㈠ 廢氣處理卧式活性炭吸附裝置的設計圖
如附件
㈡ 畫一個你准備製作的能量轉挽裝置設計圖
做風車就麻煩多了,你可以拿個放大鏡,把太陽的光收集聚成一點,拿張報紙用那聚成的光點照著,很快就點燃了,當然前提是有猛烈地陽光
記得採納啊
㈢ 如果我有設計圖,想製造一個機械裝置,但是自己沒有工具和能力的話,該找誰幫我造
去豬八戒或者時間威客上發布任務,有專門繪制圖紙的設計人員,再找相應的工廠定製,可以很快做出。
㈣ 請問機械設計的傳動裝置設計一般需要畫什麼圖
需要畫裝配圖和各個零件圖,具體需要幾張就看你是用的哪種傳動裝置,是四連桿機構還是鏈傳動還是齒輪傳動?
㈤ 乾燥機下下料裝置設計圖
乾燥是很多行業生產流程中重要的和不可少的一個環節,乾燥設備的選型合理和使用好壞直接影響到產品質量、生產效率、生產成本、能源消耗、人員勞動強度等指標,由於乾燥方法和乾燥設備多種多樣,同一種物料有多種乾燥方式,可使用多種類型的乾燥設備,同一種乾燥設備又能乾燥多種物料,因此,乾燥設備的合理選型和正確使用是非常正要的。為了便於用戶選擇一種理想的乾燥設備,在此對一些相關問題作個簡要說明。
一、乾燥方法
乾燥就是從各種物料中去除濕分的過程,各種物料可以是固體、液體或氣體,固體又可分大塊料、纖維料、顆粒料、細粉料等等,而濕分一般是物料中的水分,也可以是其它溶劑。在此以水分為對象。
乾燥方法有三類:
(1) 機械脫水法
機械脫水法就是通過對物料加壓的方式,將其中一部分水分擠出。常用的有壓榨、沉降、過濾、離心分離等方法。機械脫水法只能除去物料中部分自由水分,結合水分仍殘留在物料中,因此,物料經機械脫水後物料含水率仍然很高,一般為40~60%。但機械脫水法是一種最經濟的方法。
(2) 加熱乾燥法
也就是我們常說的乾燥,它利用熱能加熱物料,氣化物料中的水分。除去物料中的水分需要消耗一定的熱能。通常是利用空氣來乾燥物料,空氣預先被加熱送入乾燥器,將熱量傳遞給物料,氣化物料中的水分,形成水蒸汽,並隨空氣帶出乾燥器。物料經過加熱乾燥,能夠除去物料中的結合水分,達到產品或原料所要求的含水率。
(3) 化學除濕法
是利用吸濕劑除去氣體、液體、固體物料中的少量水分,由於吸濕劑的除濕能力有限,僅用於除去物料中的微量水分。因此生產中應用很少。
在實際生產過程中,對於高濕物料一般均盡可能先用機械脫水法去除大量的自由水分,之後再採取其它乾燥方式進行乾燥。
二、物料與水分的結合方式
根據物料中所含水分去除的難易程度分為下列兩種:
(1)、非結合水分:
非結合水分包括存在於物料表面的潤濕水、孔隙水等物料與水分直接接觸時,被物料吸收的水分。由於與物料的結合強度小,故易於去除。
(2)、結合水分:
包括物料細胞或纖維管璧及毛細管中所含的水分。這種水分又可細分為化學結合水、物理化學結合水和機械結合水。其中,化學結合水主要包括結晶水,結合強度大,故難以去除,脫去結晶水的過程不屬於乾燥過程;物理化學結合水包括吸附、滲透和結構的水分,吸附水與物料的結合最強,水分既可被物料的外表面吸附,也可吸附於物料的內部表面,在吸附水分結合時有熱量放出,脫去時則需吸收熱量,滲透水分與物料的結合是由於物料組織壁的內外溶解物的濃度有差異而產生的滲透壓所造成,結合強度相對弱小,結構水分存在於物料組織內部,在膠體形成時將水結合在內,此類水分的離解可由蒸發、外壓或組織的破壞;機械結合水分包括有毛細管水分等,毛細管水分存在於纖維或微小顆粒成團的濕物料中,它與物料的結合強度較弱。含結合水分的物料稱為吸水物料,如:木材、糧食、皮革、纖維及其織物、紙張、合成樹脂顆粒等。僅含有非結合水分的物料,稱為非吸水性物料,如鑄造用型砂、各種結晶顆粒等。就乾燥的難易來說,非吸水性物料要比吸水性物料容易乾燥得多。物料的結晶水為化學結合水,乾燥過程一般是不能去除結晶水的。不同結構的水分的結合能大約為100~3000J/mol。物料和水分的不同結合形式,使排除水分耗費的能量不同,這就說明乾燥所需要的熱能也不一樣。
根據物料在一定的乾燥條件下,其水分能否用乾燥方法除處可分為平衡水分和自由水分。在生活中,常會遇到一些物料在濕度較大的空氣中"返潮"的現象,而這些返潮的物料在干空氣中又會回復其"乾燥"狀態。不管"返潮"或"乾燥"過程,進行到一定限度後,物料中的含水量必將趨於一定值,此值即稱為在此空氣狀態下的平衡水分。物料中所含的大於平衡水分的那一部水分,可以在乾燥過程中從濕物料中去除,稱之自由水分。
三、濕物料的乾燥過程
1、濕物料的乾燥過程
乾燥的條件為乾燥介質(通常為熱空氣)的流動速度、濕度和溫度。
當熱空氣從濕物料表面穩定地流過時,由於空氣的溫度高,物料的溫度低,因此空氣與物料之間存在著傳熱推動力,空氣以對流的方式把熱量傳遞給物料,物料接受了這項熱量,用來氣化其中的水分,並不斷地被氣流帶走,而物料的濕含量不斷下降。當物料的濕含量下降到平衡水分時,乾燥過程結束。
物料乾燥過程中,存在著傳熱和傳質兩個相互的過程,所謂傳熱就是熱空氣將熱量傳遞給物料,用於氣化其中的水分並加熱物料,傳質就是物料中的水分蒸發並遷移到熱空氣中,使物料水分逐漸降低,得到乾燥。
2、乾燥過程的特點
在乾燥過程中,由於物料總是具有一定的幾何尺寸大小,即使是很細的粉料,從微觀也可看成是有一定尺寸的顆粒,實際上上述傳熱傳質過程在熱氣流與物料顆粒之間和物料顆粒內部的機理是不相同的,在乾燥理論上就將傳熱傳質過程分為熱氣流與物料表面的傳熱傳質過程和物料內部的傳熱傳質過程。由於這兩種過程的不同而影響了物料的乾燥過程,兩者在不同乾燥階段起著不同的主導和約束作用,這就導致了一般濕物料乾燥時前一階段總是以較快且穩定的速度進行,而後一階段則是以越來越慢的速度進行,所以我們就將乾燥過程分為等速乾燥階段和降速乾燥階段。
(1) 等速乾燥階段
在等速乾燥段內,物料內部水分擴散至表面的速度,可以使物料表面保持著充分的濕潤,即表面的濕含量大於乾燥介質的最大吸濕能力,所以乾燥速度取決於表面氣化速度。換句話說,等速段是受氣化控制的階段。由於乾燥條件(氣流溫度、濕度、速度)基本保持不變,所以乾燥脫水速度也基本一致,故稱為等速乾燥階段,此一階段熱氣流與物料表面之間的傳熱傳質過程起著主導作用。因此,提高氣流速度和溫度,降低空氣濕度就都有利於提高等速階段的乾燥速度。等速階段物料吸收的熱量幾乎全部都用於蒸發水分,物料很少升溫,故熱效率很高。可以說等速段內的脫水是較容易的,所去除的水分,純屬非結合水分。
(2) 降速乾燥階段
隨著物料的水分含量不斷降低,物料內部水分的遷移速度小於物料表面的氣化速度,乾燥過程受物料內部傳熱傳質作用的制約,乾燥的速度越來越慢,此階段稱為降速乾燥階段,有以下幾個特點:
降速段的乾燥速率與物料的濕含量有關,濕含量越低,乾燥速率越小。這是與等速段不同的第一個特點;
降速段的乾燥速率與物料的厚度或直徑很有關系,厚度越厚,乾燥速率越小。這是第二個特點;
當降速階段開始以後,由於乾燥速率逐漸減小,空氣傳給物料的熱量,除作為氣化水分用之外,尚有一部分將使物料的溫度升高,直至最後接近於空氣的溫度。這是第三個特點;
降速段的水分在物料內部進行氣化,然後以蒸汽的形態擴散至表面,所以降速階段的乾燥速率完全取決於水分和蒸汽在物料內部的擴散速度。因此也把降速段稱作內部擴散控制階段。這是第四個特點。
在降速階段,提高乾燥速度的關鍵不再是改善乾燥介質的條件,而是提高物料內部濕份擴散速度的問題。提高物料的溫度,減小物料的厚度都是很有效的辦法。這是第五個特點。
相對等速乾燥階段,降速段的乾燥脫水要困難得多,能耗也要高得多。
所以為了提高乾燥速度,降低能耗,保證產品品質,在生產工藝允許的情況下,應盡可能採取打散、破碎、切短等方法減小物料的幾何尺寸,以有利於乾燥過程的進行。
四、乾燥設備選型前需要確定的條件
由於乾燥過程中濕物料的種類很多,乾燥特性又差別很大,所以需要不同類型的乾燥方法和設備。這樣就帶來了乾燥方法和設備的選型問題。如果選擇不當,就必然會帶來設備投資過大,或操作費用上升,或產品質量不符合要求,在極端情況下乃至不能操作運行。所以,必須對選型問題給予足夠的重視。
1、 物料性能及乾燥特性
(1) 物料的形態
大至成型的木材、陶瓷製品以及片狀、纖維狀、顆粒狀、細粉狀直至膏糊狀和液體物料,都是工業上需要乾燥的物料。故選擇乾燥機應首先依據物料的形態。
(2)物料的各種物理特性
包括密度、堆密度、粒徑分布、熱容以及物料的粘附性能等。粘附性能的高低,對進出料和某些形式的乾燥機的工作有很大的影響,粘附嚴重時乾燥過程無法進行。
(3)物料在乾燥過程中的特性
包括受熱的熱敏性,有些物料在受熱後會變色和分解變質。另外,乾燥過程中物料的收縮將使成型製品開裂或變形,從而使產品品質降低甚至報廢。
(4)物料與水分結合的狀態
它決定了乾燥的難易程度、能量消耗水平和在乾燥機內所需停留時間的長短,這與選型有很大的關系。例如,對難乾燥的物料主要是給予較長的停留時間,而不是強化乾燥的外部條件。
2、 對乾燥產品的要求
(1) 對乾燥產品形態的要求
在某些情況下這一點顯得特別重要。如在食品乾燥中,對產品幾何形狀的要求是能否使產品含水率達到乾燥要求的關鍵。再如象洗衣粉、染料等為利於速溶並避免粉塵飛揚,選擇乾燥機時必須應用噴霧造粒裝置。
(2) 對乾燥均勻性的要求
(3) 對產品的衛生的要求
(4) 對產品的一些特殊要求
如對咖啡、香菇、蔬菜等物料的乾燥,要求產品能保持其特有的香味,故不能採用高風溫的快速乾燥。
3、 濕物料含水量的波動情況及乾燥前的脫水
進入乾燥機的物料含水率應盡可能避免較大的波動,若含水量變大,將使乾燥機產量下降或乾燥產品達不到含水率要求,若含水率變小,則出口排氣溫度上升,產品過度乾燥,不單會使乾燥機熱效率下降,有時還會使產品溫度上升,從而影響產品質量。
對於高濕物料(含水率60%以上),在乾燥前應盡可能應用機械脫水(壓濾、離心脫水等)給予預脫水。機械脫水的設備費用雖較高,但其操作費用之低廉是熱風乾燥無法相比的。
五、 乾燥機選用需注意的問題
乾燥機選擇一般會涉及這樣幾個問題:
1、 物料形態
乾燥設備選型主要是根據被乾燥物料的形態來確定,物料形態不僅決定其乾燥方式,同時對乾燥機的乾燥效率、乾燥質量、乾燥均勻性及進、出料裝置等都有很大的影響,所以如工藝允許,對被乾燥的物料應盡可能採取粉碎、篩分、切短等預處理。因此乾燥設備不僅僅是一個選型的問題,還應該制定科學的乾燥工藝,才能達到滿意的效果。
2、 影響乾燥機生產能力的因素
由於同種乾燥方法,乾燥脫水一公斤所消耗的熱能基本一致,而乾燥機所配套熱源(熱風爐、蒸汽散熱器等)容量也是一定的,因此乾燥機的主要技術指標--乾燥能力往往以每小時的脫水量(或最大脫水量)為依據。此指標是在一定條件下測定的,如濕物料種類、初始含水率、最終含水率、熱風溫度、環境溫濕度等。其中只要有一個條件發生變化,對乾燥機生產能力就都有影響,有時影響還較大。下面分別說明。
(1) 濕物料種類
濕物料種類這里是指物料與水分的結合形式。濕物料可以分為①毛細管多孔物料,水分主要靠毛細管力而結合在物料中,如砂子、二氧化硅、活性炭、素燒陶瓷等,水分與物料的結合強度較小,乾燥較容易;②膠體物料,水分與物料的滲透結合形式佔主導地位,如膠、麵粉團等,這種物料一般表現粘度大,水分與物料的結合強度較大,乾燥較困難;③毛細管多孔膠體物料,則具有以上兩類物質的性質,如泥煤、粘土、木材、織物、穀物、皮革等這類物料種類最多,但此類物料之間的水分結合形式也有差別,決定了在同等條件下脫水的難易也不相同。 物料的形態對乾燥也有很大的影響,如顆粒物料,顆粒大比顆粒小難乾燥,而大塊料,厚度小比厚度大容易乾燥。
(2) 濕物料含水率
含水率(濕含量)是水分在濕物料總重中所佔的百分率。
W×100 W×100
m = ———————— = ———————— (%)
G Go+W
式中:W--水分重量;
G--濕物料重量;
G0--絕干物料重量。
初始含水率是指進入乾燥機之前濕物料的含水量,通常是濕物料只要能在乾燥機內工作,初始含水率越高,乾燥機所表現出來的脫水能力就發揮得越充分。反過來說,初始含水率越高,最終含水率一定時,乾燥機越能達到最大脫水能力,但出乾料量反而下降。
例如:某台乾燥機設計脫水能力為100kg/h,當初始含水率為40%左右時,乾料產量為200 kg/h。假定乾燥脫水能力保持100kg/h和乾料含水率12%不變,根據:乾燥前濕物料中絕干物質重量=乾燥後干物料中絕干物質重量,可計算出不同濕物料含水率情況下的相應乾燥產量,列表如下:
乾燥脫水能力初始含水率乾料含水率濕物料產量乾料產量
100 kg(水)/h35%↑ 12%382.6 kg/h282.6 kg/h ↓
40%314.3 kg/h214.3 kg/h
45%266.7 kg/h166.7 kg/h
50%231.6 kg/h131.6 kg/h
55%204.7 kg/h104.7 kg/h
60%183.3 kg/h83.3 kg/h
說明:上表為某乾燥機乾燥脫水能力為100 kg/h時,在不同初始含水率情況下的乾料產量從上表可以看出,濕料含水率增加,乾燥機乾燥能力(脫水能力)保持不變時,實際生產乾料產量會相應下降很多,這是乾燥機選型和使用時應特別注意的。
(3) 最終含水率
一般乾燥後段均處於降速乾燥階段,要求最終含水率越低,乾燥難度就越大,所需乾燥時間越長、熱效率也越低,因此也影響產量。
(4) 熱風溫度
熱風溫度或稱乾燥介質溫度,是乾燥中最敏感的一個條件。熱風溫度越高,則所含熱能越多,同時熱風的相對濕度也越低,吸收水分、攜帶水分的能力也越強,非常有利於乾燥,而且乾燥熱效率也很高。在許多乾燥設備中,當其它條件不變,乾燥機的脫水能力基本與熱風溫度的變化成正比。在選擇乾燥設備時,一定要對破壞物料的極限溫度有充分的數據,在物料允許的情況下,盡量選擇高溫介質。特別應注意的是,許多種乾燥方法,特別是快速乾燥,乾燥後的物料溫度大大低於乾燥介質溫度,例如氣流乾燥機熱風溫度雖然高達250℃以上,而出料溫度一般均在60℃以下。
(5) 環境溫濕度
這里主要是指天氣的變化對乾燥的影響,一般乾燥機都是以大氣加熱作乾燥介質的,大氣的溫度越高,濕度越低,就越有利於乾燥,而南方春夏季,天雨潮濕,空氣濕度很大,就不利於乾燥機能力的發揮,影響產量。
我國幅員遼闊,南北方空氣濕度相差很大。在南方某些地方,冬季的濕度僅為0.008 kg水/kg絕干空氣,而到春夏季,其大氣濕度卻高達0.025 kg水/kg絕干空氣,是前者的三倍多,因此,在較低排氣溫度(<90℃)下操作的熱風乾燥,在春夏季時大氣濕度增高,其乾燥速率必然下降,而所需的時間將上升。由於大氣濕度的增高,物料的平衡水含量亦必然上升,這些因素均將使乾燥產量下降,在某些情況下會使產量下降50%以上。
3、熱源的選擇
作為乾燥設備配套的熱源設備很多,通常是按消耗的燃料來分類,有燃煤、燃油、燃氣、電力等,按換熱情況又可分為乾燥介質直接加熱和間接加熱。 譬如鍋爐加熱水形成水蒸汽,水蒸汽再通過散熱器加熱乾燥介質,這就是兩次間接加熱,這種方式總的熱效率很低,僅40%左右,在某些工廠生產中有多處用熱點,為便於集中供熱和管理,採用較多。
燃煤熱風爐有間接加熱的和直接用燃燒煙氣作乾燥介質的(直火爐),間接加熱的熱空氣清潔干凈,熱效率60~70%。而直接加熱的因受煙塵的污染而影響產品質量,但熱能利用很充分,熱效率很高,對乾燥時物料中混入少量煙塵而無影響時,可優先採用。油燃燒器目前也使用越來越多,具有操作簡便、升溫迅速、溫度穩定、控制方便的優點,且使用成本較低。
熱源選擇合理與否影響很大,涉及到設備的投資費用、熱風溫度、物料的乾燥質量、乾燥成本、環境保護、人員勞動強度、自動控制水平等。
4、關於乾燥設備的保溫
乾燥設備的保溫投入的費用不高,但乾燥機的熱效率一般可以提高10-30%,所以應引起足夠的重視。
排出物料的回收
所有的乾燥設備都有排濕口,特別是採用熱風乾燥方式,排濕口或多或少總會夾帶一些超細粉末物料。對一些價值較高或排放量有限制的物質,物料的回收顯得格外重要。物料的回收有專門的裝置,在乾燥系統中,對乾燥機的工作參數有影響,在設備選型時要一並考慮。
乾燥設備選型前的計算
(1)、 物料含水率
W×100 W×100
m = —————— = —————— (%)
G Go+W
式中:W--水分重量,kg;
G--濕物料重量,kg;
Go--絕干物料重量,kg。
(2)、 乾燥脫水量
不計乾燥中物料的損耗(一般僅有尾氣中帶有很微量的超細粉末,可以忽略不計),則:
乾燥前濕物料中絕干物質重量=乾燥後干物料中絕干物質重量,
即:
G1×(1-m1)= G2×(1-m2)
式中:G1--濕物料產量,kg/h;
G2--乾燥後物料產量,kg/h;
m1--濕物料含水率;
m2--乾燥後物料含水率;
上式中,G2、m1、m2均為已知,可計算得出G1,那麼:
乾燥脫水量
W0 = G1 - G2 (kg/h)
前面已介紹,乾燥機的生產能力受物料種類、形狀、初始含水率變動、熱風溫度、環境空氣溫濕度等很多因素的影響,為了確保乾燥生產能力穩定正常,一般應該將計算的乾燥脫水量放大20~30%來進行乾燥機選型,即:
選用乾燥機脫水量 =W0 (計算乾燥脫水量)× ( 1.2 ~ 1.3 )
否則,因受前述因素的影響,就可能造成有時生產能力達不到預計的產量,而影響全生產線的正常生產。
乾燥設備選型時,首先應按濕物料的形態對乾燥機機型進行初選,而後根據處理量的大小計算出所需小時脫水量並放大20~30%來確定乾燥機脫水量,另外還須考慮自身生產條件、投資大小、工人素質、衛生要求等,選擇操作方式(連續或間接)、熱源(蒸汽散熱器、熱風爐、油燃燒等)、設備材質(普通碳鋼、鋁材、不銹鋼)等。
你什麼學校的? 怎麼作業和我以前的 一樣的??????
㈥ 桶裝純凈水簡易出水裝置(超市賣的10多塊那種)的設計圖以及原理和製作所需材料和製作工藝
lz的要求很高呀,設計圖都需要
原理可以有很多,當然簡單最好
可以用一個長軟管,採用虹吸的原理來出水
軟管的出水口有個小閥門即可
㈦ 怎樣畫化學實驗裝置圖
實驗課本上一般都有實驗裝置圖,你要先熟練掌握單個儀器的畫法。
然後呢,在做實驗時,首專先確定實屬驗所需儀器,接著按照儀器連接順序自下而上、自左向右畫出實驗裝置即可。
因為化學實驗裝置圖一般只要求畫平面的,所以難度不是很大。要想使圖畫美觀,還是建議對單個實驗儀器畫法多加練習。排版時候,注意在紙張上安排得當,這樣畫出來就間接、美觀。
㈧ 求助煉獄裝置設計圖在哪兒打.新人求教
煉獄裝置有四種,分別是貪食之煉獄裝置、戰爭之煉獄裝置、白骨回之煉獄裝置、邪惡之煉答獄裝置。這四種煉獄裝置在新崔斯特姆城鎮右上角的邪教之徒寓所中分別可以打開四扇傳送門。進入每道傳送門內有兩個BOSS,殺死它們可以獲得一種材料。四扇傳送門中各有一種材料。集齊這四種材料可以找工匠製作地獄火戒指以及地獄火護符。
㈨ 機械設計課程設計---設計盤磨機傳動裝置!!!
我也在做這個題也 老兄
我只能提供樣本給你哈 具體的還是得靠你自己啦
目 錄
一 課程設計書 2
二 設計要求 2
三 設計步驟 2
1. 傳動裝置總體設計方案 3
2. 電動機的選擇 4
3. 確定傳動裝置的總傳動比和分配傳動比 5
4. 計算傳動裝置的運動和動力參數 5
6. 齒輪的設計 8
7. 滾動軸承和傳動軸的設計 19
8. 鍵聯接設計 26
9. 箱體結構的設計 27
10.潤滑密封設計 30
11.聯軸器設計 30
四 設計小結 31
五 參考資料 32
一. 課程設計書
設計課題:
設計一用於帶式運輸機上的兩級齒輪減速器.運輸機連續單向運轉,載荷有輕微沖擊,工作環境多塵,通風良好,空載起動,捲筒效率為0.96(包括其支承軸承效率的損失),減速器小批量生產,使用期限10年(300天/年),三班制工作,滾筒轉速容許速度誤差為5%,車間有三相交流,電壓380/220V。
參數:
皮帶有效拉力F(KN) 3.2
皮帶運行速度V(m/s) 1.4
滾筒直徑D(mm) 400
二. 設計要求
1.減速器裝配圖1張(0號)。
2.零件工作圖2-3張(A2)。
3.設計計算說明書1份。
三. 設計步驟
1. 傳動裝置總體設計方案
2. 電動機的選擇
3. 確定傳動裝置的總傳動比和分配傳動比
4. 計算傳動裝置的運動和動力參數
5. 齒輪的設計
6. 滾動軸承和傳動軸的設計
7. 鍵聯接設計
8. 箱體結構設計
9. 潤滑密封設計
10. 聯軸器設計
1.傳動裝置總體設計方案:
1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布,故沿軸向載荷分布不均勻,
要求軸有較大的剛度。
3. 確定傳動方案:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。
其傳動方案如下:
圖一:(傳動裝置總體設計圖)
初步確定傳動系統總體方案如:傳動裝置總體設計圖所示。
選擇V帶傳動和二級圓柱斜齒輪減速器。
傳動裝置的總效率
為V帶的傳動效率, 為軸承的效率,
為對齒輪傳動的效率,(齒輪為7級精度,油脂潤滑)
為聯軸器的效率, 為滾筒的效率
因是薄壁防護罩,採用開式效率計算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.電動機的選擇
電動機所需工作功率為: P =P/η =3200×1.4/1000×0.760=3.40kW
滾筒軸工作轉速為n= = =66.88r/min,
經查表按推薦的傳動比合理范圍,V帶傳動的傳動比i =2~4,二級圓柱斜齒輪減速器傳動比i =8~40,
則總傳動比合理范圍為i =16~160,電動機轉速的可選范圍為n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
綜合考慮電動機和傳動裝置的尺寸、重量、價格和帶傳動、減速器的傳動比,
選定型號為Y112M—4的三相非同步電動機,額定功率為4.0
額定電流8.8A,滿載轉速 1440 r/min,同步轉速1500r/min。
方案 電動機型號 額定功 率
P
kw 電動機轉速
電動機重量
N 參考價格
元 傳動裝置的傳動比
同步轉速 滿載轉速 總傳動 比 V帶傳 動 減速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90
3.確定傳動裝置的總傳動比和分配傳動比
(1)總傳動比
由選定的電動機滿載轉速n 和工作機主動軸轉速n,可得傳動裝置總傳動比為 =n /n=1440/66.88=17.05
(2)分配傳動裝置傳動比
= ×
式中 分別為帶傳動和減速器的傳動比。
為使V帶傳動外廓尺寸不致過大,初步取 =2.3(實際的傳動比要在設計V帶傳動時,由所選大、小帶輪的標準直徑之比計算),則減速器傳動比為
= =17.05/2.3=7.41
根據展開式布置,考慮潤滑條件,為使兩級大齒輪直徑相近,查圖得高速級傳動比為 =3.24,則 = =2.29
4.計算傳動裝置的運動和動力參數
(1) 各軸轉速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各軸輸入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
則各軸的輸出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各軸輸入轉矩
= × × N•m
電動機軸的輸出轉矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
輸出轉矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
運動和動力參數結果如下表
軸名 功率P KW 轉矩T Nm 轉速r/min
輸入 輸出 輸入 輸出
電動機軸 3.40 22.55 1440
1軸 3.26 3.19 49.79 48.79 626.09
2軸 3.04 2.98 151.77 148.73 193.24
3軸 2.83 2.77 326.98 320.44 84.38
4軸 2.75 2.70 307.52 301.37 84.38
5.齒輪的設計
(一)高速級齒輪傳動的設計計算
1. 齒輪材料,熱處理及精度
考慮此減速器的功率及現場安裝的限制,故大小齒輪都選用硬齒面漸開線斜齒輪
(1)齒輪材料及熱處理
① 材料:高速級小齒輪選用45#鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =24
高速級大齒輪選用45#鋼正火,齒面硬度為大齒輪 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。
2.初步設計齒輪傳動的主要尺寸
按齒面接觸強度設計
確定各參數的值:
①試選 =1.6
查課本 圖10-30 選取區域系數 Z =2.433
由課本 圖10-26
則
②由課本 公式10-13計算應力值環數
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25為齒數比,即3.25= )
③查課本 10-19圖得:K =0.93 K =0.96
④齒輪的疲勞強度極限
取失效概率為1%,安全系數S=1,應用 公式10-12得:
[ ] = =0.93×550=511.5
[ ] = =0.96×450=432
許用接觸應力
⑤查課本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.設計計算
①小齒輪的分度圓直徑d
=
②計算圓周速度
③計算齒寬b和模數
計算齒寬b
b= =49.53mm
計算摸數m
初選螺旋角 =14
=
④計算齒寬與高之比
齒高h=2.25 =2.25×2.00=4.50
= =11.01
⑤計算縱向重合度
=0.318 =1.903
⑥計算載荷系數K
使用系數 =1
根據 ,7級精度, 查課本由 表10-8得
動載系數K =1.07,
查課本由 表10-4得K 的計算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查課本由 表10-13得: K =1.35
查課本由 表10-3 得: K = =1.2
故載荷系數:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按實際載荷系數校正所算得的分度圓直徑
d =d =49.53× =51.73
⑧計算模數
=
4. 齒根彎曲疲勞強度設計
由彎曲強度的設計公式
≥
⑴ 確定公式內各計算數值
① 小齒輪傳遞的轉矩 =48.6kN•m
確定齒數z
因為是硬齒面,故取z =24,z =i z =3.24×24=77.76
傳動比誤差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允許
② 計算當量齒數
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初選齒寬系數
按對稱布置,由表查得 =1
④ 初選螺旋角
初定螺旋角 =14
⑤ 載荷系數K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齒形系數Y 和應力校正系數Y
查課本由 表10-5得:
齒形系數Y =2.592 Y =2.211
應力校正系數Y =1.596 Y =1.774
⑦ 重合度系數Y
端面重合度近似為 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因為 = /cos ,則重合度系數為Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系數Y
軸向重合度 = =1.825,
Y =1- =0.78
⑨ 計算大小齒輪的
安全系數由表查得S =1.25
工作壽命兩班制,8年,每年工作300天
小齒輪應力循環次數N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齒輪應力循環次數N2=N1/u=6.255×10 /3.24=1.9305×10
查課本由 表10-20c得到彎曲疲勞強度極限
小齒輪 大齒輪
查課本由 表10-18得彎曲疲勞壽命系數:
K =0.86 K =0.93
取彎曲疲勞安全系數 S=1.4
[ ] =
[ ] =
大齒輪的數值大.選用.
⑵ 設計計算
① 計算模數
對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =2mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =51.73 來計算應有的齒數.於是由:
z = =25.097 取z =25
那麼z =3.24×25=81
② 幾何尺寸計算
計算中心距 a= = =109.25
將中心距圓整為110
按圓整後的中心距修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正.
計算大.小齒輪的分度圓直徑
d = =51.53
d = =166.97
計算齒輪寬度
B=
圓整的
(二) 低速級齒輪傳動的設計計算
⑴ 材料:低速級小齒輪選用45鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =30
速級大齒輪選用45鋼正火,齒面硬度為大齒輪 240HBS z =2.33×30=69.9 圓整取z =70.
⑵ 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。
⑶ 按齒面接觸強度設計
1. 確定公式內的各計算數值
①試選K =1.6
②查課本由 圖10-30選取區域系數Z =2.45
③試選 ,查課本由 圖10-26查得
=0.83 =0.88 =0.83+0.88=1.71
應力循環次數
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由課本 圖10-19查得接觸疲勞壽命系數
K =0.94 K = 0.97
查課本由 圖10-21d
按齒面硬度查得小齒輪的接觸疲勞強度極限 ,
大齒輪的接觸疲勞強度極限
取失效概率為1%,安全系數S=1,則接觸疲勞許用應力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查課本由 表10-6查材料的彈性影響系數Z =189.8MP
選取齒寬系數
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 計算圓周速度
0.665
3. 計算齒寬
b= d =1×65.71=65.71
4. 計算齒寬與齒高之比
模數 m =
齒高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 計算縱向重合度
6. 計算載荷系數K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系數K =1
同高速齒輪的設計,查表選取各數值
=1.04 K =1.35 K =K =1.2
故載荷系數
K= =1×1.04×1.2×1.4231=1.776
7. 按實際載荷系數校正所算的分度圓直徑
d =d =65.71×
計算模數
3. 按齒根彎曲強度設計
m≥
一確定公式內各計算數值
(1) 計算小齒輪傳遞的轉矩 =143.3kN•m
(2) 確定齒數z
因為是硬齒面,故取z =30,z =i ×z =2.33×30=69.9
傳動比誤差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允許
(3) 初選齒寬系數
按對稱布置,由表查得 =1
(4) 初選螺旋角
初定螺旋角 =12
(5) 載荷系數K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 當量齒數
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由課本 表10-5查得齒形系數Y 和應力修正系數Y
(7) 螺旋角系數Y
軸向重合度 = =2.03
Y =1- =0.797
(8) 計算大小齒輪的
查課本由 圖10-20c得齒輪彎曲疲勞強度極限
查課本由 圖10-18得彎曲疲勞壽命系數
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
計算大小齒輪的 ,並加以比較
大齒輪的數值大,選用大齒輪的尺寸設計計算.
① 計算模數
對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =3mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =72.91 來計算應有的齒數.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
計算中心距 a= = =102.234
將中心距圓整為103
修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正
分度圓直徑
d = =61.34
d = =143.12
計算齒輪寬度
圓整後取
低速級大齒輪如上圖:
齒輪各設計參數附表
1. 各軸轉速n
(r/min)
(r/min)
(r/min)
(r/min)
626.09 193.24 84.38 84.38
2. 各軸輸入功率 P
(kw)
(kw)
(kw)
(kw)
3.26 3.04 2.83 2.75
3. 各軸輸入轉矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)
49.79 151.77 326.98 307.52
6.傳動軸承和傳動軸的設計
1. 傳動軸承的設計
⑴. 求輸出軸上的功率P ,轉速 ,轉矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齒輪上的力
已知低速級大齒輪的分度圓直徑為
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圓周力F ,徑向力F 及軸向力F 的方向如圖示:
⑶. 初步確定軸的最小直徑
先按課本15-2初步估算軸的最小直徑,選取軸的材料為45鋼,調質處理,根據課本 取
輸出軸的最小直徑顯然是安裝聯軸器處的直徑 ,為了使所選的軸與聯軸器吻合,故需同時選取聯軸器的型號
查課本 ,選取
因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm,半聯軸器的孔徑
⑷. 根據軸向定位的要求確定軸的各段直徑和長度
① 為了滿足半聯軸器的要求的軸向定位要求,Ⅰ-Ⅱ軸段右端需要制出一軸肩,故取Ⅱ-Ⅲ的直徑 ;左端用軸端擋圈定位,按軸端直徑取擋圈直徑 半聯軸器與 為了保證軸端擋圈只壓在半聯軸器上而不壓在軸端上, 故Ⅰ-Ⅱ的長度應比 略短一些,現取
② 初步選擇滾動軸承.因軸承同時受有徑向力和軸向力的作用,故選用單列角接觸球軸承.參照工作要求並根據 ,由軸承產品目錄中初步選取0基本游隙組 標准精度級的單列角接觸球軸承7010C型.
D B
軸承代號
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 從動軸的設計
對於選取的單向角接觸球軸承其尺寸為的 ,故 ;而 .
右端滾動軸承採用軸肩進行軸向定位.由手冊上查得7010C型軸承定位軸肩高度 mm,
③ 取安裝齒輪處的軸段 ;齒輪的右端與左軸承之間採用套筒定位.已知齒輪 的寬度為75mm,為了使套筒端面可靠地壓緊齒輪,此軸段應略短於輪轂寬度,故取 . 齒輪的左端採用軸肩定位,軸肩高3.5,取 .軸環寬度 ,取b=8mm.
④ 軸承端蓋的總寬度為20mm(由減速器及軸承端蓋的結構設計而定) .根據軸承端蓋的裝拆及便於對軸承添加潤滑脂的要求,取端蓋的外端面與半聯軸器右端面間的距離 ,故取 .
⑤ 取齒輪距箱體內壁之距離a=16 ,兩圓柱齒輪間的距離c=20 .考慮到箱體的鑄造誤差,在確定滾動軸承位置時,應距箱體內壁一段距離 s,取s=8 ,已知滾動軸承寬度T=16 ,
高速齒輪輪轂長L=50 ,則
至此,已初步確定了軸的各端直徑和長度.
5. 求軸上的載荷
首先根據結構圖作出軸的計算簡圖, 確定頂軸承的支點位置時,
查《機械設計手冊》20-149表20.6-7.
對於7010C型的角接觸球軸承,a=16.7mm,因此,做為簡支梁的軸的支承跨距.
傳動軸總體設計結構圖:
(從動軸)
(中間軸)
(主動軸)
從動軸的載荷分析圖:
6. 按彎曲扭轉合成應力校核軸的強度
根據
= =
前已選軸材料為45鋼,調質處理。
查表15-1得[ ]=60MP
〈 [ ] 此軸合理安全
7. 精確校核軸的疲勞強度.
⑴. 判斷危險截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B無需校核.從應力集中對軸的疲勞強度的影響來看,截面Ⅵ和Ⅶ處過盈配合引起的應力集中最嚴重,從受載來看,截面C上的應力最大.截面Ⅵ的應力集中的影響和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同時軸徑也較大,故不必做強度校核.截面C上雖然應力最大,但是應力集中不大,而且這里的直徑最大,故C截面也不必做強度校核,截面Ⅳ和Ⅴ顯然更加不必要做強度校核.由第3章的附錄可知,鍵槽的應力集中較系數比過盈配合的小,因而,該軸只需膠合截面Ⅶ左右兩側需驗證即可.
⑵. 截面Ⅶ左側。
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅶ的右側的彎矩M為
截面Ⅳ上的扭矩 為 =311.35
截面上的彎曲應力
截面上的扭轉應力
= =
軸的材料為45鋼。調質處理。
由課本 表15-1查得:
因
經插入後得
2.0 =1.31
軸性系數為
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以
綜合系數為: K =2.8
K =1.62
碳鋼的特性系數 取0.1
取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右側
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅳ左側的彎矩M為 M=133560
截面Ⅳ上的扭矩 為 =295
截面上的彎曲應力
截面上的扭轉應力
= = K =
K =
所以
綜合系數為:
K =2.8 K =1.62
碳鋼的特性系數
取0.1 取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.鍵的設計和計算
①選擇鍵聯接的類型和尺寸
一般8級以上精度的尺寸的齒輪有定心精度要求,應用平鍵.
根據 d =55 d =65
查表6-1取: 鍵寬 b =16 h =10 =36
b =20 h =12 =50
②校和鍵聯接的強度
查表6-2得 [ ]=110MP
工作長度 36-16=20
50-20=30
③鍵與輪轂鍵槽的接觸高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
兩者都合適
取鍵標記為:
鍵2:16×36 A GB/T1096-1979
鍵3:20×50 A GB/T1096-1979
9.箱體結構的設計
減速器的箱體採用鑄造(HT200)製成,採用剖分式結構為了保證齒輪佳合質量,
大端蓋分機體採用 配合.
1. 機體有足夠的剛度
在機體為加肋,外輪廓為長方形,增強了軸承座剛度
2. 考慮到機體內零件的潤滑,密封散熱。
因其傳動件速度小於12m/s,故採用侵油潤油,同時為了避免油攪得沉渣濺起,齒頂到油池底面的距離H為40mm
為保證機蓋與機座連接處密封,聯接凸緣應有足夠的寬度,聯接表面應精創,其表面粗糙度為
3. 機體結構有良好的工藝性.
鑄件壁厚為10,圓角半徑為R=3。機體外型簡單,拔模方便.
4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到 傳動零件齒合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,有便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M6緊固
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.
D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 蓋螺釘:
啟蓋螺釘上的螺紋長度要大於機蓋聯結凸緣的厚度。
釘桿端部要做成圓柱形,以免破壞螺紋.
F 位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
G 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.
減速器機體結構尺寸如下:
名稱 符號 計算公式 結果
箱座壁厚
10
箱蓋壁厚
9
箱蓋凸緣厚度
12
箱座凸緣厚度
15
箱座底凸緣厚度
25
地腳螺釘直徑
M24
地腳螺釘數目
查手冊 6
軸承旁聯接螺栓直徑
M12
機蓋與機座聯接螺栓直徑
=(0.5~0.6)
M10
軸承端蓋螺釘直徑
=(0.4~0.5)
10
視孔蓋螺釘直徑
=(0.3~0.4)
8
定位銷直徑
=(0.7~0.8)
8
, , 至外機壁距離
查機械課程設計指導書表4 34
22
18
, 至凸緣邊緣距離
查機械課程設計指導書表4 28
16
外機壁至軸承座端面距離
= + +(8~12)
50
大齒輪頂圓與內機壁距離
>1.2
15
齒輪端面與內機壁距離
>
10
機蓋,機座肋厚
9 8.5
軸承端蓋外徑
+(5~5.5)
120(1軸)125(2軸)
150(3軸)
軸承旁聯結螺栓距離
120(1軸)125(2軸)
150(3軸)
10. 潤滑密封設計
對於二級圓柱齒輪減速器,因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度.
油的深度為H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化學合成油,潤滑效果好。
密封性來講為了保證機蓋與機座聯接處密封,聯接
凸緣應有足夠的寬度,聯接表面應精創,其表面粗度應為
密封的表面要經過刮研。而且,凸緣聯接螺柱之間的距離不宜太
大,國150mm。並勻均布置,保證部分面處的密封性。
11.聯軸器設計
1.類型選擇.
為了隔離振動和沖擊,選用彈性套柱銷聯軸器.
2.載荷計算.
公稱轉矩:T=9550 9550 333.5
查課本 ,選取
所以轉矩
因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm
㈩ 怎樣畫化學實驗裝置圖
ChemDraw是全球領先來的科學繪圖工具。它自不僅使用簡便、輸出質量高,並且結合了強大的化學智能技術,集成ChemOffice 套件和許多第三方產品,受到成千上萬用戶的喜愛。用它畫化學實驗裝置圖的步驟如下:
在ChemDraw中繪制裝置圖的具體步驟:
步驟一 打開ChemDraw的界面。
步驟二 選擇工具欄中的「刻章」按鈕,出現如下圖子菜單:
ChemDraw刻章分類下的Clipware,part 2組件
步驟五 通過選中組件進行大小和位置的調整組成裝置圖。
以上就是介紹的在ChemDraw中繪制裝置圖的教程,其實很簡單,只要選對相應的裝置,然後拖到適當位置即可。