㈠ 简述气门传动组推杆和摇臂是怎么连接的
首先要了解进气结构一般由气门组和气门传动组组成。气门组包括近排气门,起么弹簧,弹簧座,导管,油封。传动组有挺杆,推杆,摇臂轴,摇臂组成常见故障有气门脚响,导管响,挺杆响,凸轮正式齿轮响等。气门交响故障现象 1响声明显,清脆,连续有节奏。 2响声随发动机转速的不同产生疏密变化。 3发动机温度改变或断火时,响声无变化。 4怠速运转用手将推杆提起,或在气门间隙插入塞尺,响声减弱或消失。原因气门间隙过大。凸轮轴磨损大,运转时挺杆产生跳动。气门间隙调整螺丝松动。故障判断响声随发动机转速的不同而变化,不管高低速都有响声,和点火时间早响声有明显区别,发动机温度变化不影响响声可断定是脚响。像这样把气门重新调整就可以了。气门导管响故障现象 1怠速时发出清晰均匀的达达声 2随发动机转速提高响声明显大 3有多个导管响,响的声音很乱原因可能是气门杆和导管磨损,间隙过大。故障判断 1无论发动机在什么转速,都有响声 2怠速响声清晰均匀 3用手压住气门摇臂,随这上下动,声音减小,则是气门导管间隙过大。应及时的跟换气门和导管。气门挺杆响故障现象 1发动机怠速着火时,在机体凸轮轴一侧发出有节奏清脆的嗒嗒声就像是铁球落石板上的声音 2发动机怠速时响声较小,中速以上一般减弱或者消失原因挺杆或凸轮磨损,润滑效果不良判断 1发动机怠速运转时,听到比气门脚响更结实清脆的声音,断火试验不上纲,把发动机加到中速,响声见减弱可断定是气门挺杆响。及时的更换就可以了凸轮轴响现象 1发动机怠速着火在一侧有节奏的发出响声,声音比气门挺杆响的顿重,有点像连杆瓦响。断火时不上岗,在想的同时凸轮轴附近震动很大。原因凸轮轴和轴套松旷,或者凸轮轴弯判断 1次响声不上岗,可缓缓变换发动机转速,怠速响声比较清晰中速明显,高速声音杂乱,可能是凸轮轴想, 2使发动机在想的较强的位置转速运转,在汽缸外用听诊器听,哪出有明显的较强响声并有震动可断定。排除原因就不用说了吧正式响现象 1响声比较复杂,有时有节奏有时没有,有时一直响有时断想。 2怠速时在后面齿轮室盖听响声明显原因 1曲轴正式齿轮咬合间隙过大或者过小 2曲轴与凸轮轴中心线不平衡 3凸轮轴轴向间隙大判断 1发动机怠速着火发出轻微的嘎啦嘎啦的响,中速响的突出,高速声音变得杂乱并带有破碎声,严重时正式齿轮室盖处有震动,则为正式齿轮间隙过大而发响 2新大修或更换正式齿轮后,发动机发出一种连续不段的嗷....响声,发动机转速越高响声越大,则多于凸轮轴和曲轴只是齿轮齿和间隙过小。 3如果发出响声,有时段响,有时连响,并有节奏地发出哽...的响声,则多于凸轮轴与曲轴中心线不平造成的齿轮齿合不均的响声 4发动机高速运转时发出一种连续不断而又比较刺耳嘎..的响声,多为齿轮轴向间隙过大,或者固定螺丝,松动脱出而引起齿轮窜动造成的。排除原因不行就跟换,把轴套和轴跟换下。
㈡ 可变气门正时系统工作原理
汽车发动机气门正时的机构和技术,也叫连续可变气门正时系统。
可变气门正时系统。当今高性能发动机普遍配备该系统。该系统通过配备的控制及执行系统,对发动机凸轮的相位或者气门生程进行调节,从而达到优化发动机配气过程的目的。
因为高转速下与低转速下,气门的正时角对发动机经济性和动力的影响是明显的,高转速下可以充分利用进气惯性而提高进气量和进气效率,所以气门早开晚闭,低转速反之,现在的发动机大多有这个技术。
活塞式四冲程引擎都由进气、压缩、做功、排气4个冲程完成,我们关注的是气门开启程度对引擎进气的问题。气缸进气的基本原理是“负压”,也就是气缸内外的气体压强差。在引擎低速运转时,气门的开启程度切不可过大,这样容易造成气缸内外压力均衡,负压减小,从而进气不够充分,对于气门的工作而言,这个“小程度开启”需要短行程的方式加以控制;而高速恰恰相反,转速动辄5000rpm,倘若气门依然羞羞答答不肯打开,引擎的进气必然受阻,所以,我们需要长行程的气门升程。往往,工程师们既要兼顾引擎在低速区的扭矩特性,又想榨取高速区的功率特性,只能采取一条“折中”的思路,到头来引擎高速没功率,低速缺扭矩。
所以在这样的情况下,就需要一种对气门升程进行调节的装置,也就是我们要说的“可变气门正时技术”。该技术既能保证低速高扭矩,又能获得高速高功率,对引擎而言是一个极大的突破。
㈢ 配气机构的原理和工作原理是什么
一、配气机构组成:
配气机构由气门传动组和气门组两组组成,内气门传动组包括曲容轴正时齿轮、凸轮轴正时齿轮、凸轮轴、挺柱、推杆、摇臂、气门间隙调整螺钉及锁止螺母、摇臂轴、气门组包括气门、气门导管、气门弹簧、气门弹簧座、气门油封、气门座等组成。
二、配气机构工作原理:
凸轮轴转动时,当凸轮的基圆部分与挺柱接触时,挺柱不升高,挺柱以上的传动件不动作,气门是关闭的。当凸轮的凸起部分与挺柱接触时,便开始将挺柱顶起,于是气门被打开。当凸轮的最大凸起处与挺柱接触时,气门达到最大开度。随后,凸轮与挺柱接触表面的凸起开始逐渐变小,气门在气门弹簧的作用下开始上升关闭,并反向推动摇臂等传动杆件,使挺柱下移保持与凸轮接触。当凸轮凸起部分离开挺柱时,气门完全关闭。
㈣ 气门传动组的作用是什么
定时驱动气门使其开闭。气门传动组主要包括凸轮轴、正时齿轮、挺柱及其导杆,推杆、摇臂臂和摇臂轴等,其作用是使进排气门按配气相位规定的时刻进行开闭,并保证有足够的开度。
气门传动组的组成由气门配比齿轮,凸轮轴及组件,摇臂轴及摇臂组件,气门推杆,气门,气缸盖,气门座,气门套管,气门弹簧,气门锁片及组件,气门调节螺钉等件组成的。
(4)简述气门传动装置的工作原理扩展阅读:
气门传动组注意事项:
1、气门的光磨:在维修作业中,如气门出现烧蚀、麻点及凹陷时,均应进行光磨(严重时需更换气门)。通常在气门光磨机上进行,作业时需要注意保证气门头与杆部同心,否则应先校直。
2、气门与座只有轻微麻点,不需要光磨和铰削时的研磨;二是气门与座均已经过光磨和铰削后的研磨。前者先用租金刚砂研磨,将麻点研磨掉后,再用细金刚砂研磨,最后涂上机油研磨,直至密封符合要求,宽度符合规定为止。操作时一定要注意,不要过分用力,严禁将气门上下敲打,否则将出现凹形砂痕,影响维修质量。
3、气门座的铰削:气门座铰削通常为手工作业,应注意在消除凹陷、斑点,能铰出完整锥面的基础上,铰削量越小越好,铰削时用力要均匀,起刀收刀要轻,少铰多观察,以保证较少的铰削量和较高的光洁度,与气门试配,确定好工作面位置和宽度。
㈤ 简述带传动的工作原理,利用该原理工作会产生哪些特性
带传动分为摩擦型传动和啮合型传动,摩擦型传动靠带与带轮上接触面上的摩擦力来传递回运动和力;
啮合型传答动靠带齿与带轮齿之间的啮合来实现传动.
带传动是通过中间挠性伯(带),靠摩擦来传动的,它具有下列特点:
1.传动带具有良好的弹性,能缓冲和吸振,传动平稳,噪声小.
2.过载时,带和带轮间发生打滑,可防止其它零件损坏.
3.带传动结构简单,制造\安装和维护均较方便.
4.可用于中心距较大的两轴间传动.
5.带传动不能保证准确的传动比,对轴和轴承的压力比较大,传动的效率较低,带的寿命较短,传动的外廓尺寸较大.
带传动适用于要求传动平稳,传动比不要求准确,中小功率的远距离传动.一般带传动的传动功率P小于等于50千瓦,带速在5到25米每秒之间,高速带的带速可以达到60米每秒,传动比小于等于7.
㈥ 汽车传动系的工作原理
传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。
一.传动系的功用
汽车发动机所发出的动力靠传动系传递到驱动车轮。传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。
二.传动系的种类和组成
传动系可按能量传递方式的不同,划分为机械传动、液力传动、液压传动、电传动等。
传动系统(英文又称drivetrain system)是使汽车产生驱动力的动力系统,包括末级传动,轴箱,轴承,齿轮以及转向架,等等。优质的传动系统不仅在评估末级传动齿轮组的齿合时不允许有任何偏差,而且要能考虑到车轴或转向构架的偏差。
对于前置后驱的汽车来说,发动机发出的转矩依次经过离合器、变速箱、万向节、传动轴、主减速器、差速器、半轴传给后车轮,所以后轮又称为驱动轮。驱动轮得到转矩便给地面一个向后的作用力,并因此而使地面对驱动轮产生一个向前的反作用力,这个反作用力就是汽车的驱动力。汽车的前轮与传动系一般没有动力上的直接联系,因此称为从动轮。传动系的组成和布置形式是随发动机的类型、安装位置,以及汽车用途的不同而变化的。例如,越野车多采用四轮驱动,则在它的传动系中就增加了分动器等总成。而对于前置前驱的车辆,它的传动系中就没有传动轴等装置。
㈦ 汽车气门传动组组成及原理
汽车车门的气动传动组成及原理,这个话主要是根据传动这门课进行改良的,如果你感兴趣的话,可以去学学这门课
㈧ 简述气门传动装置的工作原理
这个气门传动装置的工作原理的话就是根据一些气流的流动,然后进行一下门口的开关。
㈨ 可变气门正时技术的工作原理
发动机可变气门正时技术(VVT,Variable Valve Timing)原理是根据发动机的运行情况,调整进气(排气)的量,和气门开合时间,角度。使进入的空气量达到最佳,提高燃烧效率。优点是省油,功升比大;缺点是中端转速扭矩不足。
原理
曲轴经由齿状的传动装置带动凸轮轴转动,使得气门在做开启与关闭的动作时会与曲轴的转动角度形成一定的对应关系。而气体的流动会随着发动机运转速度的快慢而改变,如何使汽缸在不同的转速下都能够获得良好的进气效率?为此必须改变气门开启与关闭的时间。经由安装在凸轮轴前端的油压装置使凸轮轴可以另外做一些小角度转动,以使进气门在转速升高时得以提早开启。
采用可变配气定时机构可以改善发动机的性能。发动机转速不同,要求不同的配气定时。这是因为:当发动机转速改变时,由于进气流速和强制排气时期的废气流速也随之改变,因此在气门晚关期间利用气流惯性增加进气和促进排气的效果将会不同。
例如,当汽车发动机在低速运转时,气流惯性小,若此时配气定时保持不变,则部分进气将被活塞推出气缸,使进气量减少,气缸内残余废气将会增多。当发动机在高速运转时,气流惯性大,若此时增大进气迟后角和气门重叠角,则会增加进气量和减少残余废气量,使发动机的换气过程臻于完善。
总之,四冲程发动机的配气定时应该是进气迟后角和气门重叠角随发动机转速的升高而加大。
如果气门升程也能随发动机转速的升高而加大,则将更有利于获得良好的发动机高速性能。