1. 顧客為什麼會買一些垃圾自動分類的裝置
顧客買垃圾這種分類的裝置應該是看最近垃圾處理要求比較高,買這個垃圾自動分類後比較方便吧
望採納,謝謝
2. 仿生學的資料緊急!!!緊急!!!
仿生學
蒼蠅,是細菌的傳播者,誰都討厭它。可是蒼蠅的楫翅(又叫平衡棒)是「天然導航儀」,人們模仿它製成了「振動陀螺儀」。這種儀器目前已經應用在火箭和高速飛機上,實現了自動駕駛。蒼蠅的眼睛是一種「復眼」,由30O0多隻小眼組成,人們模仿它製成了「蠅眼透鏡」。「蠅眼透鏡」是用幾百或者幾千塊小透鏡整齊排列組合而成的,用它作鏡頭可以製成「蠅眼照相機」,一次就能照出千百張相同的相片。這種照相機已經用於印刷製版和大量復制電子計算機的微小電路,大大提高了工效和質量。「蠅眼透鏡」是一種新型光學元件,它的用途很多。
自然界形形色色的生物,都有著怎樣的奇異本領?它們的種種本領,給了人類哪些啟發?模仿這些本領,人類又可以造出什麼樣的機器?這里要介紹的一門新興科學——仿生學。
鳥兒展翅可在空中自由飛翔。據《韓非子》記載魯班用竹木作鳥「成而飛之,三日不下」。然而人們更希望仿製鳥兒的雙翅使自己也飛翔在空中。早在四百多年前,義大利人利奧那多·達·芬奇和他的助手對鳥類進行仔細的解剖,研究鳥的身體結構並認真觀察鳥類的飛行。設計和製造了一架撲翼機,這是世界上第一架人造飛行器。
以上這些模仿生物構造和功能的發明與嘗試,可以認為是人類仿生的先驅,也是仿生學的萌芽。
【發人深省的對比】
人類仿生的行為雖然早有雛型,但是在20世紀40年代以前,人們並沒有自覺地把生物作為設計思想和創造發明的源泉。科學家對於生物學的研究也只停留在描述生物體精巧的結構和完美的功能上。而工程技術人員更多的依賴於他們卓越的智慧,辛辛苦苦的努力,進行著人工發明。他們很少有意識的向生物界學習。但是,以下幾個事實可以說明:人們在技術上遇到的某些難題,生物界早在千百萬年前就曾出現,而且在進化過程中就已解決了,然而人類卻沒有從生物界得到應有的啟示。
首先是對生物原型的研究。根據生產實際提出的具體課題,將研究所得的生物資料予以簡化,吸收對技術要求有益的內容,取消與生產技術要求無關的因素,得到一個生物模型;第二階段是將生物模型提供的資料進行數學分析,並使其內在的聯系抽象化,用數學的語言把生物模型「翻譯」成具有一定意義的數學模型;最後數學模型製造出可在工程技術上進行實驗的實物模型。當然在生物的模擬過程中,不僅僅是簡單的仿生,更重要的是在仿生中有創新。經過實踐——認識——再實踐的多次重復,才能使模擬出來的東西越來越符合生產的需要。這樣模擬的結果,使最終建成的機器設備將與生物原型不同,在某些方面甚上超過生物原型的能力。例如今天的飛機在許多方面都超過了鳥類的飛行能力,電子計算機在復雜的計算中要比人的計算能力迅速而可靠。
仿生學的基本研究方法使它在生物學的研究中表現出一個突出的特點,就是整體性。從仿生學的整體來看,它把生物看成是一個能與內外環境進行聯系和控制的復雜系統。它的任務就是研究復雜系統內各部分之間的相互關系以及整個系統的行為和狀態。生物最基本的特徵就是生物的自我更新和自我復制,它們與外界的聯系是密不可分的。生物從環境中獲得物質和能量,才能進行生長和繁殖;生物從環境中接受信息,不斷地調整和綜合,才能適應和進化。長期的進化過程使生物獲得結構和功能的統一,局部與整體的協調與統一。仿生學要研究生物體與外界刺激(輸入信息)之間的定量關系,即著重於數量關系的統一性,才能進行模擬。為達到此目的,採用任何局部的方法都不能獲得滿意的效果。因此,仿生學的研究方法必須著重於整體。
仿生學的研究內容是極其豐富多彩的,因為生物界本身就包含著成千上萬的種類,它們具有各種優異的結構和功能供各行業來研究。自從仿生學問世以來的二十幾年內,仿生學的研究得到迅速的發展,且取得了很大的成果。就其研究范圍可包括電子仿生、機械仿生、建築仿生、化學仿生等。隨著現代工程技術的發展,學科分支繁多,在仿生學中相應地開展對口的技術仿生研究。例如:航海部門對水生動物運動的流體力學的研究;航空部門對鳥類、昆蟲飛行的模擬、動物的定位與導航;工程建築對生物力學的模擬;無線電技術部門對於人神經細胞、感覺器宮和神經網路的模擬;計算機技術對於腦的模擬似及人工智慧的研究等。在第一屆仿生學會議上發表的比較典型的課題有:「人造神經元有什麼特點」、「設計生物計算機中的問題」、「用機器識別圖像」、「學習的機器」等。從中可以看出以電子仿生的研究比較廣泛。仿生學的研究課題多集中在以下三種生物原型的研究,即動物的感覺器官、神經元、神經系統的整體作用。以後在機械仿生和化學仿生方面的研究也隨之開展起來,近些年又出現新的分支,如人體的仿生學、分子仿生學和宇宙仿生學等。
總之,仿生學的研究內容,從模擬微觀世界的分子仿生學到宏觀的宇宙仿生學包括了更為廣泛的內容。而當今的科學技術正是處於一個各種自然科學高度綜合和互相交叉、滲透的新時代,仿生學通過模擬的方法把對生命的研究和實踐結合起來,同時對生物學的發展也起了極大的促進作用。在其它學科的滲透和影響下,使生物科學的研究在方法上發生了根本的轉變;在內容上也從描述和分析的水平向著精確和定量的方向深化。生物科學的發展又是以仿生學為渠道向各種自然科學和技術科學輸送寶貴的資料和豐富的營養,加速科學的發展。閃此,仿生學的科研顯示出無窮的生命力,它的發展和成就將為促進世界整體科學技術的發展做出巨大的貢獻。
【仿生學的研究范圍】
仿生學的研究范圍主要包括:力學仿生、分子仿生、能量仿生、信息與控制仿生等。
◇力學仿生,是研究並模仿生物體大體結構與精細結構的靜力學性質,以及生物體各組成部分在體內相對運動和生物體在環境中運動的動力學性質。例如,建築上模仿貝殼修造的大跨度薄殼建築,模仿股骨結構建造的立柱,既消除應力特別集中的區域,又可用最少的建材承受最大的載荷。軍事上模仿海豚皮膚的溝槽結構,把人工海豚皮包敷在船艦外殼上,可減少航行揣流,提高航速;
◇分子仿生,是研究與模擬生物體中酶的催化作用、生物膜的選擇性、通透性、生物大分子或其類似物的分析和合成等。例如,在搞清森林害蟲舞毒蛾性引誘激素的化學結構後,合成了一種類似有機化合物,在田間捕蟲籠中用千萬分之一微克,便可誘殺雄蟲;
◇能量仿生,是研究與模仿生物電器官生物發光、肌肉直接把化學能轉換成機械能等生物體中的能量轉換過程;
◇信息與控制仿生,是研究與模擬感覺器官、神經元與神經網路、以及高級中樞的智能活動等方面生物體中的信息處理過程。例如,根據象鼻蟲視動反應製成的「自相關測速儀」可測定飛機著陸速度。根據鱟復眼視網膜側抑制網路的工作原理,研製成功可增強圖像輪廓、提高反差、從而有助於模糊目標檢測的—些裝置。已建立的神經元模型達100種以上,並在此基礎上構造出新型計算機。
模仿人類學習過程,製造出一種稱為「感知機」的機器,它可以通過訓練,改變元件之間聯系的權重來進行學習,從而能實現模式識別。此外,它還研究與模擬體內穩態,運動控制、動物的定向與導航等生物系統中的控制機制,以及人-機系統的仿生學方面。
某些文獻中,把分子仿生與能量仿生的部分內容稱為化學仿生,而把信息和控制仿生的部分內容稱為神經仿生。
仿生學的范圍很廣,信息與控制仿生是一個主要領域。一方面由於自動化向智能控制發展的需要,另一方面是由於生物科學已發展到這樣一個階段,使研究大腦已成為對神經科學最大的挑戰。人工智慧和智能機器人研究的仿生學方面——生物模式識別的研究,大腦學習記憶和思維過程的研究與模擬,生物體中控制的可靠性和協調問題等——是仿生學研究的主攻方面。
控制與信息仿生和生物控制論關系密切。兩者都研究生物系統中的控制和信息過程,都運用生物系統的模型。但前者的目的主要是構造實用人造硬體系統;而生物控制論則從控制論的一般原理,從技術科學的理論出發,為生物行為尋求解釋。
最廣泛地運用類比、模擬和模型方法是仿生學研究方法的突出特點。其目的不在於直接復制每一個細節,而是要理解生物系統的工作原理,以實現特定功能為中心目的。—般認為,在仿生學研究中存在下列三個相關的方面:生物原型、數學模型和硬體模型。前者是基礎,後者是目的,而數學模型則是兩者之間必不可少的橋梁。
由於生物系統的復雜性,搞清某種生物系統的機制需要相當長的研究周期,而且解決實際問題需要多學科長時間的密切協作,這是限制仿生學發展速度的主要原因。
【仿生學的現象】
蒼蠅與宇宙飛船
令人討厭的蒼蠅,與宏偉的航天事業似乎風馬牛不相及,但仿生學卻把它們緊密地聯系起來了。
蒼蠅是聲名狼藉的「逐臭之夫」,凡是腥臭污穢的地方,都有它們的蹤跡。蒼蠅的嗅覺特別靈敏,遠在幾千米外的氣味也能嗅到。但是蒼蠅並沒有「鼻子」,它靠什麼來充當嗅覺的呢? 原來,蒼蠅的「鼻子」——嗅覺感受器分布在頭部的一對觸角上。
每個「鼻子」只有一個「鼻孔」與外界相通,內含上百個嗅覺神經細胞。若有氣味進入「鼻孔」,這些神經立即把氣味刺激轉變成神經電脈沖,送往大腦。大腦根據不同氣味物質所產生的神經電脈沖的不同,就可區別出不同氣味的物質。因此,蒼蠅的觸角像是一台靈敏的氣體分析儀。
仿生學家由此得到啟發,根據蒼蠅嗅覺器的結構和功能,仿製成功一種十分奇特的小型氣體分析儀。這種儀器的「探頭」不是金屬,而是活的蒼蠅。就是把非常纖細的微電極插到蒼蠅的嗅覺神經上,將引導出來的神經電信號經電子線路放大後,送給分析器;分析器一經發現氣味物質的信號,便能發出警報。這種儀器已經被安裝在宇宙飛船的座艙里,用來檢測艙內氣體的成分。
這種小型氣體分析儀,也可測量潛水艇和礦井裡的有害氣體。利用這種原理,還可用來改進計算機的輸入裝置和有關氣體色層分析儀的結構原理中。
從螢火蟲到人工冷光
自從人類發明了電燈,生活變得方便、豐富多了。但電燈只能將電能的很少一部分轉變成可見光,其餘大部分都以熱能的形式浪費掉了,而且電燈的熱射線有害於人眼。那麼,有沒有隻發光不發熱的光源呢? 人類又把目光投向了大自然。
在自然界中,有許多生物都能發光,如細菌、真菌、蠕蟲、軟體動物、甲殼動物、昆蟲和魚類等,而且這些動物發出的光都不產生熱,所以又被稱為「冷光」。
在眾多的發光動物中,螢火蟲是其中的一類。螢火蟲約有1 500種,它們發出的冷光的顏色有黃綠色、橙色,光的亮度也各不相同。螢火蟲發出冷光不僅具有很高的發光效率,而且發出的冷光一般都很柔和,很適合人類的眼睛,光的強度也比較高。因此,生物光是一種人類理想的光。
科學家研究發現,螢火蟲的發光器位於腹部。這個發光器由發光層、透明層和反射層三部分組成。發光層擁有幾千個發光細胞,它們都含有熒光素和熒光酶兩種物質。在熒光酶的作用下,熒光素在細胞內水分的參與下,與氧化合便發出熒光。螢火蟲的發光,實質上是把化學能轉變成光能的過程。
早在40年代,人們根據對螢火蟲的研究,創造了日光燈,使人類的照明光源發生了很大變化。近年來,科學家先是從螢火蟲的發光器中分離出了純熒光素,後來又分離出了熒光酶,接著,又用化學方法人工合成了熒光素。由熒光素、熒光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充滿爆炸性瓦斯的礦井中當閃光燈。由於這種光沒有電源,不會產生磁場,因而可以在生物光源的照明下,做清除磁性水雷等工作。
現在,人們已能用摻和某些化學物質的方法得到類似生物光的冷光,作為安全照明用。
電魚與伏特電池
自然界中有許多生物都能產生電,僅僅是魚類就有500餘種 。人們將這些能放電的魚,統稱為「電魚」。
各種電魚放電的本領各不相同。放電能力最強的是電鰩、電鯰和電鰻。中等大小的電鰩能產生70伏左右的電壓,而非洲電鰩能產生的電壓高達220伏;非洲電鯰能產生350伏的電壓;電鰻能產生500伏的電壓,有一種南美洲電鰻竟能產生高達880伏的電壓,稱得上電擊冠軍,據說它能擊斃像馬那樣的大動物。
電魚放電的奧秘究竟在哪裡?經過對電魚的解剖研究, 終於發現在電魚體內有一種奇特的發電器官。這些發電器是由許多叫電板或電盤的半透明的盤形細胞構成的。由於電魚的種類不同,所以發電器的形狀、位置、電板數都不一樣。電鰻的發電器呈棱形,位於尾部脊椎兩側的肌肉中;電鰩的發電器形似扁平的腎臟,排列在身體中線兩側,共有200萬塊電板;電鯰的發電器起源於某種腺體,位於皮膚與肌肉之間,約有500萬塊電板。單個電板產生的電壓很微弱,但由於電板很多,產生的電壓就很大了。
電魚這種非凡的本領,引起了人們極大的興趣。19世紀初,義大利物理學家伏特,以電魚發電器官為模型,設計出世界上最早的伏打電池。因為這種電池是根據電魚的天然發電器設計的,所以把它叫做「人造電器官」。對電魚的研究,還給人們這樣的啟示:如果能成功地模仿電魚的發電器官,那麼,船舶和潛水艇等的動力問題便能得到很好的解決。
水母的順風耳
「燕子低飛行將雨,蟬鳴雨中天放晴。」生物的行為與天氣的變化有一定關系。沿海漁民都知道,生活在沿岸的魚和水母成批地游向大海,就預示著風暴即將來臨。
水母,又叫海蜇,是一種古老的腔腸動物,早在5億年前,它就漂浮在海洋里了。這種低等動物有預測風暴的本能,每當風暴來臨前,它就游向大海避難去了。
原來,在藍色的海洋上,由空氣和波浪摩擦而產生的次聲波 (頻率為每秒8—13次),總是風暴來臨的前奏曲。這種次聲波人耳無法聽到,小小的水母卻很敏感。仿生學家發現,水母的耳朵的共振腔里長著一個細柄,柄上有個小球,球內有塊小小的聽石,當風暴前的次聲波沖擊水母耳中的聽石時,聽石就剌激球壁上的神經感受器,於是水母就聽到了正在來臨的風暴的隆隆聲。
仿生學家仿照水母耳朵的結構和功能,設計了水母耳風暴預測儀,相當精確地模擬了水母感受次聲波的器官。把這種儀器安裝在艦船的前甲板上,當接受到風暴的次聲波時,可令旋轉360°的喇叭自行停止旋轉,它所指的方向,就是風暴前進的方向;指示器上的讀數即可告知風暴的強度。這種預測儀能提前15小時對風暴作出預報,對航海和漁業的安全都有重要意義。
開放分類:
生物、自然科學、自然、仿生學、學科
3. 自動分揀系統的系統組成
1.自動分揀系統一般由控制裝置、分類裝置、輸送裝置及分揀道口組成。 控制裝置的作用是識別、接收和處理分揀信號,根據分揀信號的要求指示分類裝置、按商品品種、按商品送達地點或按貨主的類別對商品進行自動分類。這些分揀需求可以通過不同方式,如可通過條形碼掃描、色碼掃描、鍵盤輸入、重量檢測、語音識別、高度檢測及形狀識別等方式,輸入到分揀控制系統中去,根據對這些分揀信號判斷,來決定某一種商品該進入哪一個分揀道口。
2.分揀道口是已分揀商品脫離主輸送機(或主傳送帶)進入集貨區域的通道,一般由鋼帶、皮帶、滾筒等組成滑道,使商品從主輸送裝置滑向集貨站台,在那裡由工作人員將該道口的所有商品集中後或是入庫儲存,或是組配裝車並進行配送作業。
3.分類裝置的作用是根據控制裝置發出的分揀指示,當具有相同分揀信號的商品經過該裝置時,該裝置動作,使改變在輸送裝置上的運行方向進入其它輸送機或進入分揀道口。分類裝置的種類很多,一般有推出式、浮出式、傾斜式和分支式幾種,不同的裝置對分揀貨物的包裝材料、包裝重量、包裝物底面的平滑程度等有不完全相同的要求。
4.輸送裝置的主要組成部分是傳送帶或輸送機,其主要作用是使待分揀商品貫通過控制裝置、分類裝置,並輸送裝置的兩側,一般要連接若干分揀道口,使分好類的商品滑下主輸送機(或主傳送帶)以便進行後續作業。
4. 一群顏色小球通過小棍網格下滑能自動按顏色分類
摘要 你好,很高興為你解答哦
5. 自動裝置有哪些類型,它們的作用是什麼
電網中主要的安全自動裝置種類和作用?
(1)低頻、低壓解列裝置:地區功率不平衡且缺額較大時,應考慮在適當地點安裝低頻低壓解列裝置,以保證該地區與系統解列後,不因頻率或電壓崩潰造成全停事故,同時也能保證重要用戶供電。
(2)振盪(失步)解列裝置:經過穩定計算,在可能失去穩定的聯絡線上安裝振盪解列裝置,一旦穩定破壞,該裝置自動跳開聯絡線,將失去穩定的系統與主系統解列,以平息振盪。
(3)切負荷裝置:為了解決與系統聯系薄弱地區的正常受電問題,在主要變電站安裝切負荷裝置,當受電地區與主系統失去聯系時,該裝置動作切除部分負荷,以保證該區域發供電的平衡,也可以保證當一回聯絡線掉閘時,其它聯絡線不過負荷。
(4)自動低頻、低壓減負荷裝置:是電力系統重要的安全自動裝置之一,它在電力系統發生事故出現功率缺額使電網頻率、電壓急劇下降時,自動切除部分負荷,防止系統頻率、電壓崩潰,使系統恢復正常,保證電網的安全穩定運行和對重要用戶的連續供電。
(5)大小電流聯切裝置:主要控制聯絡線正向反向過負荷而設置。
(6)切機裝置:其作用是保證故障載流元件不嚴重過負荷;使解列後的電廠或局部地區電網頻率不會過高,功率基本平衡,以防止鍋爐滅火擴大事故;可提高穩定極限。
6. 小學生設計出智能分類垃圾箱,這種垃圾箱都有何功能
小學生設計出來智能垃圾箱,聽起來是不是很神奇?沒錯,這就是江蘇的幾位小學生用了一個星期的時間製作出來的作品。這個作品目前還在初步階段,能夠使用的功能不多,經過記者采訪得知,這個垃圾桶現在的功能是,可以通過聲控裝置,對著垃圾桶說垃圾的名字,然後垃圾對應的垃圾桶就能打開。
因此,這雖然是一件小事,但卻在激發人們環保意識的同時,鼓勵了小朋友們的創新思維。現在的小學生已經和過去的小學生有很大的差異了,他們不僅在教學質量上得到了提高,在課外實踐等方面也得到了進步。對於我們那個年代的孩子來說,有的下課了就只會去操場跳皮筋,很少會動腦筋製作一些古靈精怪的小玩意。但是現在的小孩子,就能夠做到這一點,可謂是教育的成功了。
7. 日常生活中的自動控制系統有哪些
日常生活中的自動控制系統有:聲控燈、電冰箱、空調。
1、聲控燈:
聲控燈是一種聲控電子照明裝置,由音頻放大器、選頻電路、延時開啟電路和可控硅電路組成。它提供了一種操作簡便、靈活、抗干擾能力強,控制靈敏的聲控燈,並有防誤觸發而具有的自動延時關閉功能,部分設有手動開關,使其應用更加方便。
2、電冰箱:
風冷冰箱有自動除霜裝置,使用方便,冷藏室降溫速度快,箱內溫度均勻,食品冷藏質量好,但冷凍室凍卻速度比直冷冰箱慢,結構復雜,耗電量大,價位較高。
3、空調:
空調能夠在一定的范圍內連續調節壓縮機的頻率或轉速,即可改變製冷劑的流量,而發揮最能與環境狀態相匹配的能力而自動調節輸出,變頻空調器採用數字信號處理和模擬控制與人工智慧控制相結合。
(7)小球自動分類的裝置擴展閱讀:
自動控制系統已被廣泛應用於人類社會的各個領域。
在工業方面,對於冶金、化工、機械製造等生產過程中遇到的各種物理量,包括溫度、流量、壓力、厚度、張力、速度、位置、頻率、相位等,都有相應的控制系統。
在此基礎上通過採用數字計算機還建立起了控制性能更好和自動化程度更高的數字控制系統,以及具有控制與管理雙重功能的過程式控制制系統。在農業方面的應用包括水位自動控制系統、農業機械的自動操作系統等。
8. 自動分揀系統由( )三種裝置構成
設定裝置、識別裝置和自動分類裝置
9. 顯微鏡的分類以及用途
下面是為你找到的資料,很長,希望對你有所幫助。
xianweijing
顯微鏡
microscope
將微小物體或物體的微細部分高倍放大,以便觀察的儀器或設備。它廣泛應用於工農業生產及科學研究。生物學和醫學工作者在業務中也經常使用顯微鏡。大致分為光學顯微鏡和電子顯微鏡。
光學顯微鏡 即以可見光為光源的顯微鏡。普通的光學顯微鏡在結構上可分為光學系統和機械裝置兩個部分。光學系統主要包括目鏡、物鏡、聚光器、光闌及光源等部分。機械裝置主要包括鏡筒、鏡柱、載物台、鏡座、粗細調節螺旋等部分(圖1 [光學顯微鏡])。其基本光學原理如圖2[光學顯微鏡成像原理模式圖],圖中左邊小的凸透鏡代表短焦距的一組透鏡,稱物鏡。右邊大的凸透鏡代表長焦距的一組透鏡,稱目鏡。被觀察的物體(AB)放在物鏡焦點(f)稍外的地方。物體的光線通過物鏡後在目鏡焦點(f)稍內方形成一個倒立的放大實像(BA)。觀察者的眼睛通過目鏡將該實像(BA)進一步放大為一個倒立的虛像(BA)。
目鏡位於顯微鏡筒的上方,一般由兩個凸透鏡構成。它除了進一步擴大物鏡所形成的實像之外,也限制了眼睛所觀察的視野。按放大率分,常用目鏡有5倍、10倍和15倍三種。
物鏡一般位於顯微鏡筒的下方,接近所觀察的物體。由8~10片透鏡組成。其作用一是放大(給物體造成一個放大的實像),二是保證像的質量,三是提高解析度。常用物鏡可按放大率分為低倍 (4×)、中倍(10×或20×)、高倍 (40×)和油浸物鏡(100×)。多個物鏡共同鑲在換鏡轉盤上,可以按需要轉動轉盤選擇不同倍數的物鏡。
顯微鏡的放大倍數為目鏡倍數乘物鏡倍數,如目鏡為10倍,物鏡為40倍,則放大倍數為40×10倍(放大400倍)。優良的顯微鏡可放大2000倍,可分辨相距1×10cm的兩點。
當白光通過凸透鏡時,波長較短的光(藍紫色),其折射度大於長波長的光(紅橙色),因此,成像時在像周出現各色光譜圍繞,並且有一圈藍色或紅色的輝光,這種顏色上的缺陷稱為色差。由於光線進入(和離開)透鏡鏡面各部分的角度不同,從透鏡四周透過的光線與從透鏡中心透過的光線相比,其折射角度較大。因此,成像時在像周出現模糊而歪曲的影像。這種成像面彎曲的缺陷稱為球面差。一系列形狀、結構和距離不同的凸和凹透鏡組互相配合,便能最大限度地糾正色差和球面差,形成一個明亮、清晰而准確的影像。這就是目鏡或物鏡分別由一組透鏡構成的緣故。這種透鏡稱為平場消色差透鏡。
光線從一種介質(如空氣)投射到另一種較為緻密的介質(如玻璃)中時會彎向「法線」(與介質交界面垂直的一條線),如圖3 [光線通過物鏡時的情況]中的BOA線。光線由緻密介質(玻璃)進到不緻密介質(空氣)中時會偏離「法線」,如AOB線(圖3a)當光線穿過聚光鏡玻璃(折射率為1.51)進入空氣時同樣會偏離,向外折射,因此進入物鏡的光量減少很多,像的分辨力也降低。使用100倍物鏡時,如果在物鏡和蓋玻片之間充以油液(折射率同樣為1.51)以隔絕空氣,則光線幾乎可以不折射地進入物鏡,這就增加了像的亮度和解析度。這種物鏡稱為油浸物鏡(圖3b)。
聚光器位於顯微鏡台的下方,可會聚來目光源的光線,將光量集中於標本,使標本受到光強適度的均勻照射。聚光器的下端裝有孔徑光闌(光圈)以控制光束的粗細。
普通光學顯微鏡的照明光源位於聚光器的下方,為特製的照度均勻的強光燈泡,並且配有可變電阻,可以改變光線的強度。
由於普通光學顯微鏡的光源光線自鏡體下方向上透射,通過聚光鏡、物鏡,達到目鏡,因此在醫學及生物學研究中必須將被觀察的樣品切成能透過光線的、厚約6m 的薄片,並且要進行染色以顯示不同的組織和細胞等細微結構。整個加工過程稱常規組織製片技術,包括選取適當的組織材料經甲醛(福爾馬林)液固定,逐級酒精脫水,石蠟包埋,用切片機將組織切成薄片裱在玻璃片上,再經蘇木素―伊紅染料著色,最後將組織玻片封固在光學樹脂膠內。制好的組織玻片可長期保存。
顯微鏡的目鏡和物鏡安裝在鏡筒的兩端,它們的距離是固定的。將組織玻片放在載物台上,旋轉粗調螺旋使載物台接近物鏡。組織切片進入物鏡第一焦平面,目鏡內即可見標本內的組織影像。然後用細調螺旋使目鏡內的影像清晰即可進行觀察。改換放大倍數時就要調換目鏡或物鏡。
醫學和生物學常使用的光學顯微鏡 有下列12種:
暗視野顯微鏡 在普通光學顯微鏡台下配一個暗視野聚光器(圖4),來自下面光源的光線被拋物面聚光器反射,形成了橫過顯微鏡視野而不進入物鏡的強烈光束。因此視野是暗的,視野中直徑大於 0.3m的微粒將光線散射,其大小和形態可清楚看到。甚至可看到普通明視野顯微鏡中看不見的幾個毫微米的微粒。因此在某些細菌、細胞等活體檢查中常常使用。
實體顯微鏡 由雙筒目鏡和物鏡構成。放大率 7~80倍。利用側上方或下方顯微鏡燈照明。在目鏡內形成一個直立的放大實像,可以觀察未經加工的物體的立體形狀、顏色及表面微細結構,並能進行顯微解剖操作,也可以觀察生物機體的組織切片。
熒光顯微鏡 在短波長光波(紫外光或紫藍色光,波長250~400nm)照射下,某些物質吸收光能,受到激發並釋放出一種能量降級的較長的光波(藍、綠、黃或紅光,波長400~800nm),這種光稱熒光。某種物質在短光波照射下即可發生熒光,如組織內大部分脂質和蛋白質經照射均可發出淡藍色熒光,稱為自發性熒光。但大部分物質需要用熒光染料(如吖啶橙、異硫氰酸熒光素等)染色後,在短光波照射下才能發出熒光。熒光顯微鏡的光源為高壓汞燈,發出的紫外光源經過激發濾光片(此濾光片可通過對標本中熒光物質合宜的激發光)過濾後射向普勒姆氏分色鏡分色鏡將激發光向下反射,通過物鏡投射向經熒光染料染色的標本。染料被激發並釋放出熒光,通過物鏡,穿過分色鏡和目鏡即可進行觀察。目鏡下方安置有屏障濾片(只允許特定波長的熒光通過)以保護眼眼及降低視野暗度(圖4 [熒光顯微鏡光學原理])。熒光顯微鏡的特點是靈敏度高,在暗視野中低濃度熒光染色即可顯示出標本內樣品的存在,其對比約為可見光顯微鏡的 100倍。30年代熒光染色即已用於細菌、黴菌等微生物及細胞、纖維等的形態觀察和研究。如用抗酸菌熒光染色法可幫助在痰中找到結核桿菌。40年代創造了熒光染料標記蛋白質的技術,這種技術現已廣泛應用於免疫熒光抗體染色的常規技術中,可檢查和定位病毒、細菌、黴菌、原蟲、寄生蟲及動物和人的組織抗原與抗體,可用以探討病因及發病機理,如腎小球疾病的分類及診斷,乳頭瘤病毒與子宮頸癌的關系等。在醫學實驗研究及疾病診斷方面的用途日益廣泛。
偏光顯微鏡 從光源發出的光線通過空氣和普通玻璃時,在與光線垂直的平面內的各個方向以同一振幅進行振動並迅速向前方傳遞,這是光的波動性原理。空氣與普通玻璃為各向同性體,又稱單折射體。如果該光源的光通過一種各向異性體(又稱雙折射體)時,會將一束光線分為各只有一個振動平面的,而且振動方向互相垂直的兩束光線。這兩束光線的振動方向、速度、折光率和波長都不相同。這樣只有一個振動平面的光線稱偏振光。偏光顯微鏡即利用這一現象而設計。偏光顯微鏡內,在物鏡與目鏡間插入一個檢偏鏡片,光源與聚光器間鑲有起偏鏡片,圓形載物台可以作360°旋轉(圖5[偏光顯微鏡光學原理])。起偏與檢偏鏡片處於正交檢偏位時,視野完全變黑。將被檢物體放在顯微鏡台上。若被檢物為單折射體,則旋轉鏡台,視野始終黑暗。若旋轉鏡台一周,視野內被檢物四明四暗,則說明被檢物是雙折射體。許多結晶物質(如痛風結節中的尿酸鹽結晶、尿結石、膽結石等),人體組織內的彈力纖維、膠原纖維、染色體和澱粉樣原纖維等都是雙折射體,可借偏振光顯微鏡術檢驗,進行定性和定量分析。
位相顯微鏡 又稱相差顯微鏡或相襯顯微鏡。普通光學顯微鏡之所以看不見未染色的組織、細胞和細菌、病毒等活機體的圖像,是因為通過樣品的光線變化差別(反差)很小。標本染色後改變了振幅(亮度)和波長(顏色),影響了反差而獲得圖像。但是染色會引起樣品變形,也可使有生命的機體死亡。要觀察不染色的新鮮組織、細胞或其他微小活體必須使用位相顯微鏡。位相顯微鏡的原理是兩個光波因位相差而互相干涉,出現光波強弱和反差的改變而成可見影像。點光源發出的光線可以表現為正弦波圖形(圖6a[位相顯微鏡])。兩個波峰間的距離為波長,波的振幅表示光的亮度(振幅大、亮度高)。設想同一光源發出的兩條光波,分別同時通過空氣及某種透明介質。在通過一定厚度的某種透明介質時,光波的速度就會降低,但是光的亮度未變。光波在通過該透明介質後比一直在空氣中前進的另一條光波遲滯了波長,因而兩條光波出現了位相的變化(位相差)。但人眼不能分辨這兩條平行光線的位相差。如果這兩條光波射到光屏的同一點上,而且一條光波比另一條光波遲滯了半個波長,即兩條光波因位相相反而互相干涉抵消則光線消失,或者相對振幅相互影響而光線減弱。如果一條光波雖然遲滯了一個波長,但兩條光波位相相同,則因波的疊加而光線增強。
位相顯微鏡的基本結構與普通光學顯微鏡相同。不同之處在於:①物鏡鏡頭上面,在物鏡第二焦平面裝有一塊圓盤狀的位相板(圖6b[位相顯微鏡])。②聚光器下面,在聚光器第一焦平面裝有環形光束,光束上刻有狹窄的縫隙可通過環形強光(圖6c[位相顯微鏡])。如圖6d所示,環形光束 A點發出的光線經過聚光器後成為平行光線。光線通過載物台上的樣品時,因樣品內各個質點(如b點)的折射率不同而受到干涉,發生衍射,即分為未偏向波(實線)和偏向波(虛線)。未偏向波通過物鏡聚焦於位相板 A 點上成像,然後通過位相板,均勻地分布在標本像平面上成為背景。偏向波通過物鏡後從位相板 A點周圍通過位相板同樣聚焦在像平面的B上。換句話說,未偏向波和偏向波是分別通過位相板的不同部位。在位相板上不同的區域塗有不同的塗層,可以分別改變未偏向波或偏向波的速度和亮度,由此兩種光波出現了位相差,差了半個波長或一個波長,它們在像平面的合波就出現明暗對比,樣品內的各個細節也就能看得見。
總之,位相顯微鏡是利用樣品中質點折射率的不同或質點厚度的不等,產生光線的相位差,使新鮮標本不必染色就可以看到,而且能夠觀察到活細胞內線粒體及染色體等精細結構,還可以應用於黴菌、細菌、病毒等更微小活體的研究,進行標本形態、數量、活動及分裂、繁殖等生物學行為觀察,並可進行量度與比較。
倒置式顯微鏡 普通顯微鏡鏡的物鏡頭方向向下接近標本。倒置式顯微鏡的物鏡鏡頭則處於垂直向上的位置,因此目鏡和鏡筒的縱軸與物鏡的縱軸呈45度角。載物檯面積較大,在物鏡上方,載物台上方有一個長焦距聚光器和照明光源。物鏡和聚光器可裝配位相顯微鏡的附件。放大率16~80倍。組織培養瓶和培養皿可以直接放在載物台上,進行不染色新鮮標本及活體、細胞的形態、數量和動態觀察。可進行多孔微量生物化學及免疫反應平板的結果觀察。倒置式顯微鏡可換用普通亮視野光學鏡頭;可裝配偏振光、微分干涉差、熒光附件進行觀察。
微分干涉差顯微鏡(DIC) 又稱干擾或干涉顯微鏡。能看到和測定微小的位相變化,與位相顯微鏡相似,使無色透明的標本具有明暗和顏色的變化,從而增強反差。在普通光學顯微鏡的基本結構上安裝偏光和干涉部件,以及360°旋轉載物台它又利用偏振光的干涉原理。如圖7[微分干涉差顯微鏡光學原理]所示,在光源上方安置有起偏鏡片和光束分解棱鏡。從起偏鏡片出來的直線偏振光通過光束分解棱鏡後,分成互相垂直振動的兩條直線偏振光。兩條光線經聚光器折射後射向樣品。因樣品內各個質點的折射射率不同,部分光波的位相改變及因干涉而發生橫向偏移。兩條光線通過物鏡後經第二組光束分解棱鏡相合並,由檢偏鏡發生干涉。終末像的每一個點是由物體上同一點的兩個互相重疊的不同圖像構成的一種混合像,從而使肉眼得以辨識。
微分干涉差顯微鏡同樣可以觀察到在普通亮視野中看不見的無色透明物體,可以觀察細胞、細菌等活體,而且影像呈立體感,較位相顯微鏡的影像更細致、更逼真。可用它對活細胞的各個部位作更精細的研究。如果用白光照明,不同位相表現為各種顏色,轉動載物台,顏色會發生變化。單色光照明產生明暗反差,各種成分呈現不同的對比度。微分干涉差顯微鏡又可以作為一種高度精密的超微量光學天平來使用,用以估測的干物體的精確質量可以小到 1×克。當細胞中所含固體物質的濃度增加百分之一時,其折射率相應增加0.0018。細胞各相成分的折射率可以根據它與相關區域(懸浮液區)間位種的不同而估計,從而可進一步算出一個細胞中某些成分的乾燥重量。
攝影顯微鏡 現代高質量顯微鏡均可安裝顯微照相的各種附件,可以及時完整地保留科學資料。用於照相的顯微鏡要求光學系統和機件結構精密,鏡體堅固穩定。它裝配三目鏡筒,其中兩個45°角觀察用目鏡鏡筒和一個中央垂直鏡筒安裝 135照相機、曝光測量附件、照相目鏡及取景鏡頭,可以進行取景和調焦。聚光器能調節視場中心並配有孔徑光闌使視場照明均勻。鏡座有可調節視場光闌,有電壓表和電壓顯示燈。有可變電阻調節照明亮度。照明光源為6~12伏40~100瓦鹵素燈泡。80年代的自動曝光顯微照相裝置具有自動卷片,自動測光、自動控制曝光,測量和調整色溫以及倒易律失效的補償等各項功能,均用電子計算機自動控制,可以進行黑白感光片、彩色負片和彩色幻燈片的投照。
中央垂直鏡筒又可以安裝電視攝像裝置或16mm電影攝影機及控制裝置,可對活體標本進行定時定格或連續的攝影記錄。
萬能研究用攝影顯微鏡系統 集普通亮視野、暗視野、偏振光、熒光、位相、微分干涉差、顯微攝影等各項功能於一個系統中。還有電子計算機控制的低倍攝影自動聚焦、自動轉換物鏡、聚光器自動匹配、自動調整光源亮度等功能。機身安裝兩個135照相機,一個4×5英寸大版照相機。可另外安裝電視攝像和16mm電影攝影裝置,同樣具有自動卷片、自動測光、自動控制曝光、測量和調節色溫、倒易體失效補償等多項功能。
電子顯微鏡 光學顯微鏡的分辨本領由於所用光波的波長而受到限制。小於光波波長的物體因衍射而不能成像。最高級的光學顯微鏡的分辨本領的限度約 200nm(2000)。為了突破這一限度,可採用電子射線來代替光波。電子微粒以高速運動時,其行為類似光波的傳播過程。運動電子的波長隨其速度而定,在增壓達50萬伏時,其波長為0.001nm(0.01),即電子射線的波長約為可見光的十萬分之一,其分辨本領的極限約為4,其放大倍數比最高級的光學顯微鏡要高很多級。以電子射線為電子光源的顯微鏡稱為電子顯微鏡。現代醫學和生物學使用的電鏡解析度為5~10,即放大率為10~20萬倍。
由於標本厚薄不同,超薄切片機切出的很薄的標本,可用透射式電子顯微鏡觀察。不能切得很薄的標本可用掃描式電鏡進行觀察。
透射式電子顯微鏡(TEM) 是最常用的電子顯微鏡,由電子槍、電磁透鏡系統、熒光屏(或照相機)、鏡筒、鏡座、變壓器、穩壓裝置、高壓電纜、真空泵系統、操縱台等部分組成電子槍相當於光學顯微鏡中的光源,供應和加速從陰極熱鎢絲發射出來的電子束。電鏡所用的電壓一般在20~30萬伏特,才足以使電子槍里的電子以高速飛出。電子通過聚光透鏡,達到標本上,因為標本很薄,高速電子可以透過,並且由於標本各部分的厚度或密度不同,通過的電子就有疏密之分。電壓需要嚴格穩定才能使成像穩定,很小的電壓改變就會引起嚴重干擾。像的亮度可以通過電子槍來控制。
電磁透鏡組相當於光鏡中的聚光器、物鏡及目鏡系統。電子束通過各個電磁透鏡的圓形磁場的中心時可被會聚而產生像。電鏡的透鏡系統由4組電磁透鏡組成,包括聚光透鏡、物鏡、中間透鏡和投射透鏡(目鏡)。可改變聚光透鏡的電流使電子束對標本聚焦並提供「照明」。物鏡靠近標本的焦點上。通過物鏡、中間鏡和投射鏡的三級放大,能在一定的距離處得到高倍的放大像,最終形成的像投射到熒光屏上。在熒光屏部位可換用黑白膠片以製取相片底板。改變電磁線圈中的電流量從而使電磁透鏡調焦,並產生不同的放大率(圖8 [透射式電子顯微鏡])。
為了盡量減少電鏡中電子與空氣分子相碰撞而產生散射的機會,鏡筒中的真空度要求很高,因此密封的鏡筒與真空泵相連。由於標本需置於真空的鏡筒內,因此不能檢查活材料。
光鏡主要利用可見光波作為光源,樣品染色後改變了光的波長(顏色)和振幅(亮度),影響了反差從而得到圖像。電鏡使用電子射線。電子束的穿透力不強,所以供電鏡檢查的標本必須切到薄至50~ 100nm厚度的切片。電鏡切片的製作步驟與光鏡切片類似,也是由固定、脫水、包埋、切片和染色等程序組成:首先從欲觀察的標本上取材,體積約1。通過戊二醛和四氧化鋨雙固定後,逐級酒精(或丙酮)脫水,環氧樹脂包埋,超薄切片機切片。在電鏡中像的形成是組織片各個部分對電子束的電子產生不同散射的結果,標本中緻密的地方(細節)散射強。可使用各種重金屬鹽染色以增加反差,常用的是醋酸鈾和枸櫞酸鉛復染。由於電子束穿不透玻璃,染好的薄膜切片放在小銅網格上作電鏡觀察。
冷凍蝕刻技術是50年代發明、後來經過改進的一種新的電鏡標本加工技術。其主要原理是把液氮內快速超低溫(-200℃)冷凍的生物標本放在真空冷凍裝置里斷裂,從而將不同部位的細胞器內部結構暴露出來,表現出高低不等的三維結構。在新形成的折斷面上噴鍍一層鉑金碳膜(復型)。將已鍍膜標本在強酸或強鹼性腐蝕溶液里消化,復型膜即漂浮、經打撈、清洗,放在小銅網上進行電鏡觀察和照相。冷凍蝕刻技術在細胞生物膜結構(如細胞膜、線粒體、內質網等)的研究上發揮了重大作用。
掃描式電子顯微鏡(SEM) 標本較厚的表面要產生一個電子光學圖像就要採用電子掃描法(圖9 [掃描電子顯微鏡結構示意圖])。掃描電鏡的電子槍和電磁透鏡的結構原理類似透射電鏡。電子槍產生的大量電子通過三組電磁透鏡的連續會聚形成一條很細的電子射線(電子探針)。這條電子射線在電鏡筒內兩對偏轉線圈的作用下,順序在標本表面掃描。由於來自鋸齒波發生器的電流同時供應電鏡鏡筒內的和顯示管的兩組偏轉線圈,使得顯示器的電子射線在熒光屏上產生同步掃描。從標本上射出的電子經探測器收集,被視頻放大器放大並控制顯示管亮度。因此在熒光屏上掃描的亮度被標本表面相應點所產生的電子數量所控制,因而在熒光屏上顯示出標本的高倍放大像。通過控制兩套偏轉線圈的電流便可控制放大率的倍數。另外安裝有一個同樣的照相用同步掃描顯示管。
掃描電鏡標本製作中,既要脫水又要基本保持其自然狀態,因此使用標本的臨界冷凍乾燥技術:將組織表面清洗干凈,經戊二醛和四氧化鋨雙重固定,逐級丙酮脫水。由於乙酸戊酯與液化Co置換十分容易,因此首先用梯度乙酸戊酯置換丙酮。然後將標本放入密閉耐壓室內,導入液態Co,使之浸沒標本。很快Co將標本內乙酸戊酯完全置換出來,將後者排出耐壓室。同時耐壓室內的液態Co與迅速蒸發的氣態Co分子之間的互變達到動態平衡。使溫度逐漸上升,液態Co蒸發加快而密度相應降低。達到Co的臨界溫度31.1℃時,氣、液二相密度相同,二相的差異完全消失,即達到相的平衡,此時表面張力為零。使溫度繼續保持在稍高於臨界溫度的條件下,緩慢排出Co氣體,當Co排盡時,標本即已乾燥。取出乾燥好的標本,經真空噴鍍一層碳合金,或放入離子鍍膜機內鍍鉑和金,以增加標本的導電能力,加強反差和增強標本的穩定性。然後即可進行掃描電鏡觀察。
掃描電鏡具有解析度高、景深長、視野廣、顯示三維立體結構、便於觀察和標本制備簡單等許多優點,在生物學及醫學上應用愈來愈多,用以觀察和研究生物標本的表現形態和內部立體結構。掃描電鏡的分辨本領已達到70的水平,已可以直接觀察脫氧核糖核酸(DNA)的分子結構。
10. 自動排屑裝置有哪幾種類型
1、鏈板式排屑器
主要用於收集和輸送各種卷狀、團狀、塊狀切屑,以及磁性排屑器不能解決的銅屑、鋁屑、不銹鋼屑、碳塊、尼龍等材料,廣泛應用於各類數控機床加工中心組合機床和柔性生產線,也可作為沖壓,冷墩機床小型零件的輸送裝置。
2、磁性輥排屑機
磁性輥式排屑機是利用磁輥的轉動,將切屑逐級在每個磁輥間傳遞,以達到輸送切屑的目的。該機是在磁性排屑器的基礎上研製的。它彌補了磁性排屑機在某些使用方面性能和結構上的不足。
3、集屑車
集屑車用於收集各類排屑器從機床傳送的各種切屑,底部裝有輪子,可將切屑送出工作場地,便於集中清理,分為乾式與濕式兩種,乾式料箱可以傾斜,將切屑倒出即可,濕式是在乾式基礎上加雙層濾網,放油閥,以便於切屑中的冷卻液與切屑分離,起到回收與環保作用。
4、刮板排屑裝置
刮板排屑裝置的輸送速度選擇范圍廣,工作效率高,有效排屑寬度多樣化,可提供充足的選用范圍,如數控機床,加工中心,磨床和自動線。
5、螺旋排屑裝置
通過減速機驅動帶有螺旋葉的旋轉軸推動物料向前(向後),集中在出料口,落入指定位置,該機結構緊湊,佔用空間小,安裝使用方便,傳動環節少,故障率極低,尤其適用於排屑空間狹小,其他排屑形式不易安裝的機床。