① 辛普森自動變速器結構特點是什麼
辛普森自動變速器結構特點是前後2個行星排的太陽輪連接為一體,稱為前後太陽輪組件;前一個行星排的行星架和後一個行星排的齒圈連接為一體,稱為前行星架和後齒圈組件。
輸出軸通常與前行星架和後齒圈組連接。經過上述的組合後,該機構成為一種具有4個獨立元件的行星齒輪機構。這4個獨立是:前齒圈,前後太陽輪組件,後行星架,前行星架和後齒圈組件。
辛普森式變速器主要運用在汽車比較多其A131L早起應用,A340EA350E皇冠3.0應用,A650E凌志LS400、SC400、GS300/400應用。
(1)辛普森式行星齒輪傳動裝置工作原理擴展閱讀
注意事項:
(1)只有排擋桿置於P、N位置時,方可起動發動機,在點火開關打開狀態下,若想移出這兩個擋位,必須先踏下制動踏板,同時按下手柄按鈕,才可將排擋桿移入其他擋位。
(2)P擋可作為駐車制動的輔助制動器,但不可替代駐車制動器。
(3)車輛被牽引時排擋桿須置於N位置,牽引時車速不可超過50Km/h,牽引距離也不能超過50Km,若需牽引更長的距離,需將驅動車輪升離地面。
(4)若自動變速器的控制單元因電氣故障而導致其進入應急狀態,此時只有L,R擋可以工作,不要認為尚有擋位可用,就不去修理,應及時查明故障並排除,否則會損壞自動變速器內的離合器。
(5)自動變速器車無法用牽引或推動起動的方法起動發動機,因為ATF油泵不工作,自動變速器無法建立起正常的工作油壓。
② 行星齒輪機構的結構/工作原理是什麼
(一)行星齒輪機構結構與工作原理
1、行星齒輪機構的基本結構
行星齒輪機構有很多類型,其中最簡單的行星齒輪機構是由1個太陽輪、1個齒圈、1個行星架和支承在行星架上的幾個行星齒輪組成的,稱為1個行星排。
行星齒輪機構中的太陽輪、齒圈及行星架有一個共同的固定軸線,行星齒輪支承在固定於行星架的行星齒輪軸上,並同時與太陽輪和齒圈嚙合。當行星齒輪機構運轉時,空套在行星架上的行星齒輪軸上的幾個行星齒輪一方面可以繞著自己的軸線旋轉,另一方面又可以隨著行星架一起繞著太陽輪回轉,就像天上行星的運動那樣,兼有自轉和公轉兩種運動狀態(將星齒輪的名稱即因此而來),在行星排中,具有固定軸線的太陽輪、齒圈和行星架稱為行星排的3個基本元件。
2、行星齒輪機構的類型
行星齒輪機構可按不同的方式進行分類
(1)按照齒輪的嚙合方式分類
按照齒輪的嚙合方式不同,行星齒輪機構可以分為外嚙合式和內嚙合式兩種。外嚙合式行星齒輪機構體積大,傳動效率低,故在汽車上已被淘汰;內嚙合式行星齒輪機構結構緊湊,傳動效率高,因而在自動變速器中被廣為使用。
(2)按照齒輪的排數分類
按照齒輪的排數不同,行星齒輪機構可以分為單排和多排兩種。多排行星齒輪機構是由幾個單排行星齒輪機構組成的。汽車自動變速器中,行星排的多少因擋位數的多少而有所不同,一般三擋位有2個行星排,四擋位(具有超速擋的)有3個行星排,通常使用的是由2個或2個單排行星的齒輪機構組成的多排行星齒輪機構。
(3)按照太陽輪和齒圈之間的行星齒輪組數分類
按照太陽輪和齒圈之間的行星齒輪組數的不同,行星齒輪機構可以分為單行星齒輪式和雙行星齒輪式兩種。
雙行星齒輪機構在太陽輪和齒圈之間有兩組互相嚙合的行星齒輪,其外面一組行星齒輪和齒圈嚙合,裡面一組行星齒輪和太陽輪嚙合。它與單行星齒輪機構在其它條件相同的情況下相比,齒圈可以得到反向傳動。
用行星齒輪機構作為變速機構,由於有多個行星齒輪同時傳遞動力,而且常採用內嚙合式,充分利用了齒圈中部的空間,故與普通齒輪變速機構相比,在傳遞同樣功率的條件下,可以大大減小變速機構的尺寸和重量,並可實現同向、同軸減速傳動;另外,由於採用常嚙合傳動,動力不間斷,加速性好,工作也可靠。
3、行星齒輪機構的變速原理
由於單排行星齒輪機構有兩個自由度,因此它沒有固定的傳動比,不能直接用於變速傳動。為了組成具有一定傳動比的傳動機構,必須將太陽輪、齒圈和行星架這三個基本元件中的一個加以固定(即使其轉速為0,也稱為制動),或使其運動受到一定的約束(即讓該構件以某一固定的轉速旋轉),或將某兩個基本元件互相連接在一起(即兩者轉速相同),使行星排變為只有一個自由度的機構,獲得確定的傳動化。
設太陽輪的齒數為Z1,齒圈齒數為Z2,太陽輪、齒圈和行星架的轉速分別為n1、n2、n3,並設齒圈與太陽輪的齒數比為α,即
α=Z2/Z1
則行星齒輪機構的一般運動規律可表達為:
n1+αn2-(1+α)n3=0
由上式可以看出,在太陽輪、齒圈和行星架三個基本元件中,可任選兩個分別作為主動件和從動件,而使另一個元件固定不動(使該元件轉速為零)或使其運動受一定約束(使該元件的轉速為某一定值),則整個輪系即以一定的傳動比傳遞動力。不同的連接和固定方案可得到不同的傳動比,三個基本元件的不同組合可有6種不同的組合方案,加上直接擋傳動和空擋,共有8種組合,相應能獲得5種不同的傳動比。
③ 汽車自動變速器里的辛普森什麼原理
是星型齒輪機構的類型,還有拉維那式的自動變速箱
④ 辛普森變速器工作原理
自動變速器根據汽車速度、發動機轉速、動力負荷等因素自動進行升降檔位,不需由駕駛者操作離合器換檔,使用很方便。特別在交通比較擁擠的城區馬路行駛,自動變速器體現出很好的便利性。自動變速器比手動變速器復雜得多,有很多方面不相同,但最大的區別在於控制方面。手動變速器由駕駛員操縱檔位,加檔或減檔由人工操作,而自動變速器是由機器自動控制檔位,變換檔位是由液壓控制裝置進行的。 以一個典型的自動變速器為例,液壓控制裝置根據節氣門(油門)開度和變速器輸出軸上輸送來的信號控制升降檔。根據節氣門開度變化,液壓控制裝置中的調節閥產生與加速踏板踏下量成正比的液壓,該液壓作為節氣門開度「信號」加到液壓控制裝置;另外有裝配在輸出軸上的速控液壓閥可產生與轉速(車速)成正比的液壓,作為車速「信號」加到液壓控制裝置。因此,就有節氣門開度「信號」和車速「信號」,液壓控制裝置根據這兩個「信號」自動調節變速器油量,從而控制換檔時機。 也就是說在汽車駕駛中,駕駛員踏下加速踏板(油門踏板),控制節氣門開度和汽車的行駛速度(變速器輸出軸轉速),就能自動控制變速器內的液壓控制裝置,液壓控制裝置會利用液力去控制行星齒輪系統的離合器和制動器,以改變行星齒輪的傳動狀態。 自動變速器的核心控制裝置是液壓控制裝置,液壓控制裝置由油泵、閥體、離合器、制動器以及連接所有這些部件的液體通路所組成。關鍵部件是閥體,因此它是自動變速器的控制中心。閥體的作用是根據發動機和底盤傳動系的負載狀況(節氣門開度和輸出軸轉速),對油泵輸出到各執行機構的油壓加以控制,以控制液力變矩器,控制各離合器和制動器的結合與分離實現自動換檔。 以上是自動變速器的基本控制形式,如果是電子控制自動變速器,就要在上述基礎上增加電磁閥,ECU(電控單元)藉助電磁閥控制自動變速器工作過程。ECU輸入電路接受感測器和其它裝置輸入的信號,對信號進行過濾處理和放大,然後轉換成電信號驅動被控的電磁閥工作。因此,電子控制自動變速器就要增加節氣門位置感測器、車速感測器、水溫感測器、液壓溫度感測器、發動機轉速感測器、檔位開關、剎車燈開關等數字信號匯入ECU,從而使得ECU精確控制電磁閥,使換檔和鎖止時間准確,令汽車運行更加平穩和節省燃油。
⑤ 辛普森式行星齒輪機構的工作過程
是一種十分著名的雙排行星齒輪機構,根據這兩排在變速器中的位置,分別稱之為前行星齒輪機構和後行星齒輪機構,這兩組齒輪機構由共用的太陽輪相連接。
⑥ 辛普森式自動變速器的倒檔動力如何傳遞
辛普森式自動變速器就是普通的自動變速箱,它是通過太陽輪、行星齒輪和齒輪套筒(齒圈)的鎖止配合來進行傳動比的轉換的。
基本結構見下圖:
沒有動畫,光說不太容易說清楚。希望對你有所幫助。
⑦ 行星齒輪機構是做什麼的
行星齒輪變速器,是用行星齒輪機構實現變速的變速器。它通常裝在液力變扭器的後面,共同組成液力自動變速器。行星齒輪機構因類似於太陽系而得名。它的中央是太陽輪,太陽輪的周圍有幾個圍繞它旋轉的行星輪,行星輪之間,有一個共用的行星架。行星輪的外面,有一個大齒圈。辛普森齒輪機構,是美國褔特汽車公司的一位工程師 Howard Simpson ,在他畢生從事汽車設計研究工作期間,由於設計發明了一種性能優越的特殊行星變速機構而聞名於世,該行星變速機構的主要構件有太陽輪、行星輪和環齒輪。將兩行星排巧妙連接,則檔位數變得更多,而且具有結構簡單緊密、傳動效率高、工藝性好、製造費用低、換檔平穩、操縱性能好等一系列優點;它適用於各種自動變速箱和動力換檔變速箱,當時汽車界即將其定名為「辛普森齒輪機構"。辛普森齒輪機構的問世,立即被美國褔特、通用、克萊斯勒等三家最大的汽車公司所採用,從 70 年代初期開始,即一直大量生產。
⑧ 自動擋汽車辛普森式行星齒輪變速器的工作原理是什麼
無非就是大小齒輪的搭配
⑨ 辛普森式和拉威挪式行星齒輪機構各具什麼特點
辛普森式行星齒輪變速器是一種具有四個獨立元件的行星齒輪機構。根據前進檔的檔數不同,可將辛普森式行星齒輪變速器分為三速和四速兩種 在辛普森式行星齒輪機構中設置了二個離合器、二個制動器和一個單向離合器,共有五個換檔執行元件,即可使之成為一個具有三個前進檔和一個倒檔的行星齒輪變速器。
拉威挪式行星齒輪機構在包含行星齒輪的齒輪系統中,情形就不同了。由於存在行星架,也就是說,可以有三條轉動軸允許動力輸入/輸出,還可以用離合器或制動器之類的手段,在需要的時候限制其中一條軸的轉動,剩下兩條軸進行傳動,這樣一來,互相嚙合的齒輪之間的關系就可以有多種組合。
(9)辛普森式行星齒輪傳動裝置工作原理擴展閱讀:
注意事項:
要求各行星齒輪能保證同時與太陽輪及內齒輪相嚙合,且受載較均勻。
對於行星轉架轉動的傳動,要注意由於旋轉產生的離心力而使行星齒輪軸承負載增加的影響因素。在高速行星傳動中,通常由於離心力所加給行星齒輪軸承的載荷占其總載荷的80%左右,故對轉架的轉速確定應予以慎重考慮。
工程實踐證明,行星轉架的轉速一般限制在1800rpm之內,過高的轉速將引起轉架鼓風摩擦和攪拌潤滑油的損耗增加,使傳動裝置的效率下降。
⑩ 聽上去很迷幻的行星齒輪變速結構是怎樣的
行星齒輪變速器,屬於一種齒輪箱,它是由行星齒圈、太陽輪、行星輪(又稱衛星輪)和齒輪輪軸組成,根據齒圈、太陽輪和行星輪的運動關系,可以實現輸入軸與輸出軸脫離剛性傳動關系、輸入軸與輸出軸同向或反向傳動和輸入與輸出軸傳動比變化,並在陸用、航海、航空等交通運輸工具中得到廣泛應用。
Planetary Transmission
這樣,行星齒輪機構就具有三個彼此可以相對旋轉的運動件:太陽輪、行星架和齒圈。它可以實現四種不同組合的擋位:
①低擋太陽輪主動,行星架被動,齒圈不動。
②中擋太陽輪不動,行星架被動,齒圈主動。
③高擋(超速擋)太陽輪不動,行星架主動,齒圈被動。
④倒擋太陽輪主動,行星架不動,齒圈被動。
所有運動件都不受約束時,變速器處於空擋。
行星齒輪變速器通常由兩組到三組行星齒輪機構組成,並用多片離合器控制上述運動件的組合,實現不同的擋位。
參見:液力自動變速器
行星齒輪式自動變速箱 在自動變速箱上使用的行星齒輪機構,應用較多的有辛普森( Simpson gearset )齒輪機構和拉維奈爾赫( Ravigneaux gearset )齒輪機構,此外,還有各公司自主開發的獨特組合齒輪機構。這些行星齒輪機構大致上可以分為六類:
(一)、基礎行星齒輪機構
基礎行星齒輪機構是轎車用自動變速中最簡單的一種,此種行星齒輪機構源於美國克萊斯勒公司的 Power Flite 液壓自動變速箱。
(二)、辛普森 (Simpson) 齒輪機構
辛普森齒輪機構,是美國褔特汽車公司的一位工程師 Howard Simpson ,在他畢生從事汽車設計研究工作期間,由於設計發明了一種性能優越的特殊行星變速機構而聞名於世,該行星變速機構的主要構件有太陽輪、行星輪和環齒輪。將兩行星排巧妙連接,則檔位數變得更多(可以三進一退),而且具有結構簡單緊密、傳動效率高、工藝性好、製造費用低、換檔平穩、操縱性能好等一系列優點;它適用於各種自動變速箱和動力換檔變速箱,當時汽車界即將其定名為「辛普森齒輪機構。
辛普森齒輪機構的問世,立即被美國褔特、通用、克萊斯勒等三家最大的汽車公司所採用,從 70 年代初期開始,即一直大量生產。
(三)、改良型辛普森行星齒輪機構
此類主要是將辛普森行星齒輪機構中之帶式制動器用片式制動器代替,並增加一個單向超速離合器 ( 自由輪機構 )F1 ,使得從二檔換到三檔時,換檔平穩性得以改善。
(四)、拉維奈爾赫( Ravigneaux )行星齒輪機構
拉維奈爾赫行星齒輪機構,與辛普森齒輪機構齊名, 70 年代初期美國褔特汽車公司生產的 Select-Shift 自動變速箱一直採用該齒輪機構,直到 1980 年才被帶超速檔的四前進檔自動變速箱 Auto-overdrive 所取代。
(五)、改良型拉維奈爾赫行星齒輪機構
此類主要是將拉維奈爾赫行星齒輪機構基礎上增加換檔自由輪機構 F1 ,使得從低檔換到二檔時,換檔平穩性得以改善。
(六)、四前進檔行星齒輪機構
此類除了增加前進檔位外,有些還具有功率分流、高速檔鎖止、增設超速檔等特點。
不同車型自動變速箱在結構上往往有很大的差異,主要區別是在: (1) 前進檔的檔數不同 (2) 離合器、制動器及單向超速離合器的數目和布置方式不同 (3) 所採用的行星齒輪機構類型不同。早期轎車自動變速箱常採用 2 個前進檔或 3 個前進檔,新型轎車自動變速箱大部分採用 4 個前進檔;前進檔的數目越多,行星齒輪變速箱中的離合器、制動器及單向超速離合器的數目就越多;離合器、制動器、單向超速離合器的布置方式主要取決於行星齒輪變速箱前進檔的檔數及所採用的行星齒輪機構的類型,對於行星齒輪機構類型相同的行星齒輪變速箱來說,其離合器、制動器及單向超速離合器的布置方式及工作過程基本上是相同的,因此,了解各種不同類型行星齒輪機構所組成的行星齒輪變速箱的結構和工作原理,是掌握各種不同車型自動變速箱結構和工作原理的關鍵,目前自動變速箱所採用的行星齒輪機構的類型主要有兩類,即辛普森式行星齒輪機構和拉維奈爾赫式行星齒輪機構。
( 1 )辛普森式行星齒輪變速箱
辛普森式行星齒輪變速箱是由辛普森式行星齒輪機構和相對的換檔操作組件組成的,目前大部分自動變速箱都採用這種行星齒輪變速箱;辛普森式行星齒輪機構是一種十分著名的雙排行星齒輪機構,它是由兩個內嚙合式單排行星齒輪機構組合而成,其結構特點是 (1) 前後兩個行星排的太陽輪連接為一個整體,稱為前後太陽輪組件 (2) 前一個行星排的行星架和後一個行星排的環齒輪連接為另一個整體,稱為前行星架和後環齒輪組件 (3) 輸出軸通常與前行星架和後環齒輪組件連接(圖 7-4 )。如此,該機構成為一這 4 個獨立組件是 (1) 前環齒輪 (2) 前後太陽輪組件 (3) 後行星架 (4) 前行星架和後環齒輪組件;根據前進檔的檔數不同,可將辛普森式行星齒輪變速箱分為辛普森式 3 檔行星齒輪變速箱和辛普森普森式 4 檔行星齒輪變速箱兩種。
在辛普森式行星齒輪機構中設置 5 個換檔操作組件 (2 個離合器、 2 個制動器和 1 個單向超速離合器 ) ,即可使之成為一個具 3 個前進檔和 1 個倒檔的行星齒輪變速箱,這 5 個換檔操作組件的布置如圖 7-5 所示,離合器 C1 用於連接輸入軸和前後太陽輪組件,離合器 C2 用於連接輸入軸和前環齒輪,制動器 B1 用於固都是用於固定後行星架,制動器 B 定前後太陽輪組件,制動器 B2 和單向超速離合器 F11 和 B2 可以使用帶式制動器或片式制動器。 辛普森式 3 檔行星齒輪變速箱排檔桿位置及操作組件工作表
這 5 個換檔操作組件在各檔位的工作情況見表 7-2 。由表中可知,當行星齒輪變速箱處於停車檔和空檔之外的任何一個檔位時, 5 個換檔操作組件中都有兩個處於工作狀態 ( 接合、制動或鎖定狀態 ) ,其餘 3 個不工作 ( 分離、釋放或自由狀態 ) ;處於工作狀態的兩個換檔操作組件中至少有一個是離合器 C1 或 C2 ,以便使輸入軸與行星排連接,當變速箱處於任一前進檔時,離合器 C2 都處於接合狀態,此時輸入軸與行星齒輪機構的前環齒輪接合,使前環齒輪成為主動件,因此,離合器 C2 也稱為前進離合器 (Forward Clutch) 。倒檔時,離合器 C1 接合, C2 分離,此時輸入軸與行星齒輪機構的前後太陽輪組件接合,使前後太陽輪組件成為主動件,另外,離合器 C1 在 3 檔 ( 直接檔 ) 時也接合,因此,離合器 C1 也稱為倒檔及高檔離合器(High Reverse Clutch) 。制動器 B1 僅在 2 檔才工作,稱為 2 檔制動器或第二制動器 ( 2nd Brake or 2nd Clutch) 。制動器 B2 在 1 檔和倒檔時都有工作,因此稱為低檔及倒檔制動器或低 / 倒檔制動器 (Low Reverse Brake or Low Reverse Clutch) 。由此可知,換檔操作組件的不同工作組合決定了行星齒輪變速箱的傳動方向和傳動比,從而決定了行星齒輪變速箱所處的檔位。
早期的轎車自動變速箱多採用 3 檔行星齒輪變速箱,其最高檔 3 檔是傳動比為 1 的直接檔。進入 80 年代後,隨著對汽車燃油經濟性的要求日趨嚴格,越來越多的轎車自動變速箱採用了 4 檔行星齒輪變速箱。其最高檔 4 檔是傳動比小於 1 的超速檔,這種自動變速箱的優點除了能降低汽車燃油消耗外,還可以使引擎經常處於較低轉速的運轉工作,以減小運轉噪音,延長引擎的使用壽命。
辛普森式 4 檔行星齒輪變速箱是在辛普森式 3 檔行星齒輪變速箱的基礎上改良,它有兩種類型:一種是將辛普森式 3 檔行星齒輪變速箱原有的雙排行星齒輪機構再增加一個單排行星齒輪機構,用 3 個行星排組成 4 檔行星齒輪變速箱;另一種是將辛普森式雙排行星齒輪機構進行改變,改變前後行星排各基本組件的組合方式和增加換檔操作組件,使之成為帶有超速檔的 4 檔行星齒輪變速箱。(1)3 行星排辛普森式 4 檔行星齒輪變速箱:這種 4 檔行星齒輪變速箱是在不改變原辛普森式 3 檔行星齒輪變速箱的主要結構和大部份零件的情況下,另外再增加一單排行星齒輪機構和對應的換檔操作組件來產生超速檔。這個單排行星齒輪機構稱為超速行星排 (Overdrive Planet Gearset) ,它安裝在行星齒輪變速箱的前端 ( 圖 7-6) 。其行星架是主動件,與變速箱輸入軸連接;環齒輪則作為被動件,與後面的雙排行星齒輪機構接,超速行星排的工作由直接離合器 C0(Direct Clutch) 和超速制動器 B0(Overdrive Brake) 來控制,直接離合器 C0 用於將超速行星排的太陽輪和行星架連接,超速制動器 B0 用於固定超速行星排的太陽輪。根據行星齒輪變速箱的變速原理,當超速制動器 B0 放鬆、直接離合器 C0 接合時,超速行星排處於直接傳動狀態,其傳動比為 1 ;當超速制動器 B0 制動、直接離合器 C0 放鬆時,超速行星排處於增速傳動狀態,其傳動比小於 1 。
這種型式的 4 檔行星齒輪變速箱可以使原辛普森式 3 檔行星齒輪變速箱的大部分零件仍可以使用,有利於減少生產投資、降低成本,目前大部分轎車都採用這種型式的 4 檔自動變速箱,有些車型的這種自動變速箱將超速行星排設置在原辛普森式 3 檔行星齒輪變速箱的後端,但其工作原理是相同的。
(2) 雙行星排辛普森式 4 檔行星齒輪變速箱:這種 4 檔行星齒輪變速箱是在原辛普森式 3 檔行星齒輪變速箱中的雙排行星齒輪機構增加換檔操作組件的個數,讓前後行星排的各個基本組件之間有更多更復雜的組合,從而使前進檔形成包括超速檔在內的 4 個前進檔。
改進後的辛普森式行星齒輪機構除了環齒輪和後行星架仍互相連接為一體之外,前行星排和後行星排的其它基本組件全部各自獨立,形成一種具有 5 個獨立組件的辛普森式行星齒輪機構;在這 5 個獨立組件中,後太陽輪始終和輸入軸連接,輸出軸則與前環齒輪和後行星架組件連接。
在這種辛普森式行星齒輪機構中只要設置 4 個離合器、 2 個制動器及 2 個單向超速離合器,就可以變成具有 4 個前進檔和 1 個倒檔的 4 檔行星齒輪變速箱,並且在 1 檔、 2 檔、 3 檔都有兩種工作狀態 ( 引擎制動或無引擎制動 ) 。這 8 個換檔操作組件的排列方式如圖 7-7 所示。其中離合器 C1 用於連接輸入軸和前太陽輪;離合器 C2 用於連接輸入軸和前行星架;離合器 C3 和單向超速離合器 F1 串聯,一同用於連接前行星架和後環齒輪,單向超速離合器在逆時針方向對後環齒輪產生鎖定作用;離合器 C4 也用於連接前行星架及後環齒輪,和離合器 C3 、單向超速離合器 F1 並聯;制動器 B1 用於固定前太陽輪;制動器 B2 和單向超速離合器 F2 並聯,一同固定前行星架,單向超速離合器 F2 在逆時針方向對前行星架產生鎖定作用。
(二)拉維奈爾赫式行星齒輪變速箱
拉維奈爾赫式行星齒輪變速箱採用的是與辛普森式行星齒輪機構一樣著名的拉維奈爾赫式行星齒輪機構,這是一種復合式行星齒輪機構,它由一個單行星輪式行星排和一個雙行星輪式行星排組合而成:後太陽輪和長行星小齒輪、行星架、環齒輪共同組成一個單行星輪
拉維奈爾赫式行星齒輪機構
式行星排;前太陽輪、短行星小齒輪、長行星小齒輪、行星架和環齒輪共同組成一個雙行星輪式行星排 ( 圖 7-8) 。 2 個行星排共享一個環齒輪和一個行星架,因此它只有 4 個獨立組件,即前太陽輪、後太陽輪、行星架、環齒輪。這種行星齒輪機構其有結構簡單、尺寸小、傳動比變化范圍大、靈活多變化等特點,可以組成有 3 個前進檔或 4 個前進檔的行星齒輪變速箱。自 70 年代開始應用於許多轎車,特別是前輪驅動式轎車的自動變速箱,如奧迪、大慶、褔特、馬自達等車型的自動變速箱。
拉維奈爾赫式3 檔行星齒輪變速箱
在拉維奈爾赫式行星齒輪機構中設置 5 個換檔操作組件 (2 個離合器、 2 個制動器和 1 個單向超速離合器 ) ,即可使之成為一個具有 3 個前進檔和 1 個倒檔的 3 檔行星齒輪變速箱。
圖 7-9 為拉維奈爾赫式 3 檔行星齒輪變速箱的結構,圖中,前太陽輪、長行星小齒輪、行星架和環齒輪組成一個單行星輪式行星排,也稱為前行星排;後太陽輪、短行星小齒輪、長行星小齒輪、行星架和環齒輪組成一個雙行星輪式行星排,也稱為後行星排。在 5 個換檔操作組件中,離合器 C1 用於連接輸入軸和後太陽輪,它在所有前進檔中都處於接合狀態,故稱為前進離合器;離合器 C2 用於連接輸入軸和前太陽輪,它在倒檔和 3 檔 ( 直接檔 ) 時接合,故稱為倒檔及高檔離合器;制動器 B1 用於固定前太陽輪,它在 2 檔時工作,故稱為 2 檔制動器;制動器 B2 用於固定行星架,它在倒檔或自動變速箱排檔桿位於前進低檔時工作,故稱為低檔及倒檔制動器。 F1 在逆時針方向對行星架有鎖定作用,它只在 1 檔時工作,故稱為 1 檔單向超速離合器。
在拉維奈爾赫式 3 檔行星齒輪變速箱的輸入軸和行星架之間增加一個離合器,就可以使之成為具有超速檔的 4 檔行星齒輪變速箱,圖 7-10 為拉維奈爾赫式 4 檔行星齒輪變速箱結構。與拉維奈爾赫式 3 檔行星齒輪變速箱相比,它僅僅在輸入軸和行星架之間增加了一個高檔離合器 C4 。這種行星齒輪變速箱的工作特點是:
拉維奈爾赫式 4 檔行星齒輪變速箱
1 ,在 1 檔、 2 檔及倒檔的工作情況和拉維奈爾赫式 3 檔行星齒輪變速箱完全相同。
2 ,在 3 檔工作時,高檔離合器 C4 和前進離合器 C1 同時工作,使後行星排有 2 個基本組件互相連接,形成直接檔。
3 , 4 檔時,高檔離合器 C4 和 2 檔及 4 檔制動器 B1 同時工作,使輸入軸與行星架連接,同時前太陽輪被固定。引擎動力經高檔離合器 C4 傳至行星架,行星架帶動長行星小齒輪朝順時針方向一邊自轉一邊公轉,並帶動環齒輪和輸出軸朝順時針方向轉動,此為超速檔。