① 催化裂化過程詳解
一般催化裂化裝置的加工過程分為反再部分、分餾部分、吸收穩定部分,下面分別介紹
.1反應-再生系統
原料油經過加熱汽化後進入提升管反應器進行裂化。提升管中催化劑處於稀相流化輸送狀態,反應產物和催化劑進入沉降器,並經汽提段用過熱水蒸氣汽提,再經旋風分離器分離後,反應產物從反應系統進入分餾系統,催化劑沉降到再生器。在再生器中用空氣使催化劑流化,並且燒去催化劑表面的焦炭。煙氣經旋風分離器和催化劑分離後離開裝置,使催化劑在裝置中循環使用。
反應系統主要由反應器和再生器組成。原料油在裝有催化劑的反應器中裂化,催化劑表面有焦炭沉積。沉積的焦炭的催化劑在再生器中燒焦進行再生,再生後的催化劑返回反應器重新使用。反應器主要為提升管,再生器為流化床。
再生器的主要作用是:燒去催化劑上因反應而生成的積炭,使催化劑的活性得以恢復。再生用空氣由主風機供給,空氣通過再生器下面的輔助燃燒室及分布管進入。
在反應系統中加入水蒸汽其作用為:
(1)霧化——從提升管底部進入使油氣霧化,分散,與催化劑充分接觸;
(2)預提升——在提升管中輸送油氣;
(3)汽提——從沉降器底部汽提段進入,使催化劑顆粒間和顆粒內的油氣汽提,減少油氣損失和焦炭生成量,從而減少再生器負荷。汽提水蒸氣占總水蒸氣量的大部分。
(4)吹掃、松動——反應器、再生器某些部位加入少量水蒸氣防止催化劑堆積、堵塞。
2分餾系統
由反應器來的反應產物油氣從底部進入分餾塔,經塔底部的脫過熱段後在分餾段分割成幾個中間產品:塔頂為富氣,汽油,側線有輕柴油,重柴油和回煉油,塔底產品為油漿。輕、重柴油分別經汽提後,再經換熱,冷卻後出裝置。
分餾系統主要設備是分餾塔,裂化產物在分餾塔中分餾成各種餾分的油品。塔頂汽在粗汽油分離罐中分成粗汽油和富氣。
3吸收—穩定系統
該系統主要由吸收塔,再吸收塔,解吸塔及穩定塔組成。從分餾塔頂油氣分離器出來的富氣中帶有汽油部分,而粗汽油中則溶解有C3,C4 組分。
吸收—穩定系統的作用就是利用吸收和精餾方法,將富氣和粗汽油分離成干氣(C2),液化氣(C3 、C4)和蒸汽壓合格的穩定汽油。
② 催化裂化裝置吸收穩定系統的原理是什麼
催化裂化生產過程的主要產品是氣體、汽油和柴油,其中氣體產品包括干氣和液化石油氣,干氣作為本裝置燃料氣燒掉,液化石油氣是寶貴的石油化工原料和民用燃料。
所謂吸收穩定,目的在於將來自分餾部分的催化富氣中C2以下組分與C3以上組分分離以便分別利用,同時將混入汽油中的少量氣體烴分出,以降低汽油的蒸氣壓,保證符合商品規格。
吸收-穩定系統包括吸收塔、解吸塔、再吸收塔、穩定塔以及相應的冷換設備。
由分餾系統油氣分離器出來的富氣經氣體壓縮機升壓後,冷卻並分出凝縮油,壓縮富氣進入吸收塔底部,粗汽油和穩定汽油作為吸收劑由塔頂進入,吸收了C3、C4(及部分C2)的富吸收油由塔底抽出送至解吸塔頂部。
吸收塔設有一個中段迴流以維持塔內較低的溫度,吸收塔頂出來的貧氣中尚夾帶少量汽油,經再吸收塔用輕柴油回收其中的汽油組分後成為干氣送燃料氣管網。吸收了汽油的輕柴油由再吸收塔底抽出返回分餾塔。
解吸塔的作用是通過加熱將富吸收油中C2組分解吸出來,由戚攜塔頂引出進入中間平衡罐,塔底為脫乙烷汽油被送至穩定塔。穩定塔的目的是將汽油中C4以下的輕烴脫除,在塔頂得到液化石油氣〈簡稱液化氣〉,塔底得到合格的汽油——穩定汽油。
吸收解吸系統有兩種流程,上面介紹的是吸收塔和解吸塔分開的所謂雙塔流程;還有一種單塔流程,即一個塔同時完成吸收和解吸的任務。雙塔流程優於單塔流程,它能同時滿足高陸伏高吸收率和高解吸率的要求。
③ 催化裂化詳細資料大全
催化裂化是石油煉制過程之一,是在熱和催化劑的作用下使重質油發生裂化反應,轉變為裂化氣、汽油和柴油等的過程。
基本介紹
- 中文名 :催化裂化
- 屬性 :石油煉制過程
- 領域 :石油加工
- 用途 :重質油發生裂化氣、汽油和柴油等
概念,類型,反應過程,沿革,反應機理,裝置類型,工藝流程,發展,其它資料,
概念
大分子烴類在熱作用下發生裂化和縮合。採用合成矽酸鋁催化劑:一種是無定形矽酸鋁型,另一種是沸石型。通常固定床催化裂化用的是低活性的。 是石油二次加工的主要方法之一。在高溫和催化劑的作用下使重質油發生裂化反應,轉變為裂化氣、汽油和柴油等的過程。主要反應有分解、異構化、氫轉移、芳構化、縮合、生焦等。與熱裂化相比,其輕質油產率高,汽油辛烷值高,柴油安定性較好,並副產富含烯烴的液化氣。近幾年來分子篩裂化催化劑採用矽溶膠或鋁溶膠等粘結劑,把分子篩、高嶺土粘結在一起,製成高密度、高強度的新一代半合成分子篩催化劑,所用分子篩除稀土-y型分子篩外,還有超穩氫-y型分子篩等。反應改在管式反應器中進行,稱為提升管催化裂化(riser catalytic cracking)。
類型
移動床催化裂化用的是小球矽酸鋁催化劑。流化床催化裂化用的是微球矽酸鋁催化劑。現代提升管催化裂化用的是微球分子篩催化裂化催化劑。控制短的接觸時間可以減少縮合反應,減少焦炭的生成。所用原料為減壓彎帆餾分油、焦化蠟油、脫瀝青油等餾分油者,稱餾分油催化裂化;所用原料為常壓渣油、減壓渣油或餾分油中摻入渣油,都稱渣油催化裂化。
反應過程
反應過程中生成的焦炭沉積於催化劑上,使催化劑失去活性。吹入空氣燒去焦炭可使催化劑再生,循環使用。熱的再生催化劑可以提供反應所需熱量。 催化裂化原料是原油通過原油蒸餾(或其他石油煉制過程)分餾所得的重質餾分油;或在重質餾分油中摻入少量渣油,或經溶差鏈劑脫瀝青後的脫瀝青渣油;或全部用常壓渣油或減壓渣油。在反應過程中由於不揮發的類碳物質沉積在催化劑上,縮合為焦炭,使催化劑活性下降,需要用空氣燒去(見催化劑再生),以恢復催化活性,並提供裂化反應所需熱量。催化裂化是石油煉廠從重質油生產汽油的主要過程之一。所產汽油辛烷值高(馬達法80左右),裂化氣(一種煉廠氣)含丙烯、丁烯、異構烴多。
催化裂化裝置總貌圖 沿革
催化裂化技術由法國E.J.胡德利研究成功,於1936年由美國索康尼真空油公司和太陽石油公司合作實現工業化,當時採用固定床反應器,反應和催化劑再生交替進行。由於高壓縮比的汽油發動機需要較高辛烷值汽油,催化裂化向移動床(反應和催化劑再生在移動床反應器中進行)和流化床(反應和催化劑再生在流化床反應器中進行)兩個方向發展。移動床催化裂化因設備復雜逐漸被淘汰;流化床催化裂化設備較簡單、處理能力大、較易操作,得到較大發展。60年代,出現分子篩催化劑,因其活性高,裂化反應改在一個管式反應器(提升管反應器)中進行,稱為提升管催化裂化。中國1958年在蘭州建成移動床催化裂化裝置,1965年在撫順建成流化床催化裂化裝置,1974年在玉門建成提升管催化裂化裝置。1984年,中國催化裂化裝置共39套,占原油加工能力23%。
催化裂化 反應機理
與按自由基反應機理進行的熱裂化不同,催化裂化是按碳正離子機理進行的,催化劑促進了裂化、異構化和芳構化反應,裂化產物比熱裂化具有更高的經濟價值,氣體中C3和C4較多,異構物多;汽油中異構烴多,二烯烴極少,芳烴較多。其主要反應包括:①分解,使重質烴轉變為輕質烴;②異構化;③氫轉移;④芳構化;⑤縮合反應、生焦反應。異構化和芳構化使低辛烷值的直鏈烴轉變為高辛烷值的異構烴和芳烴。
裝置類型
流化床催化裂化裝置有多種類型,按反應器(或沉降器)和再生器布置的相對位置的不同可分為兩大類:①反應器和再生器分開布置的並列式;②反應器和再生器架疊在一虛鬧孫起的同軸式。並列式又由於反應器(或沉降器)和再生器位置高低的不同而分為同高並列式和高低並列式兩類。
同高並列式 主要特點是:①催化劑由U型管密相輸送;②反應器和再生器間的催化劑循環主要靠改變U型管兩端的催化劑密度來調節;③由反應器輸送到再生器的催化劑,不通過再生器的分布板,直接由密相提升管送入分布板上的流化床可以減少分布板的磨蝕。
催化裂化 高低並列式 特點是反應時間短,減少了二次反應;催化劑循環採用滑閥控制,比較靈活。
同軸式 裝置形式特點是:①反應器和再生器之間的催化劑輸送採用塞閥控制;②採用垂直提升管和90°耐磨蝕的彎頭;③原料用多個噴嘴噴入提升管。
工藝流程
催化裂化的流程主要包括三個部分:①原料油催化裂化;②催化劑再生;③產物分離。原料噴入提升管反應器下部,在此處與高溫催化劑混合、氣化並發生反應。反應溫度480~530℃,壓力0.14~0.2MPa(表壓)。反應油氣與催化劑在沉降器和旋風分離器(簡稱旋分器),分離後,進入分餾塔分出汽油、柴油和重質回煉油。裂化氣經壓縮後
去氣體分離系統 。結焦的催化劑在再生器用空氣燒去焦炭後循環使用,再生溫度為600~730℃。
5.1反應部分 原料經換熱後與回煉油混合經對稱分布物料噴嘴進入提升管,並噴入燃油加熱,上升過程中開始在高溫和催化劑的作用下反應分解,進入沉降器下段的氣提段,經汽提蒸汽提升進入沉降器上段反應分解後反應油氣和催化劑的混合物進入沉降器頂部的旋風分離器(一般為多組),經兩級分離後,油氣進入集氣室,並經油氣管道輸送至分餾塔底部進行分餾,分離出的催化劑則從旋分底部的翼閥排出,到達沉降器底部經待生斜管進入再生器底部的燒焦罐。
5.2再生部分 再生器階段,催化劑因在反應過程中表面會附著油焦而活性降低,所以必須進行再生處理,首先主風機將壓縮空氣送入輔助燃燒室進行高溫加熱,經輔助煙道通過主風分布管進入再生器燒焦罐底部,從反應器過來的催化劑在高溫大流量主風的作用下被加熱上升,同時通過器壁分布的燃油噴嘴噴入燃油調節反應溫度,這樣催化劑表面附著的油焦在高溫下燃燒分解為煙氣,煙氣和催化劑的混合物繼續上升進入再生器繼續反應,油焦未能充分反應的催化劑經循環斜管會重新進入燒焦罐再次處理。最後煙氣及處理後的催化劑進入再生器頂部的旋風分離器進行氣固分離,煙氣進入集氣室匯合後排入煙道,催化劑進入再生斜管送至提升管。
5.3煙氣利用 再生器排除的煙氣一般還要經三級旋風分離器再次分離回收催化劑,高溫高速的煙氣主要有兩種路徑,一、進入煙機,推動煙機旋轉帶動發電機或鼓風機;二、進入余熱鍋爐進行余熱回收,最後廢氣經工業煙囪排放。
催化裂化的相關書籍:催化裂化 工藝與工程 發展
長期以來,流化床催化裂化原料主要為原油蒸餾的餾出油(柴油、減壓餾出油等)和熱加工餾出油,原料中鎳、釩(會使催化劑中毒)含量一般均小於0.5ppm。在以減壓渣油作催化裂化原料時,通常要在進入催化裂化裝置前,用各種方法進行原料預處理,除去其中大部分鎳、釩等金屬和瀝青質。70年代以來,由於節約石油資源引起商品渣油需求下降。因此,流化床催化裂化裝置摻煉減壓渣油或直接加工常壓渣油已相當普遍。主要措施是:採用抗重金屬中毒催化劑;在原料中加入鈍化劑等。
其它資料
催化劑 主要成分為矽酸鋁,起催化作用的是其中的酸性活性中心(見固體酸催化劑)。移動床催化裂化採用3~5mm小球形催化劑。流化床催化裂化早期所用的是粉狀催化劑,活性、穩定性和流化性能較差。40年代起,開發了微球形(40~80μm)矽鋁催化劑,並在制備工藝上作了改進,70年代初期,開發了高活性含稀土元素的 X型分子篩矽鋁微球催化劑。70 年代起, 又開發了活性更高的Y型分子篩微球催化劑(見石油煉制催化劑)。
矽酸鋁管 使用分子篩催化劑時,為了使煉廠產品方案有一定的靈活性,可根據市場需要改變操作條件以得到最大量的汽油、柴油或液化氣。
④ 如何在催化裂化反應器中實現催化劑的循環
在催化裂化反應器中實現催化劑的循環:一般催化裂化裝置的加工過程分為反再部分、分餾部分、吸收穩定部分。
催化裂化的反應器是流化床,在再生器溫度達到650℃以上時,保持低主風量、低再生壓力,迅速向再生器加催化劑,並保證床溫不低於350℃,若床溫下降過快減慢加劑速度,等催化劑蓋過燃燒油噴嘴,可以噴燃燒油升溫。

類型
移動床催化裂化用的是小球硅酸鋁催化劑。流化床催化裂化用的是微球硅酸鋁催化劑。現代提升管催化裂化用的是微球分子篩催化裂化催化劑。控制短的接觸時間可以減少縮合反應,減少焦炭的生成。所用原料為減壓餾分油、焦化蠟油、脫瀝青油等餾分油者,稱餾分油催化裂化;所用原料為常壓渣油、減壓渣油或餾分油中摻入渣油,都稱渣油催化裂化。
⑤ 催化裂化工藝過程的分餾系統
典型的催化裂化分餾系統見圖1。由反應器來的反應產物(油氣)從底部回進入分餾塔,經答底部的脫過熱段後在分餾段分割成幾個中間產品:塔頂為富氣及汽油,側線有輕柴油、重柴油和回煉油。塔底產品是油漿。輕柴油和重柴油分別經汽提後,再經換熱、冷卻後出裝置。
催化裂化裝置的分餾塔有幾個特點:
①進料是帶有催化劑粉塵的過熱油氣,因此,分餾塔底部設有脫過熱段,用經過冷卻的油漿把油氣冷卻到飽和狀態並洗下夾帶的粉塵以便進行分餾和避免堵塞塔盤。
②全塔的剩餘熱量大而且產品的分離精確度要求比較容易滿足。因此一般設有多個循環迴流:塔頂循環迴流、1-2個中段循環迴流和油漿循環。
③塔頂同流採用循環迴流而不用冷迴流,其主要原因是進入分餾塔的油氣含有相當大數量的惰性氣體和不凝氣,它們會影響塔頂冷凝冷卻器的效果;採用循環迴流代替冷迴流可以降低從分餾塔頂至氣壓機入口的壓降,從而提高氣壓機的入口壓力、降低氣壓機的功率消耗。
