計 帶式運輸機傳動裝置設計 13皮帶式輸送機傳動裝置的一級圓柱齒輪減速器
14畢業設計(論文) 立軸式破碎機設計 15畢業設計(論文) C6136型經濟型數控改造(橫向)
16高空作業車工作臂結構設計及有限元分析 17 2007屆畢業生畢業設計 機用虎鉗設計
18畢業設計無軸承電機的結構設計 19畢業設計 平面關節型機械手設計
20畢業設計 三自由度圓柱坐標型工業機器人
21畢業設計XKA5032A/C數控立式升降台銑床自動換刀設計
22畢業設計 四通管接頭的設計 23課程設計:帶式運輸機上的傳動及減速裝置
24畢業設計(論文) 行星減速器設計三維造型虛擬設計分析
25畢業設計論文 關節型機器人腕部結構設計
26本科生畢業設計全套資料 Z32K型搖臂鑽床變速箱的改進設計/
27畢業設計 EQY-112-90 汽車變速箱後面孔系鑽削組合機床設計
28畢業設計 D180柴油機12孔攻絲機床及夾具設計
29畢業設計 C616型普通車床改造為經濟型數控車床
30畢業設計(論文)說明書 中單鏈型刮板輸送機設計
液壓類畢業設計
1畢業設計 ZFS1600/12/26型液壓支架掩護梁設計
2畢業設計 液壓拉力器
3畢業設計 液壓台虎鉗設計
4畢業設計論文 雙活塞液壓漿體泵液力缸設計
5畢業設計 GKZ高空作業車液壓和電氣控制系統設計 數控加工類畢業設計
1課程設計 設計低速級斜齒輪零件的機械加工工藝規程
2畢業設計 普通車床經濟型數控改造
3畢業論文 鉤尾框夾具設計(鏜φ92孔的兩道工序的專用夾具)
...4 機械製造工藝學課程設計 設計「撥叉」零件的機械加工工藝規程及工藝裝備(年產量5000件)
5課程設計 四工位專用機床傳動機構設計
6課程設計說明書 設計「推動架」零件的機械加工工藝及工藝設備
7機械製造技術基礎課程設計 制定CA6140車床法蘭盤的加工工藝,設計鑽4×φ9mm孔的鑽床夾具
8械製造技術基礎課程設計 設計「CA6140車床撥叉」零件的機械加工工藝及工藝設備
9畢業設計 軸類零件設計
10畢業設計 殼體零件機械加工工藝規程制訂及第工序工藝裝備設計
11畢業設計 單拐曲軸零件機械加工規程設計說明書
12機械製造課程設計 機床傳動齒輪的工藝規程設計(大批量)
13課程設計 軸零件的機械加工工藝規程制定
14畢業論文 開放式CNC(Computer Numerical Control)系統設計
15畢業設計 單拐曲軸工藝流程
16畢業設計 殼體機械加工工藝規程
17畢業設計 連桿機械加工工藝規程
18畢業設計(論文) 子程序在沖孔模生產中的運用——編制數控加工(1#-6#)標模點孔的程序
19畢業設計 XKA5032A/C數控立式升降台銑床自動換刀裝置的設計
20機械製造技術基礎課程設計 設計「減速器傳動軸」零件的機械加工工藝規程(年產量為5000件)
21課程設計 杠桿的加工
22畢業設計 2SA3.1多回轉電動執行機構箱體加工工藝規程及工藝裝備設計
23畢業論文 數控銑高級工零件工藝設計及程序編制
24畢業論文 數控銑高級工心型零件工藝設計及程序編制
25畢業設計 連桿的加工工藝及其斷面銑夾具設計
26機械製造工藝學課程設計說明書:設計「CA6140車床撥叉」零件的機械加工工藝及工藝設備 雜合
XKA5032AC數控立式升降台銑床自動換刀裝置設計
機用虎鉗課程設計.rar
行星齒輪減速器減速器的虛擬設計(王少華).rar
物流液壓升降台的設計
自動加料機控制系統.rar全向輪機構及其控制設計.rar
齒輪齒條轉向器.rar
計程車計價系統.rar
(畢業設計)油封骨架沖壓模具
連桿孔研磨裝置設計 .rar
蝸輪蝸桿傳動.rar
用單片機實現溫度遠程顯示.doc
基於Alter的EP1C6Q240C8的紅外遙器(畢業論文).doc
變頻器 調試設計及應用
鎳氫電池充電器的設計.doc
銑斷夾具設計 q 348414338
『捌』 冶金工程畢業論文題目
冶金工程畢業論文題目
冶金工程畢業論文題目大家了解了嗎,有哪些題目可以供大家選擇呢?下面我為大家介紹冶金工程畢業論文題目,希望能幫到大家!
41、擺線轉子數控加碧咐工程序的研究
42、球團煙氣氨法脫硫控制系統及儀表檢測
43、PDCA循環在高爐本體安裝項目中的應用
44、山西文水煉鋼連鑄EPC項目風險管理研究
45、冶金建設工程質量監督重點
46、試論機電自動化在工程機械製造中的應用分析
47、冶金建設項目計劃管理模式優化
48、基於逆向工程的激光熔覆搭接耐慧液率的確定
49、冶金機械設備安裝研究
50、機電自動化在工程機械製造中的應用
51、冶金流程工業機械裝備智能化與在役再製造工程戰略研究
52、微波技術在冶金工程中的運用與實踐探索
53、再製造工程技術在冶金工業中的應用探微
54、冶金防腐工程的淺析
55、冶金工程中可回收式錨索施工工藝探討
56、多點驅動帶式輸送機的設計研究
1、潤滑系統在冶金設備中的應用與分析
2、冶金電氣設備安裝工程安裝調試要點
3、淺談微波技術在冶金工程中的運用
4、起重機械檢驗過程中的設備問題和管理研究
5、HTR-PM余熱排出系統水冷壁製造方案
6、中國鋼鐵企業固體廢棄物資源化處理模式和發展方向
7、沈陽有色冶金設計研究院
8、鎳基合金在激光熔覆再製造中的應用研究綜述
9、新型水泥基復合注漿材料的配比實驗
10、大型冶金工程項目機電安裝BIM應用研究
11、冶金工程實驗室安全管理實踐與思考
12、深豎井支洞在水工隧洞中的應用
13、氧化亞鐵硫桿菌及其應用研究進展
14、冶金工程質量管理與改進
15、淺談鐵路信號工程技術施工管理
16、基於X射線實時成像技術的產品缺陷檢測
17、BIM技術在大型冶金工程中的實際應用
18、工業含鉻廢水處理技術研究進展
19、冶金工程設計的發展現狀和展望
20、H公司電石冶煉廠建設項目的`采購風險管控研究
21、鈣鎂誘導低合金高強度鋼針狀鐵素體強韌化機制研究
22、鏈箅機-回轉窯制備全赤鐵礦氧化球團的關鍵技術研究
23、基於透明計算技術的智能手錶設計與實現
24、箱型鋼柱加固的非線性有限元分析
25、淺析海外冶金與礦山工程的設計管理
26、端曲面齒聯軸器的創成原理及設計
27、膜技術在含金屬離子廢水中的應用進展與發展趨勢
28、反滲透技術在冶金行業的應用
29、選擇性激光燒結在3D列印中的應用
30、冶金工業高壓供配電系統施工與運營關鍵技術
31、冶金外牆裝飾施工中的問題及應對策略探析
32、多鐵性顆粒復合材料內部的平行多裂紋問題
33、高鉻型釩鈦磁鐵礦中鉻氧化物還原熱力學影響因素分析
34、中碳鋼中的氧化物冶金行為及脈沖磁場對其的影響
35、冶金機械設備安裝的關鍵問題探討
36、現代鋼鐵冶金工程設計方法研究
37、載入環境對合金超高周疲勞行為的影響
38、電氣安裝與調試成套技術在煉鐵及軋鋼工程快速改造大修中的應用
39、盾構刀盤驅動無級變速離合器摩擦副燒損失效機理的研究
40、綠色可循環鋼鐵廠工程設計研究與實踐
57、Cu基金屬粉末的特種微成形工藝及性能評估
58、創建面向冶金生產過程的開放型自動化專業人才培養模式
59、汽輪發電機組設備安裝施工技術
60、冶金設備安裝調試要點分析
61、酸性環境用低溫無縫鋼管(-50℃)的研製
62、微型流化床反應分昌物析的方法基礎與應用研究
63、新型濾筒除塵器的性能實驗研究及工業應用
64、高強度貝氏體精軋鋼筋性能優化及斷裂行為研究
65、激光增材製造鎳基高溫合金數值模擬與試驗研究
66、冶金自動化工程項目風險管理研究
67、多熱源作用下側吸罩流場及捕集效率特性的研究
68、典型冶金原輔料的微波吸收特性及其應用研究
69、基於光場成像理論的彌散介質光熱特性重構
70、鐵合金等離子體的時空特性研究
71、活塞式發動機故障診斷方法研究與工程應用
72、銅冶煉項目管理工作中遇到的問題探究
73、概算包干模式下冶金工程的造價管理初探
74、基於METSIM的鎢冶煉工藝過程模擬研究
75、基於直覺模糊層次分析法的大型高爐工程施工階段風險評價研究
76、磷礦漿脫除燃煤鍋爐煙氣中SO_2的研究
『玖』 激光熔覆的工藝參數
激光熔覆的工藝參數主要有激光功率、光斑直徑、熔覆速度、離焦量、送粉速度、掃描速度、預熱溫度等。這些參數對熔覆層的稀釋率、裂紋、表面粗糙度以及熔覆零件的緻密性等有很大影響。各參數之間也相互影響,是一個非常復雜的過程,須採用合理的控制方法將這些參數控制在激光熔覆工藝允許的范圍內。
激光熔覆有3個重要的工藝參數 熔覆速度V與激光功率P有相似的影響。熔覆速度過高,合金粉末不能完全融化,未起到優質熔覆的效果;熔覆速度太低,熔池存在時間過長,粉末過燒,合金元素損失,同時基體的熱輸入量大,會增加變形量。
激光熔覆參數不是獨立的影響熔覆層宏觀和微觀質量,而是相姿困互影響的。為了說明激光功率P、光斑直徑D和熔覆速度V三者的綜合作用,提出了比能量Es的概念,即:
Es=P/(DV)
即單位面積的輻照能量,可將激光功率密度和熔覆速度等因素綜合在一起考慮。
比能慧陵量減小有利於降低稀釋率,同時與熔覆層厚度也有一定的關系。在激光功率一定的條件下,熔覆層稀釋率隨光斑直徑增大而減小,當熔覆速度和光斑直徑一定時,熔覆層稀釋率隨激光束功率增大而增大。另外,隨著熔覆速度的增加,基體的融化深度下降,基體材料對熔覆層的稀釋率下降。
在多道激光熔覆中,搭接率是影前冊戚響熔覆層表面粗糙度的主要因素,搭接率提高,熔覆層表面粗糙度降低,但搭接部分的均勻性很難得到保證。熔覆道之間相互搭接區域的深度與熔覆道正中的深度有所不同,從而影響了整個熔覆層的均勻性。而且多道搭接熔覆的殘余拉應力會疊加,使局部總應力值增大,增大了熔覆層裂紋的敏感性。預熱和回火能降低熔覆層的裂紋傾向。
4.預置式和送粉式
『拾』 激光熔覆技術有什麼特點,如何應用才更好
激光熔覆技術是用不同的填料在基體表面上放置塗層材料,之後用激光輻射和基體表面薄層一起熔化,經凝固後變成低稀釋度的基體材料結合的表面塗層,結合方式為冶金結合。可以有效改善基體表面耐磨,耐腐蝕和熱,抗氧化和電器特性的功能。是一種非常好的工藝方法,有很多的好處比如節約成本和貴重稀有金屬材料,同時是一種經濟效益非常好的新技術,應用在礦山和電力設備都非常的好。
一般而言,熔覆道的形狀和表面平整度,裂紋及氣孔等是評價激光熔覆技術的重要因素,還有是否形成了好的組織和符合要求的性能也是評價的重要標准,使用壽命也是其中一個參考價值。改善激光熔覆技術需要把重點放在熔覆設備的開發和研製上和設計好的合金成分等。
雖然激光改碧熔覆技術有很大的用途,但它仍然有很多需要面臨和解決氏舉的問題,比如激光熔覆技術還沒有形成產業化,其中一個重要的原因就是熔覆層質量具備不穩定性和需要進行光熔覆過程的自動化控制實現。同時激光熔覆層容易開裂,太過於敏感。