1. 二軸式和三軸變速器一檔傳力路線通常有什麼區別
兩軸式變速箱,是有輸入軸通過同步器傳給輸出軸。而三軸變速箱是有輸入軸先傳給中間軸,再有中間軸通過同步器傳給輸出軸。了解汽修技術到中國鄭州汽車技校
2. 二軸式手動變速器的變速傳動機構(動力傳動路線,示意圖,主要零部件) 求比較合理的答案,為了應付期末考
各檔傳動路線基本相同,主要區別在於同步器是安裝在一軸上還是二軸上。
假設,一檔同步器安裝在一軸,傳動路線為一軸-一檔同步器齒轂-一檔同步器齒套-一檔同步器結合齒圈-一檔主動齒輪(通過一檔主動齒輪上的結合齒傳遞)-一檔被動齒輪(其在二軸上)-二軸-主減速器-差速器-半軸-輪轂-車輪
如果,三檔同步器安裝在二軸,傳動路線為一軸-三檔主動齒輪-三檔從動齒輪(結合齒)-三檔同步器結合齒圈-三檔同步器齒套-三檔同步器齒轂-二軸-主減速器-差速器-半軸-輪轂-車輪。
附帶建議,網上查找相關圖片和簡介資料更加直觀。
謝謝採納。。。。。。。。。。。。。。。。。
3. 某齒輪傳動裝置如圖1所示,輪1為主動輪,則輪2的齒面接觸應力按 變化。 (分數:2分; 難度:易) A、對稱
這個應該是脈動循環變化。
4. 傳動裝置都有哪些分類
傳動裝置是指把動力源的運動和動力傳遞給執行機構的裝置,介於動力源和執行機構之間,可以改變運動速度,運動方式和力或轉矩的大小。
任何一部完整的機器都由動力部分、傳動裝置和工作機構組成,能量從動力部分經過傳動裝置傳遞到工作機構。根據工作介質的不同,傳動裝置可分為四大類:機械傳動、電力傳動、氣體傳動和液體傳動。
(1)機械傳動
機械傳動是通過齒輪、皮帶、鏈條、鋼絲繩、軸和軸承等機械零件傳遞能量的。它具有傳動准確可靠、製造簡單、設計及工藝都比較成熟、受負荷及溫度變化的影響小等優點,但與其他傳動形式比較,有結構復雜笨重、遠距離操縱困難、安裝位置自由度小等缺點。
(2)電力傳動
電力傳動在有交流電源的場合得到了廣泛的應用,但交流電動機若實現無級調速需要有變頻調速設備,而直流電動機需要直流電源,其無級調速需要有可控硅調速設備,因而應用范圍受到限制。電力傳動在大功率及低速大轉矩的場合普及使用尚有一段距離。在工程機械的應用上,由於電源限制,結構笨重,無法進行頻繁的啟動、制動、換向等原因,很少單獨採用電力傳動。
(3)氣體傳動
氣體傳動是以壓縮空氣為工作介質的,通過調節供氣量,很容易實現無級調速,而且結構簡單、操作方便、高壓空氣流動過程中壓力損失少,同時空氣從大氣中取得,無供應困難,排氣及漏氣全部回到大氣中去,無污染環境的弊病,對環境的適應性強。氣體傳動的致命弱點是由於空氣的可壓縮性致使無法獲得穩定的運動,因此,一般只用於那些對運動均勻性無關緊要的地方,如氣錘、風鎬等。此外為了減少空氣的泄漏及安全原因,氣體傳動系統的工作壓力一般不超過0.7~0.8MPa,因而氣動元件結構尺寸大,不宜用於大功率傳動。在工程機械上氣動元件多用於操縱系統,如制動器、離合器的操縱等。
(4)液體傳動
以液體為工作介質,傳遞能量和進行控制的叫液體傳動,它包括液力傳動、液黏傳動和液壓傳動。
1)液力傳動
它實際上是一組離心泵一渦輪機系統,發動機帶動離心泵旋轉,離心泵從液槽吸入液體並帶動液體旋轉,最後將液體以一定的速度排入導管。這樣,離心泵便把發動機的機械能變成了液體的動能。從泵排出的高速液體經導管噴到渦輪機的葉片上,使渦輪轉動,從而變成渦輪軸的機械能。這種只利用液體動能的傳動叫液力傳動。現代液力傳動裝置可以看成是由上述離心泵一渦輪機組演化而來。
液力傳動多在工程機械中作為機械傳動的一個環節,組成液力機械傳動而被廣泛應用著,它具有自動無級變速的特點,無論機械遇到怎樣大的阻力都不會使發動機熄火,但由於液力機械傳動的效率比較低,一般不作為一個獨立完整的傳動系統被應用。
2)液黏傳動
它是以黏性液體為工作介質,依靠主、從動摩擦片間液體的黏性來傳遞動力並調節轉速與力矩的一種傳動方式。液黏傳動分為兩大類,一類是運行中油膜厚度不變的液黏傳動,如硅油風扇離合器;另一類是運行中油膜厚度可變的液黏傳動,如液黏調速離合器、液黏制動器、液黏測功器、液黏聯軸器、液黏調速裝置等。
3)液壓傳動
它是利用密閉工作容積內液體壓力能的傳動。液壓千斤頂就是一個簡單的液壓傳動的實例。
液壓千斤頂的小油缸l、大油缸2、油箱6以及它們之間的連接通道構成一個密閉的容器,裡面充滿著液壓油。在開關5關閉的情況下,當提起手柄時,小油缸1的柱塞上移使其工作容積增大形成部分真空,油箱6里的油便在大氣壓作用下通過濾網7和單向閥3進入小油缸;壓下手柄時,小油缸的柱塞下移,擠壓其下腔的油液,這部分壓力油便頂開單向閥4進入大油缸2,推動大柱塞從而頂起重物。再提起手柄時,大油缸內的壓力油將力圖倒流入小油缸,此時單向閥4自動關閉,使油不致倒流,這就保證了重物不致自動落下;壓下手柄時,單向閥3自動關閉,使液壓油不致倒流入油箱,而只能進入大油缸頂起重物。這樣,當手柄被反復提起和壓下時,小油缸不斷交替進行著吸油和排油過程,壓力油不斷進入大油缸,將重物一點點地頂起。當需放下重物時,打開開關5,大油缸的柱塞便在重物作用下下移,將大油缸中的油液擠回油箱6。可見,液壓千斤頂工作需有兩個條件:一是處於密閉容器內的液體由於大小油缸工作容積的變化而能夠流動,二是這些液體具有壓力。能流動並具有一定壓力的液體具有壓力能。液壓千斤頂就是利用油液的壓力能將手柄上的力和位移轉變為頂起重物的力和位移。
5. 設計二級帶式輸送機傳動裝置
呵呵,我以前做過的哦
6. 請寫出兩軸式變速器1檔、2檔、4檔動力傳遞路線
1.燃油濾清器、機油濾清器、空氣濾清器、液壓油濾清器及各類濾網等零件如果過臟,會導致濾清效
果變差,過多的雜質進入油路汽缸內,加劇機件的磨損,增加故障發生的可能性;如果嚴重堵塞,還
會導致車輛不能正常工作。
2.發動機活塞溫度過高,易導致過熱燒熔而發生抱缸;橡膠密封件、三角膠帶、輪胎等過熱,易過早
老化、性能下降、縮短使用壽命;起動機、發電機、調節器等電器設備的線圈過熱,極易燒毀而報廢;
車輛軸承應保持適當溫度,如過熱,會使潤滑油很快變質,最終導致軸承燒毀,車輛損壞。
3.柴油機燃油系統中的各種偶件,驅動橋主減速器內的主從動齒輪,液壓操縱閥塊與閥桿,全液壓轉
向器中的閥芯與閥套等,這些配合偶件在製造時經過特殊加工,成對研磨而成,配合十分精密,在使
用的壽命期內始終成對使用,切不可互換。
4.發動機汽缸墊在安裝時不能裝反,否則會導致缸墊過早燒蝕損壞;對一些特殊形狀的活塞環也不可
裝反,應根據不同機型的要求進行裝配;發動機風扇葉片安裝時也有方向要求,風扇一般分排風和吸
風兩種,不可弄反,否則會導致發動機散熱不良、溫度過高;對有方向花紋的輪胎.
5.在維修車輛時,有些小件可能會因疏忽而漏裝,甚至有些人認為裝與不裝無所謂,這是十分危險和
有害的。發動機氣門鎖片,應成對安裝,如漏裝或缺失將導致氣門失控而撞壞活塞等件;發動機連桿
螺栓、飛輪螺栓、傳動軸螺栓上安裝的開口銷、鎖緊螺絲、保險片或彈簧墊等防松裝置,一旦漏裝,
在使用中將有可能導致嚴重的故障發生;發動機正時齒輪室中用來潤滑齒輪的機油噴嘴一旦漏裝,會
導致該處嚴重泄油,使發動機機油壓力過低;水箱蓋、機油口蓋、油箱蓋丟失,會使砂石、塵土等侵
入,加劇各部機件磨損。
7. 手動變速器的各檔動力傳動路線
手動變速器的各檔動力傳動路線:
(1)空檔。
二軸上的各接合套、傳動齒輪均處於中間空轉的位置,動力不傳給第二軸。
(2)一檔。
前移一倒檔直齒滑動齒輪12與中間軸一檔齒輪18嚙合。動力經一軸齒輪2、中間軸常嚙合齒輪23、中間軸齒輪18、二軸一倒檔齒輪12,傳到第二軸使其順時針旋轉(與第一軸同向)。
(3)二檔。
後移接合套9與二軸二檔齒輪11的接合齒圈10嚙合。動力經齒輪2、23、20、11、10、9、24,傳到二軸使其順時針旋轉。
(4)三檔。
前移接合套9與二軸三檔齒輪7的接合齒圈8嚙合。動力經齒輪2、23、21、7、8、9、24,傳到二軸使其順時針旋轉。
(5)四檔。
後移接合套4與二軸四檔齒輪6的接合齒圈5嚙合。動力經齒輪2、23、22、6、5接、4、25,傳到二軸使其順時針旋轉。
(6)五檔。
前移接合套4與一軸常嚙合齒輪2的接合齒圈3嚙合。動力直接由一軸、2、3、4、25,傳到二軸,傳動比為1。由於二軸的轉速與一軸相同,故此檔稱為直接檔。
(7)倒檔。
後移二軸上的一、倒檔直齒滑動齒輪12與倒檔齒輪17嚙合。動力經齒輪2、23、18、19、17、12,傳給二軸使其逆時針旋轉,汽車倒向行駛。倒檔傳動路線與其他檔位相比較,由於多了倒檔中間齒輪的傳動,所以改變了二軸的旋轉方向。
8. 傳動裝置的結構
傳動抄裝置:是將原動機的運襲動和動力傳給工作機構的中間裝置。.
對於前置後驅的汽車來說,發動機發出的轉矩依次經過離合器、變速箱、萬向節、傳動軸、主減速器、差速器、半軸傳給後車輪,所以後輪又稱為驅動輪。驅動輪得到轉矩便給地面一個向後的作用力,並因此而使地面對驅動輪產生一個向前的反作用力,這個反作用力就是汽車的驅動力。汽車的前輪與傳動系一般沒有動力上的直接聯系,因此稱為從動輪。
傳動系統的組成和布置形式是隨發動機的類型、安裝位置,以及汽車用途的不同而變化的。例如,越野車多採用四輪驅動,則在它的傳動系中就增加了分動器等總成。而對於前置前驅的車輛,它的傳動系中就沒有傳動軸等裝置。
9. 簡述二軸式變速器一、二檔位工作過程的動力傳遞路線
動力-輸入軸-花鍵轂-接合套-齒圈-一檔主動齒輪-一檔從動齒輪-輸出軸-輸出
動力-輸入軸-花鍵轂-接合套-齒圈-二檔主動齒輪-二檔從動齒輪-輸出軸-輸出