❶ 發電機勵磁系統的幾種故障處理
1)勵磁迴路開路,勵磁繞組斷線。如滅磁開關、接觸器誤跳閘,磁場變阻器接頭接觸不良,勵磁迴路開路,可控硅勵磁裝置中部分元件老化、開焊、損壞等。
2)勵磁繞組長期發熱,絕緣損壞,接地短路。
3)系統振盪,功率發生嚴重不平衡,系統吸收大量無功負荷,靜穩定遭破壞,發電機組搶無功,原動機系統失靈或反應遲緩引起發電機失去平衡,振盪、失磁跳閘。
4)運行人員誤調整,如調節器運行方式不合理、投退操作開關失誤、調整不及時、維護勵磁碳刷方法不當等。
當發電機失去勵磁時,失磁保護正確動作,則按發變組開關跳閘處理。在上述處理的同時,應盡量增加其他未失磁機組的勵磁電流,以提高系統電壓和穩定能力。
(1)自動勵磁調節裝置在系統發生短路擴展閱讀
發電機勵磁系統包括直流勵磁機、無刷勵磁機、交流勵磁機等。近十多年來,由於新技術,新工藝和新器件的涌現和使用,使得發電機的勵磁方式得到了不斷的發展和完善。在自動調節勵磁裝置方面,也不斷研製和推廣使用了許多新型的調節裝置。
勵磁系統的主要作用有:
1)根據發電機負荷的變化相應的調節勵磁電流,以維持機端電壓為給定值;
2)控制並列運行各發電機間無功功率分配;
3)提高發電機並列運行的靜態穩定性;
4)提高發電機並列運行的暫態穩定性;
5)在發電機內部出現故障時,進行滅磁,以減小故障損失程度;
6)根據運行要求對發電機實行最大勵磁限制及最小勵磁限制。
❷ 發電機勵磁系統的幾種故障處理
� 利用轉子電壓表通過測量發電機轉子正、負極對地電壓,兩極對地電壓均不為零,說明發電機轉子沒有發生一點接地故障。按保護裝置的復歸按鈕,「轉子迴路一點接地」故障信號消失。 (2)故障分析: 分析保護裝置中「轉子迴路一點接地」動作原理知道,保護裝置根據轉子電壓判斷轉子接地故障。當勵磁調節裝置剛起勵時,發出初勵電源投入命令,轉子電壓升高,發電機電壓上升,經過一段時間延遲後,勵磁調節裝置自動退出初勵電源,由於勵磁調節器機端電壓初始參考值低於初勵電源產生的機端電壓,所以當初勵電源退出後,轉子電壓會突然下降很多,進而轉子電壓反饋給保護,則保護裝置認為是轉子迴路發生了短路致使轉子電壓突然下降了,所以保護報信號。將勵磁調節器逆變滅磁後重新做試驗,在勵磁調節器起勵前,手工增加勵磁調節器電壓參考值,保證大於初勵電源產生的發電機端電壓,重新起勵升壓後,發電機運行正常,保護裝置沒有發「轉子迴路一點接地」故障報警。 (3)故障處理: 本次事故說明保護裝置的「轉子迴路一點接地」功能不夠完善,其動作機理不夠科學,容易誤動,建議完善「轉子迴路一點接地」功能,或者更換為更為可靠的「轉子迴路一點接地」保護裝置。 在「轉子迴路一點接地」保護功能未完善前,調整勵磁調節裝置起勵初始參考值,要求電壓初始參考值大於初勵電源產生的發電機端電壓。 2 正常調節有功功率引起機組解列的事故處理 (1)事故現象: 某電廠發電機組正常運行中,根據中調要求進行升負荷操作,在增加有功功率過程中,發電機輸出無功功率由50MVar突然降低至-80MVar,勵磁調節裝置發出低勵限制信號,發變組保護裝置報失磁保護動作,發電機解列,滅磁開關跳閘。 (2)事故分析: 事故發生後,檢查所有的保護及異常信號,發變組保護裝置除了失磁保護動作外沒有其它任何事故報警,故障錄波顯示事故障發生時,發電機機端電壓下降,無功功率進相至80MVar,失磁保護正確動作; 勵磁調節裝置除了發出低勵限制信號沒有其它事故報警信號,從勵磁調節裝置錄波分析顯示,勵磁調節裝置中電力系統穩定器輸出突降至下限幅值(5%額定機端電壓),發電機無功急劇下降,進相運行後,勵磁調節裝置低勵限制啟動,但未來得及調節,發電機進相深度已滿足失磁保護動作條件。 根據當時只有有功功率增加操作,發電機勵磁調節器採用PSS-1A型電力系統穩定器,因此分析認為事故的發生是因為PSS反調引起的。對於PSS-1A型電力系統穩定器來說,PSS本身無法判斷發電機有功功率的增加是系統低頻振盪引起的還是由原動機調節引起的,當原動機增大有功功率輸出,PSS輸出會降低發電機勵磁電流,進而降低發電機無功功率,這就是PSS-1A型的「反調」現象。PSS-1A根據有功功率的變化調節發電機勵磁電流,當發電機有功功率向上變化時,其「反調」幅度與有功功率變化幅度成正比,由於本次增加發電機有功功率幅度較大,速度較快,PSS的「反調」直接導致勵磁電流的突然降低造成深度進相,導致發電機失磁保護動作解列。 (3)事故處理: PSS-1A的「反調」現象對電廠和系統都是不利的,對於PSS-1A型電力系統穩定器可以在調節有功功率時增加閉鎖PSS輸出的功能,但目前電力系統不推薦這種方法;要消除這種「反調」現象最有效的方法就是採用PSS-2A或PSS-2B模型,目前國內外多家勵磁調節器已具有該類模型電力系統穩定器,並在工程中得到大量使用。 對勵磁調節器的低勵限制功能進行完善,事故過程勵磁調節器最先發出低勵磁限制信號,但由於低勵限制功能作用太慢,沒有限制發電機無功功率降低才導致發電機失磁保護動作,目前業界中低勵限制調節方法有兩種:一種採用在低勵限制時增加電壓參考值的方法限制無功功率下降,這種方法調節過程較平穩,但調節速度較慢;另一種在低勵限制動作時直接切換為無功功率閉環調節,根據無功功率下降的幅度及速度進行調節,這種方法調節速度快,有助於發電機無功功率快速恢復至正常運行范圍。3 無功調差參數設置不一致切換導致發電機誤強勵事故分析 (1)事故現象: 某電廠200MW機組處於發電狀態,有功200MW,無功+100Mvar。勵磁調節器正常工作中,A通道為主通道,B通道為從通道,處於備用狀態,勵磁調試人員觀察勵磁電流,進行通道切換試驗,通道切換命令(A通道至B通道)發出後,勵磁電流突然增大,勵磁變壓器保護動作,作用於發電機解列跳閘。 (2) 事故分析: 事故發生後,檢查B通道和勵磁變壓器保護裝置,結果表明B通道和勵磁變壓器保護裝置均工作正常,重新開機,B通道也能正常帶負荷運行。但發現當發電機空載時,進行A通道和B通道切換,發電機定子電壓無擾動;當發電機負載時,進行A通道和B通道切換,發電機定子電壓有明顯的偏移,遂將事故原因分析重點放在A通道和B通道參數差異上,比較發現:A通道無功調差系數為0,B通道無功調差系數誤設置為-15%。 無功調差系數的定義為發電機無功功率為額定容量時,疊加在電壓測量值的發電機定子電壓的百分數。
❸ 勵磁系統的作用是什麼
供給同步發電機勵磁電流的電源及其附屬設備統稱為勵磁系統。它一般由勵磁功率單元和勵磁調節器兩個主要部分組成。勵磁功率單元向同步發電機轉子提供勵磁電流;而勵磁調節器則根據輸入信號和給定的調節准則控制勵磁功率單元的輸出。
1、維持發電機端電壓在給定值,當發電機負荷發生變化時,通過調節磁場的強弱來恆定機端電壓。
2、合理分配並列運行機組之間的無功分配。
3、提高電力系統的穩定性,包括靜態穩定性、暫態穩定性及動態穩定性。
4、在發電機內部出現故障時,進行滅磁,以減小故障損失程度,根據運行要求對發電機實行最大勵磁限制及最小勵磁限制。
(3)自動勵磁調節裝置在系統發生短路擴展閱讀:
勵磁系統種類:
勵磁機勵磁系統(exciter excitation system),使用勵磁機勵磁功率單元的勵磁系統。
直流勵磁機勵磁系統(DC exciter excitation system),使用直流勵磁機勵磁功率單元的勵磁系統。
交流勵磁機勵磁系統(AC exciter excitation system),使用交流勵磁機勵磁功率單元的勵磁系統。
無刷勵磁系統(brushless excitation system),使用旋轉整流器交流勵磁機勵磁功率單元的勵磁系統。
❹ 勵磁系統的原理是什麼
發電機勵磁系統 發電機勵磁系統
供給同步發電機勵磁電流的電源及其附屬設備統稱為勵磁系統。它一般由勵磁功率單元和勵磁調節器兩個主要部分組成。勵磁功率單元向同步發電機轉子提供勵磁電流;而勵磁調節器則根據輸入信號和給定的調節准則控制勵磁功率單元的輸出。勵磁系統的自動勵磁調節器對提高電力系統並聯機組的穩定性具有相當大的作用。尤其是現代電力系統的發展導致機組穩定極限降低的趨勢,也促使勵磁技術不斷發展。同步發電機的勵磁系統主要由功率單元和調節器(裝置)兩大部分組成。如圖所示:
其中勵磁功率單元是指向同步發電機轉子繞組提供直流勵磁電流的勵磁電源部分,而勵磁調節器則是根據控制要求的輸入信號和給定的調節准則控制勵磁功率單元輸出的裝置。由勵磁調節器、勵磁功率單元和發電機本身一起組成的整個系統稱為勵磁系統控制系統。勵磁系統是發電機的重要組成部份,它對電力系統及發電機本身的安全穩定運行有很大的影響。勵磁系統的主要作用有:1)根據發電機負荷的變化相應的調節勵磁電流,以維持機端電壓為給定值;2)控制並列運行各發電機間無功功率分配;3)提高發電機並列運行的靜態穩定性;4)提高發電機並列運行的暫態穩定性;5)在發電機內部出現故障時,進行滅磁,以減小故障損失程度;6)根據運行要求對發電機實行最大勵磁限制及最小勵磁限制。
同步發電機勵磁系統的形式有多種多樣,按照供電方式可以劃分為他勵式和自勵式兩大類。
一、發電機獲得勵磁電流的幾種方式
1、直流發電機供電的勵磁方式:這種勵磁方式的發電機具有專用的直流發電機,這種專用的直流發電機稱為直流勵磁機,勵磁機一般與發電機同軸,發電機的勵磁繞組通過裝在大軸上的滑環及固定電刷從勵磁機獲得直流電流。這種勵磁方式具有勵磁電流獨立,工作比較可靠和減少自用電消耗量等優點,是過去幾十年間發電機主要勵磁方式,具有較成熟的運行經驗。缺點是勵磁調節速度較慢,維護工作量大,故在10MW以上的機組中很少採用。
2、交流勵磁機供電的勵磁方式,現代大容量發電機有的採用交流勵磁機提供勵磁電流。交流勵磁機也裝在發電機大軸上,它輸出的交流電流經整流後供給發電機轉子勵磁,此時,發電機的勵磁方式屬他勵磁方式,又由於採用靜止的整流裝置,故又稱為他勵靜止勵磁,交流副勵磁機提供勵磁電流。交流副勵磁機可以是永磁機或是具有自勵恆壓裝置的交流發電機。為了提高勵磁調節速度,交流勵磁機通常採用100——200HZ的中頻發電機,而交流副勵磁機則採用400——500HZ的中頻發電機。這種發電機的直流勵磁繞組和三相交流繞組都繞在定子槽內,轉子只有齒與槽而沒有繞組,像個齒輪,因此,它沒有電刷,滑環等轉動接觸部件,具有工作可靠,結構簡單,製造工藝方便等優點。缺點是噪音較大,交流電勢的諧波分量也較大。
3、無勵磁機的勵磁方式:
在勵磁方式中不設置專門的勵磁機,而從發電機本身取得勵磁電源,經整流後再供給發電機本身勵磁,稱自勵式靜止勵磁。自勵式靜止勵磁可分為自並勵和自復勵兩種方式。自並勵方式它通過接在發電機出口的整流變壓器取得勵磁電流,經整流後供給發電機勵磁,這種
勵磁方式具有結簡單,設備少,投資省和維護工作量少等優點。自復勵磁方式除沒有整流變壓外,還設有串聯在發電機定子迴路的大功率電流互感器。這種互感器的作用是在發生短路時,給發電機提供較大的勵磁電流,以彌補整流變壓器輸出的不足。這種勵磁方式具有兩種勵磁電源,通過整流變壓器獲得的電壓電源和通過串聯變壓器獲得的電流源。
二、發電機與勵磁電流的有關特性
1、電壓的調節
自動調節勵磁系統可以看成為一個以電壓為被調量的負反饋控制系統。無功負荷電流是造成發電機端電壓下降的主要原因,當勵磁電流不變時,發電機的端電壓將隨無功電流的增大而降低。但是為了滿足用戶對電能質量的要求,發電機的端電壓應基本保持不變,實現這一要求的辦法是隨無功電流的變化調節發電機的勵磁電流。
2、無功功率的調節:
發電機與系統並聯運行時,可以認為是與無限大容量電源的母線運行,要改變發電機勵磁電流,感應電勢和定子電流也跟著變化,此時發電機的無功電流也跟著變化。當發電機與無限大容量系統並聯運行時,為了改變發電機的無功功率,必須調節發電機的勵磁電流。此時改變的發電機勵磁電流並不是通常所說的「調壓」,而是只是改變了送入系統的無功功率。
3、無功負荷的分配:
並聯運行的發電機根據各自的額定容量,按比例進行無功電流的分配。大容量發電機應負擔較多無功負荷,而容量較小的則負提供較少的無功負荷。為了實現無功負荷能自動分配,可以通過自動高壓調節的勵磁裝置,改變發電機勵磁電流維持其端電壓不變,還可對發電機電壓調節特性的傾斜度進行調整,以實現並聯運行發電機無功負荷的合理分配。
三、自動調節勵磁電流的方法
在改變發電機的勵磁電流中,一般不直接在其轉子迴路中進行,因為該迴路中電流很大,不便於進行直接調節,通常採用的方法是改變勵磁機的勵磁電流,以達到調節發電機轉子電流的目的。常用的方法有改變勵磁機勵磁迴路的電阻,改變勵磁機的附加勵磁電流,改變
可控硅的導通角等。這里主要講改變可控硅導通角的方法,它是根據發電機電壓、電流或功率因數的變化,相應地改變可控硅整流器的導通角,於是發電機的勵磁電流便跟著改變。這套裝置一般由晶體管,可控硅電子元件構成,具有靈敏、快速、無失靈區、輸出功率大、體積小和重量輕等優點。在事故情況下能有效地抑制發電機的過電壓和實現快速滅磁。自動調節勵磁裝置通常由測量單元、同步單元、放大單元、調差單元、穩定單元、限制單元及一些輔助單元構成。被測量信號(如電壓、電流等),經測量單元變換後與給定值相比較,然後將比較結果(偏差)經前置放大單元和功率放大單元放大,並用於控制可控硅的導通角,以達到調節發電機勵磁電流的目的。同步單元的作用是使移相部分輸出的觸發脈沖與可控硅整流器的交流勵磁電源同步,以保證控硅的正確觸發。調差單元的作用是為了使並聯運行的發電機能穩定和合理地分配無功負荷。穩定單元是為了改善電力系統的穩定而引進的單元 。勵磁系統穩定單元 用於改善勵磁系統的穩定性。限制單元是為了使發電機不致在過勵磁或欠勵磁的條件下運行而設置的。必須指出並不是每一種自動調節勵磁裝置都具有上述各種單元,一種調節器裝置所具有的單元與其擔負的具體任務有關。
四、自動調節勵磁的組成部件及輔助設備
自動調節勵磁的組成部件有機端電壓互感器、機端電流互感器、勵磁變壓器;勵磁裝置需要提供以下電流,廠用AC380v、廠用DC220v控制電源.廠用DC220v合閘電源;需要提供以下空接點,自動開機.自動停機.並網(一常開,一常閉)增,減;需要提供以下模擬信號,發電機機端電壓100V,發電機機端電流5A,母線電壓100V,勵磁裝置輸出以下繼電器接點信號;勵磁變過流,失磁,勵磁裝置異常等。
勵磁控制、保護及信號迴路由滅磁開關,助磁電路、風機、滅磁開關偷跳、勵磁變過流、調節器故障、發電機工況異常、電量變送器等組成。在同步發電機發生內部故障時除了必須解列外,還必須滅磁,把轉子磁場盡快地減弱到最小程度,保證轉子不過的情況下,使滅磁時間盡可能縮短,是滅磁裝置的主要功能。根據額定勵磁電壓的大小可分為線性電阻滅磁和非線性電阻滅磁。
近十多年來,由於新技術,新工藝和新器件的涌現和使用,使得發電機的勵磁方式得到了不斷的發展和完善。在自動調節勵磁裝置方面,也不斷研製和推廣使用了許多新型的調節裝置。由於採用微機計算機用軟體實現的自動調節勵磁裝置有顯著優點,目前很多國家都在研製和試驗用微型機計算機配以相應的外部設備構成的數字自動調節勵磁裝置,這種調節裝置將能實現自適應最佳調節。
❺ 三相交流發電機勵磁充電時發生短路現象是什麼故障
(1)勵磁機整流輸出故障及處理某電廠勵磁方式為無刷勵磁式(系統接線方式如下),升壓時給起勵電流後,發電機電壓變化不大,多次實驗結果一樣,用三相調壓器直接加電壓至勵磁功率迴路進行整流,輸出至額定電流時發電機電壓仍只到30%.勵磁裝置輸出電流正常,達到額定電流後發電機電壓仍然升不起來基本可以排除勵磁故障。經檢查發現勵磁機整流部分輸出不正常,經檢查為整流二極體有故障,解決後升壓正常。(2)勵磁PT電壓故障及處理某電廠為可控硅自並激勵磁系統,發電機到額定轉速後,運行人員在勵磁調節櫃上操作「開機」開關,發電機開機起勵後,發電機電壓表指針不動,勵磁變副邊電壓表很快滿表,隨即保護動作,滅磁開關跳開,檢查發現滅磁開關兩個觸頭燒熔,滅磁開關正上方的-C相可控硅散熱器被嚴重熏黑,繼續檢查發現勵磁變壓器高壓保險(10A)三相由於來不及熔斷,本體均被炸飛掉,高壓保險櫃被驗證熏黑。經檢查造成事故的主要原因是PT電壓沒投入,就以「自動」方式開機升壓。由於自動勵磁調節器是以PT電壓作為反饋量,沒有檢測到反饋電壓,控制角一直保持在最小角度。勵磁電流會一直上升,發電機電壓一直會上升到飽和點,此時勵磁電流繼續增加,由於電流的增加率很大,電壓會達到1.5倍以上,勵磁變壓器高壓保險的電流和電壓均超過額定值,高壓保險來不及熔斷,熔斷時的能量很大,超過了保險管內部吸收的極限,被炸飛掉。保險炸飛後三相之間相互拉弧造成發電機三相短路,最後發電機差動保護動作,跳開滅磁開關。
❻ 發電機勵磁系統的幾種故障處理
1、保護裝置誤報「轉子迴路一點接地」故障處理。
本次事故說明保護裝置的「轉子迴路一點接地」功能不夠完善,其動作機理不夠科學,容易誤動,需要完善「轉子迴路一點接地」功能,或者更換為更為可靠的「轉子迴路一點接地」保護裝置。
2、正常調節有功功率引起機組解列的事故處理。
對勵磁調節器的低勵限制功能進行完善,事故過程勵磁調節器最先發出低勵磁限制信號,但由於低勵限制功能作用太慢,沒有限制發電機無功功率降低才導致發電機失磁保護動作。
3、無功調差參數設置不一致切換導致發電機誤強勵事故處理。
檢查勵磁調節器勵磁電流過勵限制定值和勵磁變壓器保護裝置定值配合情況,保證出現誤強勵時,勵磁調節器勵磁電流過勵限制先動作降低勵磁電流,不能出現勵磁變壓器保護先動作於發電機解列。
(6)自動勵磁調節裝置在系統發生短路擴展閱讀:
調節原理:在改變發電機的勵磁電流中,一般不直接在其轉子迴路中進行,因為該迴路中電流很大,不便於進行直接調節,通常採用的方法是改變勵磁機的勵磁電流,以達到調節發電機轉子電流的目的。
常用的方法有改變勵磁機勵磁迴路的電阻,改變勵磁機的附加勵磁電流,改變可控硅的導通角等。這里主要講改變可控硅導通角的方法,它是根據發電機電壓、電流或功率因數的變化,相應地改變可控硅整流器的導通角,於是發電機的勵磁電流便跟著改變。
❼ 簡要說明同步發電機勵磁自動控制系統如何維持端電壓在給定水平
通過反饋控制實現的。簡單的說,檢測出口電壓值,偏低時,通過自動控制系統增加勵磁電流,從而提升出口電壓。出口電壓過高時,則自動減小勵磁電流,降低出口電壓,始終讓出口電壓維持在一定的水平。
❽ 發電廠勵磁機的工作原理
發電機勵磁調節系統通常分為「手動勵磁調節系統」和「自動勵磁調節系統」。
手動勵磁調節系統的工作原理:將勵磁機或其它交流電源進行整流,得到直流電源,再將直流電源通過磁場變阻器和滅磁開關接通發電機轉子迴路,改變磁場變阻器的阻值就可以調節勵磁電流的大小,從而達到調節發電機定子電壓的目的。(也有採用可控硅整流手動勵磁調節系統)
自動勵磁調節系統的工作原理:將勵磁機或其它交流電源通過可控硅整流裝置得到直流勵磁電源。利用發電機出口的壓變和流變反映發電機電壓偏差和無功功率,將偏差信號轉換成可控硅的觸發信號,根據發電機電壓和無功功率自動調節勵磁電流。在系統故障時還有自動「強行勵磁」功能。
勵磁系統具體結構很多,原理大同小異,
❾ 勵磁調節器的穩定性可以通過什麼手段改善
增加開環傳遞函數的零點,使漸近線平行於虛軸並處於左半平面,可以改善自動勵磁調節器的穩定性。
勵磁系統是發電機的重要組成部份,它對電力系統及發電機本身的安全穩定運行有很大的影響。勵磁系統的自動勵磁調節器對提高電力系統並聯機組的穩定性具有相當大的作用。
勵磁系統的工作原理
同步發電機是電力系統的主要設備,它是將旋轉形式的機械功率轉換成電磁功率的設備,為完成這一轉換,它本身需要一個直流磁場,產生這個磁場的直流電流稱為同步發電機的勵磁電流。
專門為同步發電機提供勵磁電流的有關設備,即勵磁電壓的建立、調整和使其電壓消失的有關設備統稱為勵磁系統。同步發電機的勵磁系統是由勵磁調節器AER和勵磁功率系統組成。
勵磁功率系統向同步發電機轉子勵磁繞組提供直流勵磁電流。調節器根據發電機端電壓變化控制勵磁功率系統的輸出,從而達到調節勵磁電流的目的。