导航:首页 > 装置知识 > 年产12万吨苯乙烯装置的工艺设计

年产12万吨苯乙烯装置的工艺设计

发布时间:2024-02-01 17:53:43

A. MTBE生产工艺技术

MTBE的反应机理:甲基叔丁醚是以甲醇和混合碳四(含有异丁烯)为原料,在酸性催化剂的作用下合成的,这是一个可逆的放热反应。

MTBE的生产技术:合成MTBE生产工艺主要是醚化工艺,根据醚化反应器的而不同,MTBE合成技术存在以下几种形式:固定床反应技术:固定床技术采用的是下流式固定床反应器,在70到100℃液相,甲醇与异丁烯在强酸阳离子交换树脂的作用下,反应生成MTBE。

该技术采用外循环取热方式来控制,用冷却水在反应器外移走反应热,用分馏塔分离产物MTBE和甲醇以及剩余的碳四馏分。此法用于含异丁烯浓度变化较大的碳四原料。尽管反应器用水冷却,但仍会出现热点,难于消除,且反应速率低,这类技术在近年来已较少采用。

膨胀床反应技术:该技术的主反应器采用上流式膨胀床,在生产过程中,反应原料自下而上经膨胀床反应器催化剂床层。达到一定值后,催化剂床层便开始膨胀,由于催化剂床层受到轻微的扰动,有利于提高催化剂的活性,加快反应床层的传热过程,有利于反应的进行和反应热的扩散,使床层温度分布均匀,不存在局部热点。

此方法投资少,结构简单,催化剂装卸方便,但操作弹性较小。硫酸催化技术:该技术是将一定比例的原料送人第一反应器中,待反应混合物预热至70℃时,与硫酸混合,在一定温度下将混合物送入第二反应器中。

最后反应混合物进入分离器分离有机相和酸相,在分离器中回收得到的硫可循环使用,有机相则进入水洗塔,用NaOH含的循环水中和酸,生成Na2SO4和H2O。

B. 苯乙烯装置复杂吗

很复杂。
工艺流程说明——脱氢工序
a)过热蒸汽系统
0.6 MPa的蒸汽经蒸汽缓冲罐(V-301)脱水后进入蒸汽过热炉(F-301)过热,去第三反应器(R-303)顶部热交换器,将第二反应器(R-302)出来的反应混合物预热到615 ℃,蒸汽去过热炉(F-302)过热,然后进入第二反应器(R-302)顶热交换器,将第一反应器(R-301)出口反应混合物加热至615 ℃。蒸汽去过热炉(F-303)过热后,去第一反应器(R-301),与乙苯、一次配汽混合后,依次进入R-301催化剂床层、R-302催化剂床层、R-303催化剂床层进行乙苯脱氢反应。
F-301、F-302、F-303三台炉燃料气气来自石油一厂管网。燃料气自管网进入动力车间燃料气罐,脱液后,进入苯乙烯装置燃料气罐(V-313)。经V-313缓冲后,分别去F-301、F-302、F-303为炉子提供热量。
b)乙苯脱氢反应系统
乙苯由FIC-313控制流量进入乙苯预热器(E-304A、E-304B),被来自F-303的水加热后,进入乙苯蒸发器(E-303),与来自管网的0.6 MPa蒸汽(一次配汽)混合,同时由壳程0.6 MPa蒸汽加热汽化约105℃。
汽化后的乙苯、蒸汽混合物进入乙苯过热器(E-301)被来自第三反应器(R-303)的反应混合气体加热到约500 ℃左右,进入第一反应器(R-301),与来自第三蒸汽过热炉(F-303)的过热蒸汽混合均匀,混合后的温度达到600 ℃左右(催化剂从初期到末期温度逐渐上升,其出口温度也上升),在催化剂床层进行乙苯绝热脱氢反应,乙苯转化率约40 %,反应后的气体温度降至540 ℃左右。此混合气继续到第二反应器(R-302)顶部中间再热器,被来自第二蒸汽过热炉(F-302)的过热蒸汽加热至605 ℃左右,进入催化剂床层继续进行乙苯脱氢反应,总转化率达到约60 %。反应后,混合气温度降至578 ℃左右。此部分混合气再次进入第三反应器(R-303)顶部再热器,被来自第一蒸汽过热炉(F-301)的过热蒸汽加热,温度上升至610 ℃左右,进入第三反应器(R-303)催化剂床层,继续进行乙苯脱氢反应,第三反应器(R-303)出口总转化率约70 %。
自第三反应器(R-303)出来的反应气体,进入乙苯过热器(E-301)加热乙苯与蒸汽的混合气后,自身温度下降至300~320 ℃,再进入蒸汽发生器(E-302)管程进行换热。在E-302下段,产生0.32 MPa(表)蒸汽;在E-302上段,产生0.04 MPa(表)蒸汽。
0.32 MPa蒸汽去管网,作精馏系统热源;0.04 MPa蒸汽去汽提塔(T-301)作热源。
c)冷凝分离
反应混合气体产生0.32 MPa、0.04 MPa蒸汽后,温度下降,被来自工艺凝水泵(P-301)来的急冷水增湿急冷,温度下降至70 ℃左右,分别进入四组空气冷却器(EC-301),温度降至55 ℃以下,进入气液分离罐(V-306)进行气、液分离。
V-306中的冷凝液进入油水分离罐(V-307)进行油水分离。V-307为隔板式分离器,油、水混合物在此靠密度差分层。当油位高过隔板高度时,进入油相区,自流至炉油罐(V-309),与阻聚剂混合后,由炉油泵(P-302)送至中仓球罐(或V-509罐)。由于V-306为负压,而V-307为正压,`故V-306至V-307管线中,存有一定高度的液体(其高度与两罐的压差有关);V-307中的水由泵(P-301)送至汽提系统进一步汽提水中的芳烃。
V-306中的气相依次进入循环水冷凝器(E-305)、盐水冷凝器(E-306)冷凝,冷凝液相也进入V-307进行油水分离;不凝气进入尾气分离罐(V-312),在V-312出口有三个阀门,分别控制尾气至蒸汽喷射泵抽真空系统、液环泵抽真空系统、尾气放空罐(V-311)放空系统。
当脱氢反应系统为正压操作时,V-311水放掉,尾气由V-311放空;当脱氢反应系统为负压操作时,V-311中充水,V-311有一工业水补充管线,防止罐内缺水,空气进入尾气系统,影响系统压力和安全生产。由于系统负压,自V-312出口至V-311管线(大气腿)中充满水,保持压力平衡,阻止空气进入系统。
d)真空
真空系统作用是为反应系统抽取负压,以有利于脱氢反应的进行。
真空系统有二套,一套为液环式真空/压缩机组,用乙苯液体作动力;另一套为蒸汽喷射泵,作备用。该泵用0.6 MPa蒸汽作动力,一般在开车初期生产负荷低于6000kg/h时使用,或在液环式真空泵故障时临时使用。
液环式真空/压缩机组流程:
真空/压缩机组用乙苯作动力,包括三台氧在线分析仪在内的联锁13套联锁。设备有二台泵(真空泵J-301、压缩机J-302)、二台隔离液泵、二个分离罐、二台盐冷器。真空泵盐水流量为42.3 m3 /h,压缩机换热器盐水流量为13.6 m3/h。
当用液环式真空/压缩机对脱氢反应系统抽负压时,吸入罐(V-312)出口气体,进入真空泵(真空泵入口有一止回阀),与乙苯混合,气、液混合物进入分离罐中,液相(主要是乙苯)经盐冷器冷凝至40 ℃以下,继续作真空泵动力,多余部分排至地槽(V-413);未凝气体进入压缩系统。
真空泵入口压力一般在15~30kPa左右,真空过高,设备振动、噪声大,易损坏设备。
未凝气体进入压缩机后,与乙苯混合,气液混合物进入压缩机分离罐中,不凝气体压力升高后去变压吸附装置(PSA)进一步分离氢气外供;液相(主要是乙苯)经盐冷器冷凝至50℃以下,继续作压缩机动力。
二台隔离液泵,分别形成自身循环系统,为真空泵、压缩机提供润滑冷却用油。
二个分离罐中多余液体排入地槽,地槽中的液体由气动隔膜泵送至油水分离罐(V-307)。
真空/压缩设备是从英国Hick Hargrea Ves公司进口的,具有使反应系统形成真空和尾气增压二种作用,设备自身带有氧含量在线分析仪,监视系统氧含量(应低于体积分数0.1 %),以保证设备安全运行。
蒸汽喷射泵流程:
E-306不凝气体首先进入吸入罐V-312,在此少量夹带凝液分离后去V-307中;V-312顶部气相去蒸汽喷射泵,与蒸汽混合后进入循环水冷凝器(E-309),冷凝下来的液相进入V-307,气相进入循环水冷凝器(E-310),冷凝液进入V-307,不凝气可到PSA装置(或放空)。
e)污水汽提
自水泵(P-301)来的工艺污水进入F-1、预过滤器、聚结器,在此油水进一步分离。油相自流入油水分离罐(V-307),水相进入汽提塔预热器(E-307),与汽提塔(T-301)顶来的气相物料换热,再经汽水混合器器加热后进入T-301顶部。在塔内与塔底上升蒸汽接触,进行传质传热,油与蒸汽的混合物从塔顶馏出。经汽提塔预热器(E-307)、冷凝器(E-308)进-步冷凝、冷却后,凝液进入油水分离罐(V-307),不凝气进入尾气盐冷器(E-306),使得汽提塔形成负压。
T-301热源:0.04 MPa蒸汽,当热量不足时,由0.6 MPa蒸汽补充。
T-301底部汽提水进入污水罐(V-310),由汽提污水泵(P-303)将水分别送入乙苯预热器(E-304A),加热乙苯后去第三蒸汽过热炉(F-303)的对流段取热后,再去E-304B加热乙苯物料,最后送至采暖水罐(V-318),然后去动力污水处理回用装置;F-301对流段水去V-303罐,作E-302发生0.04 MPa、0.32 MPa蒸汽水源。
T-301塔为负压塔,压力由PIC-329控制,塔内为二段250Y填料。
此系统于2008年4月检修时,为不影响生产,增加了停汽提塔时的流程。具体流程如下(流程图附后):
V-307罐凝水由P-301泵经LICA-304调节阀后向动力车间污水池供水(F-301对流段供水维持原流程不变)。
P-303泵向F-303对流段供水,经E-304B换热后进入E-304A(或经E-427、E-313换热后进入V-316)后,进入V-310罐由P-303泵向F-303供水。水不够时可由工业水或动力回用污水补水。
P-307泵承担向急冷供水和夏季空冷喷淋用水。汽提塔及聚结器系统保留原流程。
f)阻聚剂配制
DNBP配制系统:
自炉油泵(P-302)来炉油进入配制罐(V-304),DNBP(液相)从配制釜上部加入200 kg(一桶),配制成约质量分数10 %浓度的溶液,经搅拌釜搅拌30分钟后,自流入计量罐(V-304A)中,由隔膜计量泵计量后(根据生产负荷,调整相应加入量),送至脱氢炉油中间罐(V-309)中,加入浓度为300~1000mg/kg。
TBC配制:自苯乙烯产品冷却器(E-423)来的苯乙烯进入TBC配制罐(V-314),TBC粉末从配制釜上部加入5kg,配制成质量分数约0.4 %浓度溶液,经搅拌釜搅拌15分钟后,自流入计量罐(V-314A)中,由隔膜计量泵(根据生产负荷,调整相应加入量)送至E-406气相线,随冷凝液同时进入苯乙烯成品中,控制苯乙烯产品中浓度在10~15mg/kg。
缓蚀剂配制:
将JCCR 1178缓蚀剂用脱盐水配制成10 %WT的溶液。用计量泵将配制溶液适量注入至脱氢急冷水或精馏T-401塔、V-406回流罐系统中。
g)氮气循环系统
动力管网来的N2由第一蒸汽过热炉(F-301)入口蒸汽管线进入脱氢系统,即三台炉(F-301、F-302、F-303)、三台反应器(R-301、R-302、R-303)、后冷系统(E-301、EC-301、E-305、E-306),最后至蒸汽喷射泵入口处N2循环阀门进入罗瓷风机。N2压力提高至150~170kPa左右,至F-301入口DN150N2循环管线重新进入F-301,形成N2循环。
N2循环系统用于脱氢装置开、停车时,反应器床层温度低于300 ℃时的升温、降温。
1.1.3.2精馏系统

a)T-401塔
脱氢产出的炉油由FIC-401控制流量,经炉油泵(P-505)进入T-401塔进料预热器(E-401)中,由壳程再沸器(E-405)0.3 MPa凝水预热后,于塔的第三段填料层顶部进入粗苯乙烯塔(T-401)。轻组份苯、甲苯、乙苯混合物,自塔顶馏出,经循环水冷凝器(E-403A/B)冷凝。大部分组份被冷凝下来,进入回流罐(V-401),未冷凝的气相芳烃组份,继续进入循环水冷凝器(E-422)、盐冷器(E-404)进一步冷凝,冷凝液进入回流罐(V-401)中;不凝气至精馏机械真空泵系统。
V-401中的液相组份,由回流泵(P-401)一部分打入塔顶作回流,另一部分去循环乙苯塔(T-403)提纯乙苯。T-401塔釜液组成为苯乙烯和焦油,由釜液泵(P-402)送至精苯乙烯塔(T-402),继续分离。
T-401塔为负压塔,加热热源为0.3 MPa蒸汽。
b)T-402塔
T-401的塔釜采出液从精苯乙烯塔(T-402)第二填料层顶部进入。塔顶组份为苯乙烯,纯度可达质量分数99.8 %以上。气相苯乙烯依次经循环水冷凝器(E-406)、盐水冷凝器(E-407)冷凝,冷凝液进入回流罐(V-403);E-407中的不凝气去精馏真空泵,与T-401塔共用一台真空泵。
来自TBC计量泵的TBC溶液,打入E-406入口气相线,进入塔内,(也可直接进入苯乙烯成品罐中)。V-403中的苯乙烯,由回流泵(P-403)一部分打入塔顶作回流,另一部分采出经水冷器(E-423)和盐冷器(E-424)冷却,入苯乙烯中间罐(V-405A/B)。塔加热热源为0.3 MPa蒸汽。
塔釜焦油自流入苯乙烯蒸出釜(VF-401)中。蒸出釜由0.6 MPa蒸汽加热,蒸出的部分苯乙烯经循环水冷凝器(E-409)、盐冷器(E-410)冷凝后,凝液进入脱氢粗苯乙烯罐(V-309);焦油装车外售。VF-401A/B为真空操作,由精馏真空泵形成。
c)T-403塔
T-401塔顶产出的苯、甲苯、乙苯组份,在循环乙苯塔(T-403)的预热器(E-411)中与T-403塔釜乙苯进行换热,进入T-403塔底部第一段填料的上部,进行精馏。
塔顶蒸出的苯、甲苯,经循环水冷凝器(E-412)冷凝,凝液进入回流罐(V-406)。一部分由P-405打至塔顶作回流,另一部分产出入混合甲苯罐(V-410)。V-410中的混合甲苯用甲苯泵(P-408)送至动力罐区。
塔釜乙苯先进入E-411加热进料,自身温度下降,又经水冷器(E-425)冷却后,去中仓乙苯贮罐(V-505A/B或V-507A/B)。此部分乙苯称为循环乙苯。
T-403塔为常压塔,加热热源为0.6 MPa蒸汽。
d)T-401、T-402、T-403再沸器凝水系统流程
1、来自E-405再沸器的凝水进入凝水罐(V-402)后,通过液位控制阀LIC-401向E-401炉油预热器提供高温凝水,换热后的凝水通过TIC-402温度控制阀汇集至V-416汽水分离器内。
来自E-408再沸器凝水进入凝水罐(V-404)后,通过LICA-405液位控制阀进入V-416汽水分离器内。
进入V-416汽水分离器内的高温凝水闪蒸出0.1 Mpa蒸汽,可并入车间0.1 Mpa蒸汽管网或进入采暖水罐。
2、来自E-413凝水进入凝水罐(V-407)后,通过液位控制阀LICA-412使凝水到达V-417汽水分离器内。
来自E-303乙苯发生器0.6 Mpa管程加热蒸汽产生的高温凝结水进入位于装置二楼的V-417汽水分离器内。
进入V-417汽水分离器内的高温凝水闪蒸出0.1 Mpa蒸汽,可并入车间0.1 Mpa蒸汽管网或进入采暖水罐。
3、V-416、V-417汽水分离器内的凝水通过各自的调节阀组(LIC-416、LIC-417)控制进入位于装置一楼的V-415闭式凝水回收罐内。
⑴通过V-415回收罐下部的两台水泵将凝水直接提供给F-301对流段用水。
⑵凝结水进入E-427冷却后一部分直接向急冷水供水,另一部分再次通过E-313盐冷器冷却后,经P-307泵可向急冷、喷淋供水。
⑶在满足上述情况用水后,其余部分通过调节阀LIC-415进入采暖水罐。
⑷当V-415回收罐内液位不足时,可通过打开工业水补水阀门方式补水,以满足用水需求。
e)精馏真空泵流程
真空泵工作液为乙苯,系统带有一台气液分离罐和盐水冷却器。乙苯经盐冷器冷却至20 ℃以下进入真空泵,与来自盐冷器E-404、E-407的不凝气混合,气液混合物一同进入气液分离罐(V-420)中,液相流入脱氢油水分离罐(V-307)中,气相从放空管线排出。
1.1.3.3中间罐区

中间罐区共有80m3罐10台、400m3球罐1台;乙苯泵2台,炉油泵2台,苯乙烯送出泵2台。其中,乙苯罐4台,位号:V-505A/B、V-507A/B;苯乙烯罐4台,位号:V-503A/B、V-511A/B;炉油罐3台,位号:V-509A/B、400m3球罐(1台)。乙苯泵位号:P-504A/B、炉油泵位号:P-505A/B、苯乙烯送出泵:位号P-506A/B。
苯乙烯贮罐于2003年7月~8月检修时,改造为内浮顶罐。
乙苯罐自南罐区间断接收乙苯物料,由中仓乙苯泵(P-504)送至脱氢工序;苯乙烯罐经分析合格后,送至南罐区;炉油罐收脱氢炉油泵(P-302)送来的炉油,经脱水后,由炉油泵(P-505)送至精馏工序。
乙苯泵(P-504)、炉油泵(P-505)、苯乙烯泵(P-506)放置在中仓泵房内。
1.1.3.4PSA系统

苯乙烯脱氢尾气进入PSA系统有两路流程:一路来自两级液环泵出口,压力为0.027 MPa,此气体可直接去C-102(氢气压缩机);另一路来自蒸气喷射泵,出口压力为常压,经程控阀KV-107A、鼓风机(C101A、B,一开一备),加压到0.027 MPa,再经冷却器(E-101)冷却至常温后,两路原料气汇合后进入气液分离器(V-107)分离掉气体中所带的机械水,再进入压缩机(C-102A、B,一开一备)加压到1.5 MPa。经压缩后的原料气先进入气液分离器(V-101)分离掉气体中所带的机械水,再进入冷干机(D-101A、B,一开一备)降温,粗脱除苯、甲苯、乙苯、苯乙烯和水等,脱除物经气液分离器(V-102)进入贮液槽(V-106),经过冷干机分离后的原料气经流量计(FICQ-101)计量后,进入由6吸附器(T101A~F)、一台均压罐(V-103)及一系列程控阀等组成的变压吸附制氢系统。PSA制氢系统采用6塔操作,2塔同时进料,3次均压,抽空降压解吸的工艺流程。原料气出入口端自下而上通过2台正处于吸附状态的吸附器,吸附器内装填的吸附剂吸附原料气中的强吸附组分CO2、CO、H2O等,弱吸附的氢气等组份未被吸附,在吸附压力下从吸附器顶部流出,得到产品氢气,经流量计(FIQ-102)计量后送往界外。大部分CO2、CO、H2O及杂质被吸附在吸附剂上,通过减压,使被吸附的CO2、CO、H2O及杂质从吸附剂上脱附,得到解吸气,同时使吸附剂得到再生。
从吸附器入口端排出的解吸气来自逆放和抽真空两个步骤。逆放步骤中压力较高的那部份逆放气通过管道FG101,程控阀KV-109进入解吸气缓冲罐(V-104),再通过管道FG103经调节阀(PV-104)稳压后进入解吸气混合罐(V-105);抽真空步骤为逆向放压结束后利用真空泵(P101A~C)将解吸气抽空并压缩后送入解吸气混合罐(V-105),然后送出界外到工厂火炬管网。

C. 你对乙苯、苯乙烯装置、重点部位及设备了解多少

单元组成与工艺流程
1、组成单元
苯乙烯装置的基本组成单元为:乙苯单元、脱氢单元、苯乙烯精馏单元。
(1)乙苯单元
本单元由烷基化反应、烷基转移反应和乙苯精馏部分构成。烷基化反应部分的任务是在分子筛催化剂的作用下使乙烯和苯烷基化生成乙苯、多乙苯等物质。烷基转移反应部分的任务则是在分子筛催化剂的作用下使苯、多乙苯发生烷基转移反应,生成乙苯。烷基化反应和烷基转移反应部分的出料中含有乙苯、多乙苯、重质物及未反应的原料苯,都被送到乙苯精馏预分馏塔。由预分馏塔、苯塔、乙苯塔、多乙苯塔、脱非芳塔将反应产物分离成苯、乙苯、多乙苯和重质物。其中回收的苯返回到烷基化反应器和烷基转移反应器,多乙苯返回到烷基转移反应器。脱非芳塔则用于脱除进料和反应过程中生成的轻组分和轻非芳烃。

(2)脱氢单元
新鲜乙苯和从乙苯回收塔返回的循环乙苯与工艺凝液混合在一起,乙苯/水的混合物形成一种用来冷凝乙苯/苯乙烯分离塔顶气相的共沸物。被蒸发的乙苯/水的混合物在乙苯/蒸汽过热器中经反应物流加热,与稀释蒸汽混合,进入第一脱氢反应器。在新smart工艺,三个绝热径向反应器连续放在一起。第一反应器、第三反应器只装脱氢催化剂,而第二反应器装脱氢催化剂和氧化催化剂。混合物流进入第一反应器,部分乙苯脱氢生成苯乙烯。反应器人口设有高温报警,当温度超过650℃时,将停蒸汽过热炉(正常为610—640℃)。由于反应是吸热的,所以温度在反应器中降低。


经过控制的富氧气体和稀释蒸汽进入到第一反应器流出物中,混合气体在进入第二反应器之前,进入一个静态混合器。在第二反应器,反应物首先经过氧化催化剂,部分氢气被消耗。反应物在进入第二床层脱氢催化剂之前被氧化反应放出的热量加热。在氧化反应床层非常短的停留时间减少了副反应的发生。第二脱氢床层的乙苯生成苯乙烯。混合气体经过一个静态混合器进入第三反应器,在第三反应器,反应物首先经过反应器内的中间加热器加热反应物料,进入第三脱氢催化剂床层,的乙苯在脱氢催化剂床层转化成苯乙烯。反应物流进人废热锅炉(乙苯/蒸汽预热器),进一步换热,产生中压和低压蒸汽,冷却后的反应物经工艺凝液、空冷器进一步冷却。


从空冷器中出来的气相进一步冷却,未冷凝的气体在尾气压缩机中压缩,冷却作为燃料和残油一起在蒸汽过热炉中燃烧。一些碳氢化合物在洗涤塔通过残油洗涤出来,汽提塔顶馏分返回主冷却器。从主冷却器和后冷器出来的物料进入脱氢液/水分离罐,脱氢液和水相分离。dm液(脱氢液)直接送到分离系统或储罐。水相进入工艺凝液汽提塔,微量有机物被汽提出来,部分水用来冷却从废热锅炉出来的物料。工艺凝液汽提塔顶馏分在塔顶冷却器冷却后,进入dm/水分离罐。未冷凝的塔顶馏分排到后冷却器中,汽提后的冷凝液过滤后,一部分过滤冷凝液用于乙苯和苯乙烯单元发生蒸汽,另外的送到界区外。

(3)苯乙烯精馏单元
在苯乙烯分离单元,dm液分离成循环乙苯,产品甲苯,循环苯,苯乙烯单体产品和焦油。使用4个分离塔和薄膜蒸发器。在乙苯/苯乙烯分离塔顶回收乙苯和轻组分,而苯乙烯产品和重组分在塔釜。塔釜乙苯含量很少,因乙苯是苯乙烯产品中的主要杂质。nsi阻聚剂加到乙苯/苯乙烯分离塔,防止苯乙烯聚合。为了减少聚合物生成,分离塔在负压下操作。填料结构是为了降低塔的压降。乙苯/苯乙烯分离塔塔釜物料进到苯乙烯塔,苯乙烯产品从塔顶出来,被冷却。tbc阻聚剂为了抑制聚合,送到储罐。苯乙烯塔也在负压下操作,苯乙烯塔釜中的苯乙烯经薄膜蒸发器回收返回到苯乙烯塔。蒸发器顶部气相返回到苯乙烯塔釜。苯乙烯单元的焦油和乙苯单元的残油混合送到储罐作为燃料或部分过滤后返回到乙苯/苯乙烯分离塔,降低nsi消耗。乙苯/苯乙烯塔顶气相含有乙苯和轻组分,与乙苯/水的共沸物换热后冷凝,排出的气体进一步冷却回收残留的有机物,塔顶冷凝液送到乙苯回收塔。未转化的乙苯返回到反应单元。乙苯回收塔顶馏分是苯和甲苯的混合物,在有些苯乙烯装置,苯和甲苯混合物被送到界区外进一步分离。其他苯乙烯装置有一个苯/甲苯分离塔,苯从塔顶分离出来,返回到乙苯单元。甲苯作为副产品。


2、工艺流程
化学反应过程
1.烷基化反应机理:在一定的温度、压力下,乙烯与苯在酸性催化剂上进行烷基化反应生成乙苯,同时,生成的乙苯还可以进一步与乙烯反应生成多乙苯。理论上说,可以生成从二乙苯一直到六乙苯。


2.烷基转移机理
烷基转移反应是在一定的温度、压力条件下,在酸性催化剂的作用下,多乙苯转化成为乙苯的反应。理论上,所有的多乙苯都可以进行烷基转移反应,但是实际上四乙苯几乎不发生烷基转移反应。烷基转移反应是可逆的二级反应,受化学平衡限制。同烷基化反应一样,烷基转移反应也是发生在分子筛催化剂的酸性活性中心上。除了生成乙基苯外,还可生成重质化合物,从而导致物耗增加,乙苯收率下降。因此应最大可能地减少副反应的发生,维持苯过量可以获得较高的转化率和乙苯选择性。


3.乙苯脱氢反应机理
乙苯在高温和催化剂作用下,发生脱氢反应生成苯乙烯根据有关资料,上述的乙苯脱氢反应主要受化学平衡的控制,部分还受到扩散因素的控制。由于该反应为气相的吸热反应,平衡常数随温度升高而增加。


4.氧化反应机理
发生在脱氢床的反应是强吸热的,并且通过催化剂床层温降很大。在进入下一脱氢床层之前反应物必须被重新加热到所需要的反应温度。传统的绝热单元是通过反应出料和高温蒸汽换热达到目的的。氧化再加热工艺通过反应付产物氢气与氧气反应释放出能量实现温度升高,从而达到反应温度。氧化反应使用了专有催化剂,氧气纯度为90%,必须严格控制其注入速率。反应在氧化催化剂床层进行。此反应将氢气脱除对生产苯乙烯工艺是有利的,原因有以下几点:
(1)它为反应物料提供了热量,使其达到下一级脱氢反应床层所要求的温度。
(2)反应物中氢气分压降低,乙苯转化率和苯乙烯选择性提高。
氧化催化剂虽然对氢气燃烧有很高的选择性,但同时一小部分烃也被消耗了。

(四)主要操作条件及工艺技术特点
1、主要操作条件:因不同的工艺,操作条件不尽相同,表3—52列出一般生产工艺操作条件
2、工艺技术特点:

(1)与国内外先进水平相比:本装置工艺路线的特点,在乙苯生产工艺上,采用液相分子筛循环烷基化生产乙苯工艺的原理,较之三氯化铝法乙苯生产工艺,具有工艺先进、无环境污染、无腐蚀的特点。在苯乙烯生产工艺上,采用美国hunmus—monsanto开发的负压脱氢和uop的氧化脱氢(smart) 工艺生产苯乙烯,并回收了乙苯/苯乙烯分离塔塔顶冷凝热,由于采用了先进的脱氢催化剂及氧化催化剂,因此,乙苯转化率较高,苯乙烯选择性高,能耗、物耗比较低。


(2)化学反应的影响因素:在烷基化反应过程中,苯烯比(即进料苯与乙烯的分子比)、空速、反应温度、水含量、反应压力;在烷基转移反应过程中,苯与多乙苯分子比、反应温度、水含量、空速;在脱氢反应过程中,反应温度、反应压力、水比;在氧化反应过程中,氢气的燃烧量、稀释蒸汽/氧气的比值均对化学反应产生较大影响,在生产过程中应注意操作和调整。


(五)催化剂及助剂
1.脱氢催化剂
不同的催化剂具有不同的活性和选择性。一般催化剂有两种类型:一种是高水比,高活性,低选择性催化剂,另一种是低水比,活性适中,高选择性催化剂。前者适用于公用工程便宜而原料较贵的地区,后者适用于公用工程较贵而原料便宜的地区。近年来,发展了一系列低水比,高活性,高选择性催化剂。如美国联合催化剂公司生产的g84c。我国上海石化院研制的gs—08,其水比为1.3。转化率为62.7%,选择性为94%,基本上达到了g84c的水平。
2.氧化催化剂
当氧化催化剂活性下降以至于达不到需要的床层出口温度时,可能发生氧气穿透。在设计时已经考虑了这一点,值得一提的是如果这种情况发生,未转化的氧气会离开氧化床进入脱氢床,氧气将氧化脱氢催化剂表面的铁,引起乙苯脱氢催化剂暂时失活。如果氧气穿透终止脱氢催化剂能够还原恢复活性。发生穿透后一部分氧不是与脱氢催化剂混合,而是无选择的消耗其他反应物,减少产品产量。

3.无硫阻聚剂ns
无硫阻聚剂nsi的化学名称为2,4—二硝基酚,分子式为(n02):c6h30h,nsi用tda—401和da—403中防止苯乙烯高温聚合。nsi的主要质量指标为纯度≥98%。当其纯度不合格时,配制的nsi溶液有效成分低,将使da—401塔底nsi浓度实际上低于1500x10—6(质量),而影响阻聚效果,严重时甚至造成da—401/403塔底物黏度过大,无法加热,被迫停车置换塔内物料。因此必须严格监控nsi内有效成分2,4—二硝基酚的含量。
4.产品阻聚剂tbc
产品阻聚剂tbc的化学名称为4—特丁基—邻苯二酚/甲醇溶液。用于苯乙烯产品中,防止或减少在储运过程中的聚合。tbc的主要质量指标是挥发度,即其中所含甲醇量。当所含甲醇过高时,配制后实际进入苯乙烯产品是4—特丁基—邻苯二酚量低,影响阻聚剂效果,而造成苯乙烯产品中聚合物含量超标(≤10x10—6)。

提供技术支持 博科原料

阅读全文

与年产12万吨苯乙烯装置的工艺设计相关的资料

热点内容
机械磅误差多少 浏览:190
电动工具开关寿命要求 浏览:916
机械加工设备有哪些 浏览:102
暖气PPR管用什么阀门 浏览:939
北京信息科技大学机械工程研究生怎么样 浏览:144
水和蒸汽的环境用什么轴承 浏览:396
星际2诺娃机械室怎么走 浏览:345
香港装置设计 浏览:271
仪表图纸中tv代表什么 浏览:440
用什么仪器测物质元素分布 浏览:475
做模拟炼铁的实验装置 浏览:199
压力强排水一般都加什么阀门6 浏览:496
化学实验室常见的尾气吸收装置 浏览:404
有什么书籍关于超声波的 浏览:850
温度传动设备写什么 浏览:999
天然气管道阀门的更换 浏览:166
高层住宅水管阀门怎么找 浏览:44
空调不加氟利昂就能制冷的叫什么 浏览:254
阀门astm表示什么意思 浏览:666
608zt轴承是什么意思 浏览:323