① 選擇好的制氮機要注意哪些
從細節掌握psa制氮機選型的大方向 變壓吸附制氮機(Pressure Swing Adsorption,簡稱PSA制氮機)是一種採用碳分子篩作為吸附劑的先進氣體分離技術,它在當今世界的現場供氣方面具有不可替代的地位,普遍應用於各行各業,在現有幾百家制氮企業當中,客戶該如何選用一台性能完好的制氮機,是許多客戶面臨首選難題,對於一台制氮機的選型涉及問題較多,但只要我們仔細分析、比較、把握重點,就可以得到滿意結果。
首先,在確定具體型號規格前(即每小時產氮量、氮氣純度、出口壓力、露點),應著重對制氮機的性能和特點作全面的比較分析,同時要針對自己現有環境條件,作出正確的選擇。
第一、從以下幾個方面對制氮機進行比較和分析:
a) 整套系統設計的合理性;
b) 碳分子篩裝填技術及壓緊方式;
c) 控制閥門的使用壽命;
d) 研究開發,製造經驗、用戶業績;
第二、影響制氮機成本的因素:
1) 整套系統一次性投資;
2) 分子篩使用壽命;
3) 使用過程中所需的配件壽命及費用;
4) 操作維護、保養費用及電、水、壓縮空氣耗用量;
第三、影響制氮機穩定性因素:
制氮機是涉及機、電、儀表集一體高科技術產品,在長期使用中設備的穩定尤其重要。我們從制氮機的組成不難看出,影響穩定性有以下兩點:
1、 控制閥門:
對於變壓吸附制氮機來講,閥門必須具有以下幾點性能:
a)材質性能好,絕對不漏氣;
b)在接受控制信號的0.02秒內完成開或關動作;
c)能承受頻繁的開、關,保證足夠長的使用壽命;
1.1、閥門故障根源
正常的使用情況下,每隻程式控制閥門在每一個周期(120秒左右)必須開關一次,按制氮機每年300個工作日計算,每天24小時連續動行,吸附與解吸周期為4分鍾計,那麼每隻閥門每年需要開、關20多萬次。而只要其中一隻閥門出現故障都會影響整台設備正常。所以閥門連續使用壽命是制氮機穩定可靠的最重要一環節。
2、碳分子篩是變壓附制氮機核心:
2.1、碳分子篩性能指標:
a.硬度
b.產氮量(Nm3/T-h)
c.回收率(N2/Air)%
d.填裝密度
以上指標碳分子篩生產廠家均已在出廠時註明,但只能作為參考數據,如何使碳分子篩發揮最大效能,這跟每個制氮廠家的工藝流程以及吸附塔高徑比有著直接的關系,同時保證分子篩的使用壽命就很有講究:
2.2、 碳分子篩裝填技術:
碳分子篩裝入吸附塔時必須具備專門的填裝技術,否則極易粉化並導致失效,從工藝流程我們可以發現,當壓縮空氣高速從吸附塔底部進入時,如果沒有特殊的氣體分布器,分子篩受到氣流的強力沖擊、摩擦,容易造成分子篩的粉化。另外分子篩填入吸附塔內是不可能絕對緊密,在使用一段時間後,分子篩之間的空隙在減小,慢慢下沉,如果沒有分子篩自動填補裝置和壓緊裝置,吸附塔上部就會出現明顯空間。當壓縮空氣進入吸附塔下部時,分子篩就會在氣流的沖擊作用力下,在短時間內發生快速的位移,導致分子篩互相碰撞、摩擦並與吸附塔壁發生撞擊,這樣就容易使分子篩粉化失效。
2.3、空氣中油、水對分子篩的影響:
由於空氣含一定水和油蒸汽,經過壓縮機後,如果不經嚴格空氣凈化處理,油蒸汽容易被碳分子篩所吸附,並難以脫附,填塞分子篩孔徑,導致分子篩「中毒」失效。所以在壓縮空氣進入吸附塔前設置嚴格空氣凈化裝置,是保證分子篩使用壽命必不可少的一環。水對分子篩來講雖然不是致命的,但會使分子篩吸附「負荷」增加,即影響其吸附O2、CO2之能力,因此壓縮空氣乾燥除水,是提高分子篩吸附能力和穩定不可忽視的問題。
3、方案剖析
針對以上各種難題薩普做了專項研發,為此對整套制氮系統做了精心的設計和布置,整套制氮裝置包含以下幾部分。
3.1系統流程圖
3.1.1空壓機
空壓機是提供氣源的主要部分,經過壓縮的空氣首先通入壓縮空氣凈化組件除水、除油後進入空氣凈化組件
3.1.2空氣凈化裝置
空氣凈化組件由高效過濾器、冷凍乾燥機、精過濾器、超精過濾器、催化劑除油器等組成,壓縮空氣進入管道過濾器除去>1μm的微粒及大部分的水,保障冷凍乾燥機和後級過濾器的正常使用,經冷凍乾燥機使之強製冷卻到5℃左右,使空氣中的水汽凝結成水,通過分水過濾器分離並過濾後,由排污閥排出,使壓縮空氣露點達到-10℃,經精過濾器過濾>0.01μm的微粒及油水,再進入超精過濾器過濾油、水;過濾精度>0.001μm,經除油器中的活性碳吸附殘余的微量的油霧,得到潔凈的壓縮空氣通過管道進入氮氧分離系統,保證分子使用長壽。
3.1.3空氣儲氣罐組件
空氣儲氣罐其作用是保證系統的平穩用氣,降低氣流脈動 ,起緩沖作用,從而減小系統壓力波動,使壓縮空氣平穩地通過壓縮空氣凈化系統,以便充分除去油水雜質,減輕後續PSA氧氮分離裝置的負荷。同時,在氧氮分離系統進行周期工作切換時,也為氧氮分離系統提供短時間內迅速升壓所需的大量壓縮空氣,從而使吸附塔內的吸附壓力很快上升到工作壓力,保證了設備穩定運行。
3.1.4氧氮分離系統
氧氮分離系統是制氮機的核心部分,由兩只吸附塔、壓縮裝置、程式控制閥、等部件組成,我院採用高品質的進口閥門,無泄漏使用壽命長達300萬次以上,為整套裝置提供了可靠的性能保障。
3.1.5氮氣緩沖罐
氮氣緩沖罐主要是由緩沖罐、粉塵過濾器、流量計、調壓閥、節流閥等組成,以用戶現場提供穩定的氮氣源。總結:通過以上的方案剖析,我們可以對制氮機結構及組成有了一定的認識和理解,但對於不同的環境工況以及不同的工藝使用條件,設備在配置會有一定的選擇性。
文章來源:上海化工研究院 www.sh-n2.com
② 制氮機的工藝流程
氮氣的最大來源、最低成本是空氣,空氣中的主要成分是氧氣和氮氣。它們各占約22%與78%。當然還有二氧化碳、水蒸汽及少量的惰性氣體。因此,制氮機實質就是「空分」設備,只要把氧氣與氮氣分開則可。
制氮機應根據其氮氣的純度高低去選擇,如純度要求不高可選用分子篩制氮機,如純度要求高,則選用冷凍法制氧機。
冷凍法制氮機是利用氧氣和氮氣的沸點不同(氧氣沸點為-183℃,氮氣沸點為-196℃),首先把空氣預冷、凈化(去除空氣中的少量水分、二氧化碳、乙炔、碳氫化合物等氣體和灰塵等雜質),然後進行壓縮、冷卻,使之成為液態空氣。然後,利用氧和氮的沸點的不同,在精餾塔中把液態空氣多次蒸發和冷凝,將氧氣和氮氣分離開來,得到純氧(可以達到99.6%的純度)和純氮(可以達到99.9%的純度)。如果增加一些附加裝置,還可以提取出氬、氖、氦、氪、氙等在空氣中含量極少的稀有惰性氣體。由空氣分離裝置產出的氧氣,經過壓縮機的壓縮,最後將壓縮氮氣裝入高壓鋼瓶貯存。使用這種方法生產氮氣,雖然需要大型的成套設備和嚴格的安全操作技術,但是產量高,每小時可以產出數干、萬立方米的氧氣,與氮氣,而且所耗用的原料僅僅是不用買、不用運、不用倉庫儲存的空氣,所以從1903年研製出第一台深冷空分制氮(氧)機以來,這種制氧方法一直得到最廣泛的應用。
分子篩制氧法(吸附法):氧氣進入吸附器內,當吸附器內氧氣達到一定量(壓力達到一定程度)時,即可打開出氧閥門放出氧氣。經過一段時間,分子篩吸附的氮逐漸增多,吸附能力減弱,產出的氧氣純度下降,需要用真空泵抽出吸附在分子篩上面的氮,然後重復上述過程。這種製取氧的方法亦稱吸附法。最近,利用吸附法制氧的小型制氧機已經開發出來,便於家庭使用,當然這也是制氮設備。
它是利用氮分子大於氧分子的特性,使用特製的分子篩把空氣中的氧離分出來。首先,用壓縮機迫使乾燥的空氣通過分子篩進入抽成真空的吸附器中,空氣中的氮分子即被分子篩所吸空分制氧系統包括空壓機系統、空冷系統、水冷系統、分子篩純化系統、增壓膨脹機系統、精餾塔系統、加壓氣化系統、氧氣系統、氧壓機系統、調壓站系統空分制氧系統中精餾塔分離氮氣與氧氣的原理簡介:精餾塔是一種採用精餾的方法,使各組份分離。從而得到高純度組份的設備。
空氣被冷卻至接近液化溫度後送入精餾塔的下塔,空氣自下向上與溫度較低的迴流液體
充分接觸進行傳熱,使部分空氣冷凝為液體。由於氧是難揮發組份,氮是易揮發組份,在冷凝過程中,氧比氮較多的冷凝下來,使氣體中氮的純度提高。同時,氣體冷凝時要放出冷凝潛熱,使迴流液體一部分汽化。由於氮是易揮發組份。因此,氮比氧較多的蒸發出來,使液體中氧純度提高。就這樣,氣體由下向上與每一塊塔板上的迴流液體進行傳熱傳質,而每經過一塊塔板,氣相中的氮純度就提高一次,當氣體到達下塔頂部時,絕大部分氧已被冷凝到液體中,使氣相中的氮純度達到99.999%。一部分氮氣進入冷凝蒸發器中,冷凝成液氮.作為下塔迴流液。同時上塔底部的液氧汽化,作為上塔的上升氣體,參與上塔的精餾。
③ 空分裝置怎樣核算氧氣和氮氣的成本合理
制氮機的費用和耗電費用,在算出用瓶裝氮氣或者氧氣的成本就可以了
特洛伊氣體設備有限公司
④ 制氮機是如何制氮氣的
壓縮空氣通過半透膜,氧氣可以順利通過,沒有通過的就是高濃度的氮氣.
家庭制氧機就是利用了這個過程,不過人們利用的是氧氣,而把氮氣又釋放到空氣中了.如果將釋放的氣體收集起來,就得到了高濃度的氮氣了.
⑤ 氮氣機屬於空分裝置么
制氮機器是利用變壓分子篩吸附分離空氣提純氮氣,屬於空分裝置。
⑥ 制氮機怎麼選型,是用在醫葯化工生產上的,氮氣用量不是特別大
請給出需要的氮氣的純度和流量,制氮機有:空分制氮、PSA制氮、膜制氮。根據不同的純度和流量要求才能給出較經濟的結果。
液氮儲槽:產品壓力:5~10BA、流量:150~500NM3/HR 純度: ~3PPM O2
現場空分制氮:產品壓力:5~9BARG 流量:600~2500NM3/HR 純度: <3PPM O2
PSA:50-1500Nm/h,增加純化裝置純度可以做到1ppm
膜分離:純度最多做到98%,流量1000-3500Nm3/h
⑦ 制氮機主要有哪幾種類型
變壓吸附制氮機原理:
變壓吸附(Pressure Swing Adsorption,簡稱PSA)技術是一種先進的氣體分離技術。
其提取氮氣主要原理是:由於空氣中氧、氮兩種氣體分子在碳分子篩表面微孔的擴散速率不同,直徑較小的氧分子擴散較快,較多的進入分子篩固相(微孔),直徑較大的氮分子擴散較慢,進入分子篩固相(微孔)也較小,這樣,在氣相中就得到氮的富集成份;在吸附平衡情況下,空氣壓力越高,則碳分子篩的吸附量越大;反之壓力越低,則吸附量越小。
投入工業運行的PSA空分制氮裝置一般具有二個或二個以上吸附器組成,各吸附器通過優化縱使,交替循環工作,以達到連續產氮和提高氮氣回收率等目的。
經過凈化乾燥的壓縮空氣,在變壓吸附的作用下,形成成品氮氣。一般在系統中設置兩個吸附塔,一塔吸附產氮,別一塔脫附再生。通過PLC程序控制氣動閥的啟閉,使兩塔交替循環,以實現連續生產高品質氮氣之目的。
上海化工研究院:http://www.sh-n2.com/proct/proct.html
⑧ 企業生產需要空分制氮機生產,需要辦理什麼手續
環評,安評,消防,安全等(一般隨主體項目一並進行報批),設備投產後,需要壓力容器、管道的報批及備案等
⑨ 工業制氮氣 需要什麼設備
有專門的制氮機,變壓吸附制氮機(簡稱PSA制氮機)是按變壓吸附技術設計、製造的氮氣發生設備。