❶ 夫蘭克赫茲實驗
夫蘭克-赫茲實驗被認為是對原子的玻爾模型的實驗證明,但有趣的是直到夫蘭克和赫茲發表了他們的實驗結果之後,他們才知道玻爾模型。這看起來是非常有趣的,夫蘭克後來解釋道:
We had not read it because we were negligent to read the literature well enough -- and you know how that happens. On the other hand, one would think that other people would have told us about it. For instance, we had a colloquium at that time in Berlin at which all the important papers were discussed. Nobody discussed Bohr's theory. Why not? The reasons is that fifty years ago, one was so convinced that nobody would, with the state of knowledge we had at that time, understand spectral line emission, so that if somebody published a paper about it, one assumed, Probably it is not right. So we did not know it.
當時的人們根本就不相信看上去復雜無比的原子光譜可能會被某個理論解釋,如果有人聲稱解釋了原子的發射譜線,當時的物理學家會本能地認為這個理論是錯誤的。
夫蘭克-赫茲實驗的裝置如下圖所示:
水銀(汞,Hg)蒸汽被放在真空管內,電子從陰極射出後,被電勢V加速,然後到達陽極,陽極是柵欄狀的,陽極後面還有一個微弱的反向電壓,反向電壓比加速電壓(V)弱的多,再後面是個集電極。(類似真空三極體,發射極,基極和集電極)
測量的是加速電壓(V)和通過集電極電流(I)之間的關系,實驗結果如下圖:
可見這里存在一個約4.9伏的周期,每4.9伏周期,集電極電流會周期性的變大,達到峰值,然後陡峭地變小。
這4.9伏的周期性可被玻爾模型所解釋。根據玻爾模型,原子中存在一系列的定態(stationary states),當原子由一個定態躍遷到另一定態時,可相應地吸收或放出一個光子,並滿足頻率關系(frequency relation):。4.9伏的周期性說明在汞原子的第一激發態與基態間能量差是4.9eV。
當加速電壓處於0-4.9伏區間時,電子將獲得0-4.9eV的動能,電子可能與汞原子發生彈性碰撞或非彈性碰撞,如發生非彈性碰撞電子將損失部分能量,而汞原子將獲得部分能量。但根據玻爾模型,小於4.9eV的能量是不足以使汞原子發生躍遷的,因此只能發生彈性散射,電子在彈性散射的過程中並不損失能量,因此當電子達到陽極時具有大於0的動能,可以可以克服反向電壓達到集電極,因此表現為有電流,並且隨著加速電壓的增大,電流也相應增大。
當加速電壓正好為4.9伏時,電子具有4.9eV的動能,可與汞原子發生非彈性散射,汞原子被激發到激發態,電子損失4.9eV後動能為0,無法克服反向電壓,因此表現為電流急劇下跌。
當加速電壓達到兩倍4.9伏時,則有可能發生兩次電子與汞原子的非彈性散射,因此將出現第二個峰。如果繼續增大加速電壓,還可能出現更多的峰。如果電子能量大到足以把汞原子激發到更高激發態的能量,則可以出現不是4.9伏周期的峰。
觀察夫蘭克-赫茲實驗的實驗曲線,另一特徵是電流波谷取值是逐漸變大的,這可以解釋為總有部分電子未發生與汞原子的非彈性散射就到達了陽極,從而肯定會到達集電極。發生N+1次非彈性散射的幾率要小於只發生N次非彈性散射的幾率,因此隨著加速電壓的增大會有更多的電子以非零動能到達陽極,體現為電流波谷取值越來越高。
還可以考慮更多因素,比如無規則熱運動對夫蘭克-赫茲實驗曲線的影響,將使曲線更加圓滑等等。但這些已經屬於實驗中不太重要的細節了。
1925年夫蘭克和赫茲因夫蘭克-赫茲實驗共同獲得諾貝爾物理學獎。
參考
1. The Franck-Hertz experiment supports Bohr's model
2. Hyperphysics: The Franck-Hertz Experiment
3. The Nobel Prize in Physics 1925
❷ 如何製作安全漂亮的實驗裝置
安全漂亮化學實驗:
1、鐵棒與硫酸銅
原理:將除銹處理後的鐵棒放入硫酸銅溶液中,鐵單質比銅更加活潑,置換出來的銅形成漂亮的鬆散沉澱。
溶液原本是藍色的(水合銅離子顏色),隨著反應進行,藍色逐漸變淡。
銅離子本身並沒有藍色,無水硫酸銅是白色粉末。水溶液中藍色的是六水合銅離子。
2、暗之柱
原理:黑咖啡可不會變成這東西。杯中是對硝基苯胺和濃硫酸的混合物,加熱後發生非常復雜的反應——事實上,我們還不完全清楚反應的詳細過程。最後得到的黑色泡沫物原子比例為C6H3N1.5S0.15O1.3,幾乎肯定是對硝基苯胺交聯後的多聚物。整個反應有時被稱為「爆炸式聚合」。膨脹成這么大這么長是反應生成二氧化碳等氣體的功勞。
這個反應是70年代NASA研究者發現的,他們當時考慮過把它用作滅火劑——因為生成的黑色泡沫狀物非常穩定,隔熱性能也極好。
3、鋅火
原理:這種液體是二乙基鋅。它是一種極易燃燒的有機鋅化合物,接觸氧氣便自燃。真正的二乙基鋅如此圖所示是藍色火焰,但是網上流傳最廣的視頻/動圖來自2008年諾丁漢大學,他們拍到了黃色的火焰——照他們自己的說法,這是鈉污染所致。
二乙基鋅於1848年發現,是第一個有機鋅化合物。它在有機合成中的應用極其廣泛,也曾被早期火箭研究者用作液體燃料。
4、滴水生火
過氧化鈉和水反應產生氧氣並放出大量的熱,使白磷著火生成大量的五氧化二磷白煙。
操作:在600毫升燒杯的底部鋪一層細砂,砂上放一個蒸發皿。取2克過氧化鈉放在蒸發皿內,再用鑷子夾取2塊黃豆大小的白磷,用濾紙吸去水分後放在過氧化鈉上。用滴管向過氧化鈉滴1~2滴水,白磷便立即燃燒起來,產生濃濃的白煙.
5、液中星火
高錳酸鉀和濃硫酸接觸會產生氧化性很強的七氧化二錳,同時放出熱量。七氧化二錳分解出氧氣,使液中的酒精燃燒。但由於氧氣的量較少,只能發出點點火花,而不能使酒精連續燃燒。
操作:取一個大試管,向試管里注入5毫升酒精,再沿著試管壁慢慢地加入5毫升濃硫酸,不要振盪試管。把試管垂直固定在鐵架台上。這時,試管里的液體分為兩層,上層為酒精,下層為濃硫酸。用葯匙取一些高錳酸鉀晶體,慢慢撒入試管,晶體漸漸落到兩液交界處。不久,在交界處就會發出閃閃的火花。如果在黑暗的地方進行,火花就顯得格外明亮。
注意事項:高錳酸鉀的用量不可過多,否則,反應太劇烈,試管里的液體會沖出來。
6、冰塊著火
水和鉀反應劇烈,使生成的氫氣燃燒。氫氣的燃燒使電石和水反應生成的乙炔著火。燃燒所產生的熱進一步使冰融化成水,水和電石作用不斷地產生乙炔,因此火焰就越燒越旺,直到電石消耗完,火焰才漸漸熄滅。
操作:取一大塊冰放在大瓷盤里,在冰上挖一個淺坑,放入一小塊電石和一小塊鉀。然後向淺坑裡滴幾滴水,立即冒出一團烈火和濃煙,好像冰塊著火似的。
❸ 根據米勒的實驗性裝置圖,回答下列問題:(1)實驗裝置中將水加熱成沸水的目的是什麼(2)用正負極的用
如圖,在米勒的模擬實驗,一個盛有水溶液的燒瓶代表原始的海洋,其上部球型空間里含有氫氣、氨氣、甲烷和水蒸汽等「還原性大氣」.
(1)米勒實驗的目的是驗證無機物可以生成有機小分子物質,因此,在實驗時,要模擬大氣的環境,左下角的燒瓶中盛放的是蒸餾水,加熱的目的是產生大量的水蒸氣,使空氣中有水蒸氣這一成分,同時提高氣體的溫度,促進氣體的流動.
(2)裝置內電極的作用是火花放電,為原始大氣相互反應合成有機物提供能量.模擬自然界里的閃電.
(3)圖中右上角的燒瓶模擬的是模擬原始地球環境(原始大氣環境),因為原始大氣中沒有氧氣.
(4)C處為取樣活塞,若取樣鑒定,可檢驗到其中含有氨基酸等有機小分子物質,共生成20種有機物,其中11種氨基酸中有4種(即甘氨酸、丙氨酸、天冬氨酸和谷氨酸)是生物的蛋白質所含有的.米勒的實驗試圖向人們證實,生命起源的第一步,即從無機小分子物質形成有機小分子物質,在原始地球的條件下是完全可能實現的.
(5)米勒的實驗試圖向人們證實,生命起源的第一步,從無機小分子物質形成有機小分子物質,在原始地球的條件下是完全可能實現的.
(6)原始地球的溫度很高,地面環境與現在完全不同:天空中赤日炎炎、電閃雷鳴,地面上火山噴發、熔岩橫流;從火山中噴出的氣體,如水蒸氣、氨、甲烷等構成了原始的大氣層,與現在的大氣成分明顯不同的是原始大氣中沒有游離的氧;原始大氣在高溫、紫外線以及雷電等自然條件的長期作用下,形成了許多簡單的有機物,隨著地球溫度的逐漸降低,原始大氣中的水蒸氣凝結成雨降落到地面上,這些有機物隨著雨水進入湖泊和河流,最終匯集到原始的海洋中.原始的海洋就像一盆稀薄的熱湯,其中所含的有機物,不斷的相互作用,形成復雜的有機物,經過及其漫長的歲月,逐漸形成了原始生命.可見生命起源於原始海洋.
故答案為:(1)使空氣中有水蒸氣這一成分,同時提高氣體的溫度,促進氣體的流動.
(2)自然界里的閃電;
(3)原始大氣環境
(4)從無機小分子物質形成有機小分子物質,在原始地球的條件下是完全可能實現的.
(5)從無機小分子物質形成有機小分子物質,在原始地球的條件下是完全可能實現的;
(6)原始大氣在高溫、紫外線以及雷電等自然條件的長期作用下,形成了許多簡單的有機物.