『壹』 汽車傳動軸的類型有哪些
傳動軸是由軸管、伸縮套和萬向節組成。傳動軸(DriveShaft)連接或裝配各項配件,而又可移動或轉動的圓形物體配件,一般均使用輕而抗扭性佳的合金鋼管製成。對前置引擎後輪驅動的車來說是把變速器的轉動傳到主減速器的軸,它可以是好幾節由萬向節連接。它是一個高轉速、少支承的旋轉體,因此它的動平衡是至關重要的。一般傳動軸在出廠前都要進行動平衡試驗,並在平衡機上進行了調整。
傳動軸的結構特點
重型載貨汽車根據驅動形式的不同選擇不同型式的傳動軸。一般來講4×2驅動形式的汽車僅有一根主傳動軸。6×4驅動形式的汽車有中間傳動軸、主傳動軸和中、後橋傳動軸。6×6驅動形式的汽車不僅有中間傳動軸、主傳動軸和中、後橋傳動軸,而且還有前橋驅動傳動軸。在長軸距車輛的中間傳動軸一般設有傳動軸中間支承.它是由支承架、軸承和橡膠支承組成。
傳動軸是由軸管、伸縮套和萬向節組成。伸縮套能自動調節變速器與驅動橋之間距離的變化。萬向節是保證變速器輸出軸與驅動橋輸入軸兩軸線夾角的變化,並實現兩軸的等角速傳動。一般萬向節十字軸、十字軸承和凸緣叉等組成。斯太爾系列重型汽車使用的傳動軸萬向節採用滾柱十字軸軸承,配合以短而粗的十字軸,可傳遞較大的轉距。在軸承端面設有蝶形彈簧,以壓緊滾柱。十字軸的端面增加了具有螺旋槽的強化尼龍墊片,可防止大夾角或大轉距傳遞動力時燒結。
『貳』 粉磨工藝及設備
除處理某些砂礦以外的所有選礦廠,幾乎都有磨礦作業。在選礦工業中,當有用礦物在礦石中呈細粒嵌布時,為了能把脈石從礦石中除去,並把各種有用礦物相互分開,必須將礦石磨細至 0. 1 ~0. 3 mm,甚至有時磨至 0. 05 ~0. 074 mm 以下。磨礦細度與選礦指標有著密切的關系。在一定程度上,有用礦物的回收率隨著磨礦細度的減小而增加。因此,適當減小礦石的磨碎細度能提高有用礦物的回收率和產量。磨礦所消耗的動力占選礦廠動力總消耗的 30%以上。因此,磨礦作業在選礦工藝流程中佔有很重要的地位。
磨礦的目的主要有三個: 一是滿足後續選礦提純作業對礦物解離度的要求; 二是直接加工滿足塑料、橡膠、陶瓷、玻璃、耐火材料、油漆塗料等相關應用領域細度要求的非金屬礦粉體產品; 三是為下述超細粉碎和精細分級作業提供滿足其給料粒度要求的粉體原料。
根據作業方式磨礦可分為干法和濕法兩種,一般以有用礦物單體解離為目的的磨礦作業大多採用濕法; 而以直接加工粉體產品為目的的磨礦作業大多採用干法,這種作業也常常稱之為磨粉。
一、粉磨的工藝流程
粉磨的工藝分為開路粉磨工藝和閉路粉磨工藝。
開路系統的特點是: 流程簡單,設備少,投資省,操作維護方便; 缺點是易產生過粉碎和粉包球,效率低,產量低,電耗高,粒度分布較寬。
閉路系統的特點是: 不易過粉碎,效率高,電耗較低,分級方便,粒度易控制,粒度分布較窄,顆粒均勻; 缺點是流程較復雜,投資大,操作維護較復雜。
二、粉磨設備
常用的粉磨設備主要有球磨機、自磨機、棒磨機、礫磨機、立式磨機等類型。
( 一) 球磨機
1. 類型
按長徑比: L ∶ D =2 以下為短磨,3 左右為中長磨,4 以上為長磨 ( 管磨) 。
按卸料方式: 尾卸式; 中卸式。
按傳動方式: 中心傳動式; 邊緣傳動式。
其他: 乾式; 濕式; 間歇式; 連續式。
球磨機類型見圖 1 -21。
圖 1 -21 球磨機的種類
圖 1 -22 磨礦介質的運動軌跡
2. 基本結構
筒體,襯板,進料裝置,出料裝置,電機及傳動機構。
3. 工作原理
在磨礦過程中,磨礦機以一定轉速旋轉,處在筒體內的研磨介質由於旋轉時產生離心力,致使它與簡體之間產生一定摩擦力。摩擦力使研磨介質隨著筒體旋轉,並到達一定的高度。當研磨介質的自身重力 ( 實際上是重力的向心分力) 大於離心力時,研磨介質就脫離筒體拋射下落,從而擊碎礦石。同時,在磨礦機轉動過程中,研磨介質還會有滑動現象,對礦石產生研磨作用。所以,礦石在研磨介質產生的沖擊力和研磨力聯合作用下得到粉碎。磨礦介質的運動軌跡見圖 1 -22。
4. 特點
對物料適應性強,能連續生產,生產能力大; 粉碎比大,能達 300 以上; 粒度易調整,結構簡單,堅固,可靠,密封性好。
缺點是: 工作效率低,電能利用率低;體型笨重,可達幾百噸; 鋼鐵消耗量大 ( 1000 g/t) ; 雜訊大。
研磨介質填充系數: 中長磨的填充系數為 25% ~ 35%,長磨的填充系數為 30% ~35% ,短磨的填充系數為 35% ~ 45% 。具體由實驗確定。
級配: 兩頭小中間大,採用 3 ~5 種球徑配合。通過實驗確定最佳級配。球料比過小,研磨效率低; 球料比過大,增加研磨介質損耗,降低研磨效率。
( 二) 自磨機
自磨機的工作原理與球磨機的工作原理基本相同,不同的僅是它不另外採用研磨介質( 有時為提高其處理能力,也加入少量的鋼球,通常只佔自磨機有效容積的 2% ~ 3% 左右) ,而是利用礦石本身在筒體內連續不斷地相互沖擊和磨剝作用來達到粉碎礦石的目的。在破碎和磨碎的同時,空氣流以一定的速度通入自磨機中,將粉碎了的礦物從自磨機內吹出,並進行分級,這種磨礦方法的主要優點是粉碎比非常大,能使直徑1 m 以上的礦塊,在一次磨碎過程中排礦粒度小於 0. 074 mm ( -200 目) 。因此,採用自磨機可以簡化破碎流程,並降低選礦廠基本建設的設備投資及其日常維護和管理費用。由於自磨機的過磨現象少,處理後的礦物表面干凈,因而能提高精礦品位和回收率。
LM 離心自磨機是一種新型的立軸、錘破、旋風式離心自磨機,這種磨礦機具有粉碎比大 ( 給料粒度 200 mm,產品平均粒度 10 ~30 μm) 、產量高、單位粉體產品能耗較低、操作維護方便等特點。
LM 離心自磨 機 現有 兩 種 規 格: LM65 和 LM120,主 機 裝 機 容 量 分 別 為 55 kW 和200kW,產量分別為 1 ~ 4. 5 t / h 及 10 ~ 14 t / h。這種磨機適合於中等硬度以下的脆性礦物,如滑石、方解石、高嶺土等的粉碎加工。濕式自磨機的結構見圖 1 -23。
圖 1 -23 5500 ×1800 濕式自磨機
圖 1 -24 棒磨過程
( 三) 棒磨機
棒磨機是採用圓棒作為研磨介質,而不像球磨機採用鋼球作為研磨介質。棒的直徑通常為 40 ~100 mm,棒的長度一般比筒體長度短 25 ~50 mm。棒磨機主要是利用棒滾動時產生磨碎和壓碎的作用將礦石破碎的。棒磨過程見圖 1 -24。
當棒磨機轉動時,棒只是在筒體內互相轉移位置。棒磨機不只是用棒的某一點來打碎礦石,而是以棒的全長來壓碎礦石。因此,在較大塊礦石沒有被破碎前,細粒礦石很少受到棒的沖擊,礦石過粉碎的可能性小,可以得到粒度比較均勻的磨碎產品。由於棒磨機具有以上工作特性,通常取其轉速比球磨機的低一些,約為臨界轉速的 60% ~ 70%; 充填率一般為 30% ~40%; 給礦粒度不宜大於 25 mm。棒磨機一般在第一段開路磨礦中用於礦石的細碎和粗磨。在鎢、錫或其他稀有金屬的重選廠或磁選廠,為了防止礦石過粉碎,常採用棒磨機。棒磨機用於開路磨礦,可以代替短頭圓錐破碎機作細碎。
( 四) 礫磨機
礫磨機是古老的磨礦設備之一,礫磨機是一種用礫石或卵石作研磨介質的磨礦設備。由於磨礦機的生產率與研磨介質的密度成正比,因此,礫磨機的筒體尺寸 ( D × L) 要比相同生產率的球磨機筒體尺寸大。同時,其襯板一般要求能夠夾住研磨介質,形成 「自襯」,以減少襯板磨損,加強提升物料的能力和礦物間的粉碎作用。因此,常採用網狀襯板或梯形襯板,或者兩者的組合。
礫磨機具有能耗小、生產費用低、節省金屬材料 ( 如研磨介質) 、避免金屬對被磨碎物料的污染等特點,特別適用於對物料有某些特殊要求的場合。國外將礫磨機用於處理金、銀、重晶石等金屬和非金屬礦石。礫磨機工作時,轉速一般比球磨機略高,常為臨界轉速的 85% ~90%,礦漿濃度一般比球磨機低 5% ~10%。
( 五) 立式磨機類
立式磨機類又可分為盤磨機、旋磨機等。
特點: 入磨物料較大 ( 50 ~ 80 mm) ; 自帶選粉裝置,物料在磨內停留時間短( 3 min ± ) ,過粉磨現象少; 粉磨效率高,電耗低 ( 為球磨的 40% ~ 60% ) ; 產品粒度易調整,粒度均勻; 結構緊湊,佔地小; 雜訊小,粉塵少。
缺點: 只適於粉磨中等硬度的物料,製造要求較高,操作要求嚴格。
1. 盤磨機
盤磨機是利用輥子在圓盤上的快速轉動來對物料進行粉碎的磨機。一種是圓盤固定型,即圓盤固定不動而安裝輥子的梅花架快速轉動的懸輥式盤磨機,又稱雷蒙磨 ( Ray-mond Mill) ,按輥數分為 3R 和 4R 兩類。另一種是圓盤轉動型,即輥子部件不繞機架中心軸轉動而是圓盤快速轉動。雷蒙磨的結構見圖 1 -25。
2. 旋磨機
旋磨機粉碎比大,可直接將 100 mm 左右的給料粉碎到 10 μm 左右; 產品粒度調節范圍寬,調整分級參數可生產出 500 ~1250 目 ( 10 μm) ,既可用於細磨,也可以用於超細磨。生產能力 1 ~30 t/h。旋磨機的結構見圖 1 -26。
3. 渦輪式粉碎機
這種渦輪式粉碎機主要由加料斗、轉子、葉片、篩網、磨塊、機殼、主軸、傳動裝置等組成。工作時,由電動機通過皮帶傳動,帶動主軸及緊固在主軸上的渦輪 ( 轉子) 高速旋轉。渦輪與篩網圈上的磨塊,組成合理、緊湊的結構,使進入機內的物料在旋轉氣流中受到緊密的摩擦、剪切和強烈的沖擊作用而被磨碎。在高速旋轉過程中,渦輪吸進大量的空氣,起到了冷卻機器、傳送細粉的目的。產品粒度受篩孔形狀、尺寸以及物料通過量控制。
圖 1 -25 雷蒙磨結構及外形圖
圖 1 -26 CLM -2 多級旋磨機
這種粉碎機的特點是結構緊湊,操作維護簡單,投資較少,作業靈活、方便,適用於中等硬度以下非金屬礦物、化工原料等的粉碎加工。渦輪式粉碎機結構見圖 1 -27。
4. 沖擊磨
立式沖擊磨的外形圖見圖 1 -28。物料由加料倉加入轉盤的上方,直接落入高速旋轉的轉盤,在離心力的作用下與轉盤外周邊打擊軌道的靶材產生高速度的碰撞,物料相互碰撞實現粉碎。粉碎後的物料經上升氣流帶入渦輪分級機進行分級,合格的物料被分選出來; 不合格的物料被拋擲到邊壁經二次風沖洗後落入轉盤中間,繼續進行粉碎。其特點是: 無需壓縮空氣或者磨礦介質,物料相互碰撞實現粉碎,消除了設備的磨損和鐵質污染。適用於莫氏硬度 5 以上如碳化硅、剛玉、鋯英砂、磨料、耐火材料等高硬度物料的加工。
圖 1 -27 渦輪式粉碎機
圖 1 -28 立式沖擊磨外形圖
三、影響粉磨的諸因素
1. 易磨系數
干法開路粉磨時,以一定量物料被磨到一定細度時所需的時間表示。
濕法開路粉磨時,以一定量物料被磨到一定細度時試驗磨機的千轉數表示。
干法閉路粉磨時,以系統達到平衡時,磨機轉一圈能磨得細度合格的產品的質量表示。
2. 易磨性
絕對易磨性: 用工作指數表示,即 907 kg 物料從理論無限大磨碎到 80% 能通過100 μm 方孔篩所消耗的功 ( kW·h) 表示。常見物料的易磨性見表 1 - 2。
表 1 -2 一些物料的易磨性 單位: kW·h
在礦物加工上習慣用普氏硬度系數作為礦石堅固性的標准,普氏硬度系數為抗壓強度的百分之一,用符號 f 表示。
非金屬礦產加工與開發利用
式中:σp———抗壓強度。
也常用「可碎(磨)性系數」來衡量礦石粉碎的難易程度,可碎(磨)性系數的表示如下:
非金屬礦產加工與開發利用
實踐中常以石英作為標準的中硬礦石,將其可碎性系數定為1,硬礦石的可碎性系數都小於1,而軟礦石則大於1。
在礦物加工實踐中,常按普氏硬度將岩石分為五個等級,以此來表示岩石破碎的難易程度。詳見表1-3。
表1-3 岩石破碎難易程度分類
3.入磨及出磨物料粒度
磨機產量隨入磨物料粒度的減小而增加,隨出磨物料粒度的減小而減小。
4.粉磨設備
設備的大型化有利於提高勞動生產率和粉磨效率,節約能源。
5.入料的均勻性、入料的溫度與水分
入料的均勻性影響出料的均勻性;易磨性隨溫度的升高而降低,故影響磨機效率。溫度越高,研磨能量消耗越大,如入磨物料溫度超過50℃,磨機產量將受影響,超過80℃,磨機產量降低10%~15%。
如入磨物料水分過高,使產量降低,甚至黏堵,增加能耗;適量的水分,可以降低磨溫,減少靜電效應,提高粉磨效率。
6.助磨劑
在粉碎作業中,能夠顯著提高粉碎效率或降低能耗的化學物質稱為助磨劑。按助磨劑添加時的物質狀態可分為固體、液體和氣體助磨劑;根據物理化學性質可分為有機助磨劑和無機助磨劑。
1)固體助磨劑:如硬脂酸鹽類、膠體二氧化硅、碳黑、氧化鎂粉、膠體石墨等。
2)液體助磨劑:包括各種表面活性劑、分散劑等。如用於水泥熟料、方解石、石灰石等的三乙醇胺;用於石英等的烷基油酸(鈉);用於滑石的聚羧酸鹽;用於硅灰石的六偏磷酸鈉等。
3)氣體助磨劑:如蒸氣狀態的極性物質(丙酮、硝基甲烷、甲醇、水蒸氣)以及非極性物質(四氯化碳等)。
常用助磨劑見表1-4。
表1-4 常用助磨劑
任何一種有助於化學鍵破裂和阻止表面重新結合並防止微顆粒團聚的葯劑都有助於超細粉碎過程。
在非金屬礦的濕式超細粉碎中,常用的助磨劑通常是表面活性劑。如:①鹼性聚合無機鹽,在這類表面活性劑中,除了用於硅酸鹽礦物的磨礦外,一般多聚磷酸鹽優於多聚硅酸鹽;②鹼性聚合有機鹽,在這類中,最合適的是丙烯酸酯,它受pH的影響最小;③偶極=偶極有機化合物,如烷烴醇胺等。
四、分級設備
分級設備包括機械分級機、細篩、水力分級機和風力分級機等。細篩已在破碎與篩分一節中做了介紹。
1.機械分級機
螺旋分級機
螺旋分級機按分級液面的高低,分為高堰式、低堰式和沉沒式三種;根據螺旋數目,又可分為單螺旋和雙螺旋分級機。
螺旋分級機有一個傾斜的半圓柱形槽子,槽中裝有一個或兩個螺旋,它的作用是攪拌礦漿並把沉砂運向斜槽的上端。螺旋葉片與空心軸相連,空心軸支承在上下兩端的軸承內。傳動裝置安在槽子的上端,電動機經傘齒輪使螺旋傳動。下端軸承裝在提升機構的底部,可轉動提升機構使它上升或下降。提升機構由電動機經減速器和一對傘齒輪帶動絲桿,使螺旋下端升降。停車時,可將螺旋提起以免沉砂壓住螺旋,使開車時不至於過負荷。2400浸入式雙螺旋分級機結構及原理見圖1-29。
高堰式螺旋分級機的溢流堰比下端軸承高,但低於下端螺旋的上邊緣。它適合於分離出0.15~0.20mm的粒級,通常用在第一段磨礦,與磨礦機相配合。沉沒式的下端螺旋有4~5圈全部浸在礦漿中,分級面積大,利於分出小於0.15mm的粒級,常用在第二段磨礦與磨機構成機組。低堰式的溢流堰低於下端軸承的中心,液面很小,受攪動作用大,主要用於含泥礦石的洗礦。
圖1-29 Ф2400浸入式雙螺旋分級機(據胡岳華等,2006)單位:mm
螺旋分級機構造簡單,工作平穩,操作方便,返砂含水量低,易於與球磨機自流聯結,因此常被採用。它的缺點是,下端軸承易磨損和佔地面積大等,因此有被水力旋流器取代的趨勢。
2.水力分級機
(1)水力旋流器
水力旋流器其上部是一個中空的圓柱體,下部是一個與圓柱體相通的倒錐體,二者組成水力旋流器的工作筒體。圓柱形筒體上端切向裝有給礦管,頂部裝有溢流管及溢流導管。在圓錐形筒體底部有沉砂口。各部分之間用法蘭盤及螺釘連接。給礦口、筒體和沉砂口通常襯有橡膠、聚氨酯或輝綠岩鑄石,以便減少磨損並在磨損後更換。其結構見圖1-30。沉砂口還可以製成可調的,根據需要調節其大小。小型水力旋流器還可完全由聚氨酯製成。礦漿以49~245kPa的壓力,5~12m/s的高速從給礦管按切線方向進入圓柱形筒體,隨即繞軸線高速旋轉,產生很大的離心力,形成一個旋渦。礦漿中粒度和密度不同的顆粒,由於受到的離心力不同,所以它們在旋流器中的運動速度、加速度及方向也各不相同,粗而重的顆粒受的離心力大,被拋向筒壁,按螺旋線軌跡下旋到底部,作為沉砂從沉砂口排出。細而輕的顆粒受的離心力小,被帶到中心,在錐形筒體中心形成內螺旋礦流向上運動,作為溢流從溢流管排出。水力旋流器的分離粒度范圍一般為0.3~0.01mm。
圖1-30 水力旋流器結構示意圖
與水力旋流器有關的參數很多,而且往往相互關聯,相互制約,不易調整和控制,這也是它在我國難以廣泛應用的重要原因。
水力旋流器可用作高嶺土、石英、長石等非金屬礦的分級或脫泥,用作分級設備時,主要用來與磨機組成磨礦-分級系統。
水力旋流器的優點是:構造簡單,沒有運動部件;設備費用低,維護方便,佔地面積小、基建費用少;單位容積處理能力大;分級粒度細,最終可達10μm以下;分級效率較高,最高可達80%左右;礦漿在旋流器中滯留的量和時間少,停機時容易處理。其缺點是:給礦砂泵的動力消耗大且磨損快;給料口和沉砂口容易磨損;給礦濃度、粒度、黏度和壓力的微小波動對工作指標有很大影響。
(2)槽形分級機
槽形分級機根據沉降條件不同分為自由沉降和干涉沉降兩種。
自由沉降槽形水力分級機俗稱分級箱,早在50年代就已在我國各錫礦選廠得到廣泛應用。其結構主要由傾斜的箱體,阻砂條和底閥組成。其工作過程是:礦漿由箱體上部矩形溜槽一端給入,細粒物料從溜槽另一端溢出,粗粒物料則經阻砂條沉入角錐形分級室,由底閥的排礦口排出。高壓水從底閥進水口給入,形成起分級作用的上升水流。排礦口直徑可根據沉砂粒度大小製成不同的尺寸,排礦量可用手輪調節。優點是:構造簡單、工作可靠、維修方便、無動力消耗;缺點是:分級效率低,一般為25%~50%。它適用於處理粒度較小和含泥量較多的物料,適宜分級粒度為2~0.074mm,小於0.074mm的物料則分級效果差,給礦濃度宜為18%~25%。
干涉沉降槽形水力分級機結構見圖1-31。主要由一個梯形槽,4個角錐形箱體及帶有葉片的攪拌器、傳動裝置以及分級排礦裝置組成。4個箱體從給礦端到溢流端逐個增大,呈階梯形配置。各箱體底部的分級裝置包括攪拌室、分級室和壓力水室。在分級裝置下部有接收分級產品的受料器。各室箱內的垂直空心軸下部裝有葉片攪拌器。由渦輪傳動空心軸,使攪拌器以約1.5r/min的速度回轉,防止產生旋渦和礦砂沉積。
圖1-31 干涉沉降水力分級機結構示意圖
空心軸內有桿穿過,桿的下端固定有錐形閥,桿的上端懸掛在渦輪上側的凸輪機構上。當渦輪轉動時,與其相連的凸輪機構帶動桿上下運動,以啟閉錐形閥進行定期排礦,由此保證排出較濃的產品,降低水耗,防止堵塞。砂先集中在受料器中,然後經卸料口排出。通過調節卸料口的大小及氣門可控制排礦量。
這種分級機通常有2~5個分級箱,給料粒度一般為2~3mm,最大超過6mm,溢流粒度約為0.25~1mm。給礦濃度約為25%,溢流濃度約10%~15%,沉砂濃度可達50%。平均處理能力為10~25t/h。
這種分級機的特點是分級帶內礦漿的固體濃度較高,礦粒在干涉沉降條件下進行分級。其優點是處理能力大、耗水量少、產品濃度大和機體容積較小。
圖1-32 圓錐水力分級機
(3)圓錐形分級機
圓錐形分級機外形為倒立的圓錐體。結構見圖1-32。主要用於脫泥(分離0.15mm以下的礦粒)。在液面中心設有給礦圓筒,圓筒底部處於液面以下一定深度。礦漿沿切線方向給入中心圓筒,經緩沖後由底部流出。流出的礦漿呈放射狀向周邊溢流堰流去。在此過程中,沉降速度大於上升分速度的粗顆粒便沉在槽內,並經底部沉砂口排出。細粒隨表層礦漿進入溢流槽,作為溢流排出。給料粒度一般小於2mm,分級粒度為74μm以下。
脫泥斗的特點是結構簡單、操作方便。缺點是分級效率較低。脫泥斗已在石英砂等非金屬礦物的脫泥和分級中得到應用。
3.風力分級機
(1)循環氣流及旋風器式分級機
循環氣流及旋風器式分級機結構見圖1-33。物料經給料部和給料管送至旋轉的分散盤上,在離心力作用下甩至分級區。鼓風機將氣流送至灑落區,使夾雜於粗粒級中的細粒級有機會隨氣流向上排至分級區。氣流夾帶細粒級經排風部排至旋風器。若干個(最多8個)旋風器布置在分級區的圓形機體周圍。在分級區,物料在離心力和上升旋轉氣流作用下分為粗粒級和細粒級。粗粒級經下部機體和粗粒級密閉排出口排出,細粒級隨氣流向上運動,排至旋流器,自旋流器下部的密閉排料口經輸送溜槽最後排出。
圖1-33 循環氣流旋風器式分級機結構示意圖
在旋風器內脫除了細粒級物料的空氣,經風管返回鼓風機。鼓風機的風量可由節流閥或葉片調節器通過轉動裝置調節。這種風力分級機的氣流不是由分級機內部的葉輪產生,而是由單獨的鼓風機所產生。由於循環氣流已經在旋風器內將細粒級分出,從而物料不與鼓風機接觸,使鼓風機葉片的磨損大為減輕。鼓風機和節流裝置在機座,是通向集塵器的管子接頭。
圖1-34 葉輪式分級機
分級粒度可通過調節氣流量和旋轉葉輪轉速進行調節,調節范圍為2500~7000cm2/g。這種分級機分級效果好,產量大,還可以向機內導入新鮮空氣使物料冷卻,或導入熱氣流使物料乾燥,操作較靈活。旋風器、排風部、下部機體的內壁有玄武岩鑄石襯里,葉輪及周圍的機體用硬鎳鑄鐵製造,抗磨損性能很好。
(2)葉輪式分級機
葉輪式分級機結構見圖1-34。主要由鼓風葉輪、甩料盤、輔助葉輪、給料管、內筒、葉片、錐體、外筒、排料口等組成。其垂直軸上裝有鼓風葉輪、甩料盤,葉輪使氣流在內筒和外筒之間的空間循環流動。由於葉片的角度及葉輪的轉動,氣流呈螺旋形軌跡在內筒上升,甩料盤排出的物料隨氣流一邊旋轉、一邊向上運動。粗顆粒經排料口排出;細粒物料隨氣流上升,在經過葉輪和葉片較大及急劇改變運動方向的離心力的作用下與氣流分離,經外筒的內壁從細粒物料排出口排出,氣流則在機內循環使用。這種分級機可以單獨設置,也可與粉碎機設在一起,該分級系統可與各類乾式磨粉機,如雷蒙磨、立式磨等組合生產細粉及超細粉產品。
『叄』 空心軸有什麼特點
在軸體的中心制有一通孔,並在通孔內開有內鍵槽,軸體的外表面加工有階梯形圓柱,並開有外鍵槽,該軸的中心通孔與榨膛的主軸套接,輸入動力通過軸體外表面上的圓柱上安裝的傳動齒輪帶動該軸而直接傳遞給榨膛主軸。
空心軸的特點:
空心軸佔用的空間體積比較大,但可以降低重量。根據材料力學分析,在轉軸傳遞扭矩時,從徑向截面看,越外的地方傳遞有效力矩的作用越大。在轉軸需要傳遞較大力矩時,就需要較粗的軸徑。而由於在軸心部位傳遞力矩的作用較小,所以一般採用空心的,以減少轉軸的自重。
『肆』 汽車傳動軸構造是什麼樣的
傳動軸有實心軸和空心軸區別。為了減輕傳動軸的質量,節省材料,提高軸的強度、剛度,傳動軸多為空心軸,一般用厚度為1.5-3.0mm的薄鋼板卷焊而成,超重型貨車則直接採用無縫鋼管。傳動軸是高速轉動件,為了避免因為離心力引起的劇烈振動,故要求傳動軸的質量沿圓周均勻分布。
『伍』 一級減速器箱體、箱蓋上為什麼要設計筋板筋板有什麼作用如何布置
一級減速器箱體、箱蓋上為什麼要設計筋板?答:為保證殼體的強度、剛度,減小殼體的厚度;筋板有什麼作用?答:增大減速機殼體剛度!如何布置?答:一般是在兩軸安裝軸承的上下對稱位置分別布置較好!
『陸』 什麼是「空心軸電機」
空心軸步進電機到底什麼樣,為什麼是空心出軸的設計,它又有什麼用處呢?
先來簡單了解一下無精度要求的空心軸步進電機,如上圖所示:
無精度要求是指對於步進電機的空心出軸或者內孔的尺寸精度要求不高,其內孔主要被用於走線、透光或者通過空氣等其他媒介。空心軸步進電機這樣的設計極大的優化了機械設計、方便布線及節約了設計空間和生產成本。
接下來介紹一下有精度要求的空心軸步進電機:
有精度要求的空心軸步進電機,對於空心出軸或者說其內孔孔徑及螺紋的精度有著很高的要求,主要是因為這樣的空心軸步進電機大多是定製,用來滿足使用第三方梯形絲杠或者滾珠絲杠的需求的。這樣的空心軸對於內孔孔徑及螺紋的精度要求比普通的貫通式絲桿步進電機要求還要高。
可以想見,普通的貫通式絲桿步進電機類似於商場的成衣,而有高精度要求的空心軸步進電機是定做衣服,需要「量體裁衣」,否則難以滿足客戶的要求,其最終的目的是為了確保整個步進絲桿電機的機械精度和運行精度。
『柒』 後快拆和後空心軸怎麼安裝,求大神
沒有快拆桿的自行車,要安裝上快拆桿需要將原車的實心軸換成快拆專用的空心軸和配合空心軸使用的快拆拉桿。如下圖所示: 安裝方法:將原車花鼓的實心軸桿和軸檔依次分解,換上空心軸組件即可。
『捌』 驅動軸總成 汽車驅動軸總成有關問題
問題一、汽車驅動橋指的是哪部分結構
車驅動橋輪組,包括輪邊減速器、制動器總成、輪轂總成、轉向節、支承軸總成、輪邊
傳動軸、上擺臂聯結總成、下擺臂聯結總成,支承軸總成為一空心軸,輪邊傳動軸貫通支承軸總成的內部,並接至輪邊減速器,輪轂總成安裝在支承軸總成上。
汽車驅動橋-功能:驅動橋處於動力傳動系的末端,其基本功能是增大由傳動軸或變速器傳來的轉矩,並將動力合理的分配給左、右驅動輪,另外還承受作用於路面和車架或車身之間的垂直立、縱向力和橫向力。驅動橋一般由主減速器、差速器、車輪傳動裝置和驅動橋殼等組成。
問題二、怎樣裝配與調整驅動橋總成
將減速器總成、制動器總成、輪轂總成及半軸裝於已壓入半軸套管的驅動橋殼體上,即為驅動橋總成。EQ型汽車驅動橋總成的結構如圖2-102所示,其裝配與調整的內容和步驟主要有以下幾點。
怎樣裝配與調整驅動橋總成?
1)減速器的裝配將減速器總成裝至驅動橋殼體,接合面應換新密封墊,並塗密封膠,專用螺栓應均勻、對稱緊固,再裝好後蓋及放油螺塞等。
2)制動器的裝配製動器機件的檢修、裝配、調整及蹄片磨光工藝等內容。
3)輪轂的裝配在制動蹄就車光磨前,應先將輪轂軸承注入潤滑脂,先將內軸承裝入至半軸套管上,用圖2-103所示工具先將輪轂內油封壓入至橋殼油封座上,防止油封損傷而報廢。
壓裝油封時,先將油封套於半軸套管上,套筒座頂在油封上,套筒裝至套筒座上,擰動螺桿,再將螺紋套擰在半軸套管端的螺紋上,然後,旋轉手柄,使軸承座壓緊套筒,繼續轉動手柄,油封便可壓入。拆下套筒座不用,直接同套筒頂動軸承,再將軸承壓入。
單向器_驅動軸總成_馬達開關_單向齒輪_啟動齒輪-盡在瑞安市飛力汽車部件廠,若無專用工具,可使用簡便方法壓入油封,即先將有封裝在橋殼油封座未到位處,再裝入輪轂內軸承至半軸套管上,使軸承貼緊油封;把一內徑80mm、長度150mm 的空心鋼管直接穿至半軸套管上,並抵緊軸承內圈,外端則用輪轂鎖緊螺母擰至半軸套管上壓緊鋼管,隨著螺母的擰入,油封可順利裝至油封座上。
4)輪轂軸承間隙的調整裝上輪轂及制動鼓組合件,再裝上輪轂外軸承及調整螺母,用專用套筒以196~245N.m的扭矩擰緊調整螺母,一邊擰一邊轉動制動鼓,使軸承滾柱處於正確位置,再退回1/6圈左右(即鎖緊墊圈2個孔位的角度,每調整1個孔位,改變間隙0.11mm左右)。
一次裝上外油封外殼、外油封、鎖緊墊圈、保險片及鎖緊螺母,並使鎖緊墊圈的孔與調整螺母上的定位銷套合,若未能套合上,可將鎖緊墊圈翻邊或稍許移動調整螺母即可。最後以245~294N.m的扭矩緊固鎖緊螺母,並用保險片鎖住鎖緊螺母側平面,以防松動。
在調整輪轂軸承間隙時,不能有」寧緊勿松「的想法,過緊的軸承在工作中易產生過熱而燒壞。故在調好間隙後,以制動鼓轉動自如且無明顯的軸向間隙為宜。
5)輪轂軸承的潤滑輪轂軸承應使用2號鋰基潤滑脂,在給軸承注脂時,應使潤滑脂進入軸承的縫隙之中。在輪轂空腔內,則無需或少量並均勻地填注潤滑脂,若填滿潤滑脂,易使軸承溫度升高(散熱不良)、增加汽車行駛阻力、車輪平衡性差及浪費潤滑脂等不良後果,並有污損制動蹄(受熱後熔化)使制動有失靈的可能。
6)裝入半軸裝入半軸時,應換用新密封墊並塗膠,半軸螺栓應先擰緊在輪轂上。半軸穿入半軸套管後,其端面應與輪轂端面接合平整,不能在一側出現間隙,否則,說明半軸軸線與端面垂直度超差或其他原因。再放入錐形墊圈、彈簧墊圈,擰入螺母,均勻、對稱地將螺母以73.5~93.1N.m的扭矩擰緊。
『玖』 液力緩速器的結構與原理
液力緩速器利用液體阻尼產生緩速作用。液力緩速器的定子又是緩速器殼體,與變速器後端或車架連接,轉子通過空心軸與傳動軸相連,轉子和定子上均鑄出葉片。
工作時,藉助於控制閥的操縱向油池施加壓力,使工作液充人轉子和定子之間的工作腔內。轉子旋轉時通過工作液對定子作用一個轉矩。
而定子的反轉矩即成為轉子的制動轉矩,其值取決於工作腔內的液量和壓力(視控制閥調定的制動強度檔位而定),以及轉子的轉速。汽車動能消耗於工作液的摩擦和對定子的沖擊而轉換為熱能,使工作液溫度升高。
工作液被引入熱交換器中循環流動,將熱傳給冷卻水,再通過發動機冷卻系統散出。在採用液力傳動的汽車,可省去油池、油泵、熱交換器(尺寸需加大)和利用液力傳動的工作液,因而液力緩速器多用於液力傳動汽車中。
(9)空心軸傳動裝置簡圖擴展閱讀
由於液力緩速器往往與液力變扭器共用一個油泵,為了保證液力緩速器充油迅速,且能保證工作時油液有足夠的循環強度,在使用液力緩速器時,可使液力變矩器的油液循環中止,讓油泵專對液力緩速器供油。
緩速效能比發動機緩速裝置高,能以較高速度下坡行駛;尺寸和質量小,可與變速器連成一體;工作時不產生磨損;工作液產生的熱易於傳出和消散,且在下長坡時可保持發動機的正常工作溫度;低速時制動轉矩趨於零,在滑路制動時車輪不會產生滑移。
缺點是接合和分離滯後時間長,不工作時有功率損失,用於機械傳動汽車特別是用於掛車時結構復雜。
汽車在下長坡時使用排氣制動,雖然能收到良好的制動效果,但對於噸位較大的礦用自卸車來說,採用排氣制動效果是有限的,且對發動機有一定程度的損害。因此,對裝有液力機械傳動的礦用自卸汽車都裝有液力減速緩速器。
『拾』 什麼是雙橋車、四橋車,各指什麼橋,是怎麼定義的
車橋也稱車軸,通過懸架和車架(或承載式車身)相連,它的兩端安裝車輪。其功用是傳遞車架(或承載式車身)與車輪之間各方向的作用力及其力矩。根據車橋上車輪的作用,車橋分為:驅動橋、轉向橋、轉向驅動橋、支持橋,其中轉向橋和支持橋都屬於從動橋。
一般只有貨車才這樣說,雙橋車是單驅動橋單方向輪的車。
四橋車就是後面有2排輪子,前面也是兩排輪子,打方向的時候是前面的四個輪子同時轉向。四橋汽車是雙驅動橋雙方向輪的單機或單驅動單方向輪的拖頭加後雙橋的半掛車。
設計
驅動橋處於動力傳動系的末端,其基本功能是增大由傳動軸或變速器傳來的轉矩,並將動力合理的分配給左、右驅動輪,另外還承受作用於路面和車架或車身之間的垂直力、縱向力和橫向力。驅動橋一般由主減速器、差速器、車輪傳動裝置和驅動橋殼等組成。
功能
汽車驅動橋輪組,包括輪邊減速器、制動器總成、輪轂總成、轉向節、支承軸總成、輪邊傳動軸、上擺臂聯結總成、下擺臂聯結總成,支承軸總成為一空心軸,輪邊傳動軸貫通支承軸總成的內部,並接至輪邊減速器,輪轂總成安裝在支承軸總成上。
以上內容參考 網路-汽車驅動橋