⑴ 带式运输机传动装置一级圆柱齿轮减速器课程设计
输送能力 Q=1800t/h
输送长度 L=3005m
输送带宽度 B=1200mm
2.2.2 线路参数
东翼一采区上山主运输大巷共3005米,可简化为如图2.1所示的八段:第一段(1点到2点)平运,长度540米;第二段(2点到3点)下运,水平长度207米,提升高度-27.1米;第三段(3点到4点)平运,水平长度62米;第四段(4点到5点)下运,水平长度518米,提升高度-82米;第五段((5点到6点)平运,长度470米;第六段(6点到7点)上运,水平长度360米,提升高度18.9米;第七段((7点到8点)下运,水平长度400米,提升高度-28.4米:第八段(8点到9点)下运,水平长度435米,提升高度-56米;整机水平长度2992米,运输长度3005米。
图2.1 输送线路参数图
2.2.3 物料特性
输送物料 原煤
物料密度 ρ=900kg/m3
物料安息角 50°
2.2.4 带式输送机工作环境
安装地点:东滩煤矿东翼一采区上山主运输大巷,底板为煤。
环境温度:0~35℃ 。
由于带式输送机巷道起伏不平,变坡点较多,致使此带式输送机运行工况相当复杂,是目前国内乃至国外煤矿井下运行工况最为复杂的带式输送机之一:从另一方面,下运带式输送机运行安全可靠性要求高,控制系统复杂,且我国目前对下运带式输送机的理论研究较少,特别是长运距、大运量下运带式输送机系统的工况分析、动态分析、启动、制动技术研究较少,这也是本文选择长运距、大运量下运带式输送机进行研究的目的。
2.3 本课题的研究内容
2.3.1 长运距、大运量下运带式输送机关键技术分析研究
通过下运带式输送机驱动装置的各种组成方案的分析比较,以及常规长运距、大运量下运带式输送机驱动方案中软制动技术和软起动技术的理论研究,提出长运距、大运量下运带式输送机常见驱动方式和制动方法,并分析常见驱动方式和制动方法的优点和存在问题,归纳总结出长运距、大运量下运带式输送机关键驱动方案和制动方式选择的依据。
2.3.2 带式输送机的设计及驱动、制动方案的分析
针对充矿集团东滩煤矿东翼一采区主运输大巷固定下运带式输送机的设计参数及其特殊的工作环境所形成的复杂工况,首先对正常运行时工况进行设计计算,然后再对空载及最大正功和最大负功工况进行计算,再对各种工况的计算结果分析讨论,最后确定合理的张紧方式及张紧力大小,提出合理的张紧装置的选型。
通过各种工况的计算、分析比较,提出合理的驱动装置中,电机、减速器、软起动装置(调速型液力耦合器)及软制动装置各部件的选型方案。
3 长距离、大运量下运带式输送机关键技术的分析
3.1 下运带式输送机的基本组成
带式输送机的组成如图3.1所示[2],主要其有:输送带、驱动装置(电动机、减速机、软起动装置、制动器、联轴器、逆止器)、传动滚筒、改向滚筒、托辊组、拉紧装置、卸料器、机架、漏斗、导料槽、安全保护装置以及电气控制系统等组成。
1-头部漏斗 ;2-机架;3-头部扫清器;4-传动滚筒 5-安全保护装置;6-输送带;7-承载托辊;8-缓冲托辊;9-导料槽;10-改向滚筒;11-拉紧装置 12-尾架;13-空段扫清器;14-回程托辊;15-中间架;16-电动机;17-液力偶合器;18-制动器;19-减速器;20-联轴器
图3.1 带式输送机组成示意图
3.2 驱动方案的确定
带式输送机的驱动部是整机组成的关键部件。驱动部配置是否合适,直接影响带式输送机能否正常运行。长距离、大运量带下运带式输送机对驱动部的要求比通用带式输送机的要求更高,它要求驱动装置能提供平稳、平滑的起动和停车制动力矩,以保证输送带不出现超速、打滑及输送带上的物料不出现滚料和滑料现象。为此要求驱动装置具有一个制动力可随时调整的制动器,以保证起动和停车制动的可控,极大地减小对物料的冲击。同时,在输送机空载起车时还必需保证起动的平稳性。
下运带式输送机受地形条件(如起伏较大)和装载量的影响,其起动工况比较复杂,应考虑如下几种:
(1)负载量小或空载,松闸后带式输送机不能自起动;
(2)负载量较大,松闸后带式输送机能自起动,但自然加速度较小;
(3)负载量大,松闸后带式输送机能自起动,且自然加速度较大。
下运带式输送机在正常运行时,电动机也存在发电工况、电动工况交织运行的问题,所以在设计中,一般较少考虑软起动装置。带式输送机配下运带式输送机在正常运行时,电动机也存在发电工况、电动工况交织运行的问题,所以在设计中,一般较少考虑软起动装置。带式输送机配置软起动装置,可有效降低起、制动过程的动张力,延长输送带及接头的使用寿命,甚至可降低输送带强度,具有很大的经济意义。对此《煤矿安全规程》作了相应规定。
由于下运带式输送机一般情况下电动机工作在发电工况,空载时电动机工作在电动工况。目前常用的下运带式输送机驱动部典型设备配置如表3.1所示。
表3.1 常用下运带式输送机驱动部组合表
组合
设备 1 2 3 4 5
电动机 单机或多机1:1(或2:1)驱动 单机驱动或多机1:1(或2:1)驱动 多电机1:1(或2:1)驱动 多电机1:1(或2:1)驱动 多电机1:1(或2:1)驱动
软起动 无 限矩型液力偶合器 限矩型液力偶合器 调压电气软起动 滑差离合器
减速器 垂直轴或平行轴 垂直轴或平行轴 垂直轴或平行轴 垂直轴或平行轴 可以采用垂直轴或平行轴
制动器 可控盘式制动装置 可控盘式制动装置 液压制动或液力制动+推杆制动 可控制动装置 可控制动器
拉紧装置 重力拉紧或自动拉紧 重力式拉紧装置 重力式拉紧装置 重力拉紧或自动拉紧装置 重力拉紧或自动拉紧装置
适用场合 短距离,中小倾角、小型机 中长距离,大倾角 中长距离,大倾角 长距离,变坡,倾角不大 长距离,变坡,倾角不大
3.3 新型下运带式输送机驱动组合及其控制过程
多数下运带式输送机采用以下几种驱动部组合方式:
(1)电动机—制动装置—减速器—滚筒
(2)电动机—限矩型液力偶合器—制动装置—减速器—滚筒
(3)电动机—限矩型液力偶合器—减速器—可控制动装置—滚筒
(4)电动机—软启动—减速器—液压软制动—盘式制动装置—滚筒
(5)电动机—软启动—减速器—液力软制动—盘式制动装置—滚筒
(6)电动机—软启动—减速器—可控盘式制动装置—滚筒
(7)电动机—软启动—减速器—液粘软制动—滚筒
其中方式(1)~(3)多用于小型(短距离、小倾角、小运量、低带速)下运机上方式;(4)~(7)较适于大倾角下运输送机上。由上述方案可见,下运输送机可控制动装置必不可少;并且目前对下运输送机电动工况的可控起动问题有所忽视。对于长距离、大运量下运带式输送机,可控制动装置必不可少,同时可控起动装置也成为必须。
为此我们提出一种经济实用的长距离、大运量、大功率下运带式输送机的驱动部组合方案。该方案驱动部主要有以下设备组成:电动机、联轴器、调速型液力偶合器、减速机、可控制动装置、驱动滚筒等组成,如图3.2所示[3]。
图3.2 驱动部分组合方案示意图
采用以上驱动组合的下运带式输送机的起动和停车过程如下:
(1)开机准备:先给软起动装置的电气系统和液压系统送电,使主、从动摩擦片闭合,可控制动装置逐渐松闸,如果是重载,按起动要求重车逐渐自动起动带式输送机。
(2)当输送带在装满物料的情况下起动带式输送机时,不能直接对电机送电,否则起动太快,物料容易出现下滑或滚料,所以在这种情况下而是靠煤的下滑力起动输送机,当逐渐松开制动器,输送带带动电机旋转,通过速度传感器检测旋转速度,当速度达到近电机同步运行转速时,PLC控制电机自动送电起动,从而使电机运行于正常的发电状态,这样可以大大减小电机起动时对电气和机械的冲击。而且向下输送的角度越大,起动加速度越大。为了保证起动平稳,通过速度反馈改变制动器施加的制动力,根据不同的制动力,把加速度控制在0.3m/s2之内,保证起动过程的平稳性。
(3)电机直接起动控制,当输送机空载或轻载,逐渐松开制动器时,输送机不能自动起动,这时根据测速装置检测输送机处于零速状态或起车太慢时,需要采用调速型液力偶合器来可控起动带式输送机,此时的可控起动过程完全同上运带式输送机的起动过程。
(4)正常运行时,调速型液力偶合器开度最大,传动效率达到最大。
(5)当多电机驱动时,出现某台电机超载,需要功率平衡时,根据电机的电流反馈来进行调速型液力偶合器的输入与输出速度调节(具体详见电气部分),来进行多电机间的功率平衡调节。一般只要带式输送机系统设计合理,都能保证系统的多机功率平衡。
(6)停车时,按预定的减速度要求进行闭环改变可控制动系统的制动力矩,使带式输送机按预定的减速度减速,实现可控停车。
(7)当输送机在带载停车时,不能直接切断电机,否则容易出现飞车现象,造成严重事故。为此在停机时,先对输送机施加制动力,当检测到电机旋转速度降到其同步速度时,再对电机断电,这样在施加制动力降速时,可以充分利用电机的制动力,使停车更平稳。当输送机的速度降至电机的同步速度时,调速型液力偶合器勺管全部插入,保证电机与输送机系统的同步切除,保证了可控制动系统进一步按要求减速停车。
(8)如果停车时,带式输送机是空载(即主电机处于电动状态),则可以同上运带式输送机的停车过程结合可控制动装置进行联合停车制动。
(9)定车时,可控制动装置抱闸,主电机停机,调速型液力偶合器的液压和电气系统停电。
(10)在起动和停车过程中出现故障,如输送带跑偏、撕带、油温过高等等,调速型液力偶合器和可控制动装置的电气控制系统会自动根据要求可控停机。
4 长距离大运量下运带式输送机设计
充矿集团东滩煤矿东翼一采区主运输大巷固定带式输送机,运距3005米,运量1800吨/小时,提升高度-175.5米,环境温度为0~35 ℃ ,是属于典型的煤矿井下长运距、大运量下运带式输送机。由于带式输送机巷道起伏不平,变坡点较多,致使此带式输送机运行工况相当复杂。此外,该机运行安全可靠性要求高,控制系统复杂,是目前国内乃至国外煤矿井下运行工况较为复杂的带式输送机。本章以该下运带式输送机为例,说明其设计过程。
4.1 带式输送机原始参数
带式输送机是目前井下煤炭的主要输送设备,其设计的自动化先进程度、结构布置方式、使用安全性、可靠性、连续性和高效运行将直接影响矿井生产成本。采用带式输送机输送物料与其它方式相比有着一系列的优越性和高效性,其自动化程度高,代表现代物流技术的发展方向。本课题所要求设计的带式输送机的参数如表4.1所示。
表4.1 输送机原始参数
运量Q 1800t/h
运距L 540 207 62 518 470 360 400 435
垂高 0 -27.1 0 -82 0 18 -28.4 -56
总垂高 -175m
总运距L 3005m
平均倾角β -4°
最大块度 300mm
煤容重γ 0.9t/m3
煤安息角 50°
4.2 带式输送机的设计计算
4.2.1 输送带运行速度的选择
输送带运行速度是输送机设计计算的重要参数,在输送量一定时,适当提高带速,可减少带宽。对水平安装的输送机,可选择较高的带速,输送倾角越大带速应偏低,向上输送时带速可适当高些,向下输送时带速应低些。目前DTII系列带式输送机推荐的带速为1.25~4m/s。对于下运带式输送机,考虑管理难度大,一般确定带速为2~3.5m/s。根据工作面顺槽胶带机的规格(带宽1.2m、带速3.15m/s),工作面的实际生产能力,煤流的不均匀型等因素,同时考虑工作面煤仓无缓冲作用的状况(约3米深),确定东滩煤矿一采区运输大巷固定下运带式输送机带速3.15m/s。
4.2.2 输送带宽度计算
1)按输送能力确定带宽
带式输送机的输送能力与带宽和带速的关系是:
Q=KB2vγc t/h
式中 K—货载断面系数,K值与货载在输送带上的堆积角有关(查标准MT/T467-1996中表三)
B—输送带宽度,m
V—输送机速度,m/s
γ—运送货载的集散容重,t/m3
C—输送机倾角对输送量的影响系数。
当输送量已知时可按下式求得满足生产能力所需的带宽B1:
B1= = =1.2
2)按输送物料的块度确定带宽B2
因为本带式输送机输送原煤,且amax=300mm故有:
B2≥2•amax+200=2×200+200=800mm
实际确定宽度时B=max{1000B1,B2},故可选用1200mm宽度的输送带。
4.2.3 初选输送带
我国目前生产的输送带有以下几种:尼龙分层输送带、塑料输送带、整体带芯阻燃带、钢丝绳芯带等。
在输送带类型确定上应考虑如下因素:
1)为延长输送带使用寿命,减小物料磨损,尽量选用橡胶贴面,其次为橡塑贴面和塑料贴面的输送带;
2)在同等条件下优先选择分层带,其次为整体带芯和钢丝绳芯带;
3)优先选用尼龙、维尼龙帆布层带。因在同样抗拉强度下,上述材料比棉帆布带体轻、带薄、柔软、成槽性好、耐水和耐腐蚀;
4)覆盖胶的厚度主要取决于被运物料的种类和特性,给料冲击的大小、带速与机长,输送石炭石之类的矿石,可以加厚2mm表面橡胶层,以延长使用寿命。
综合该机各类特性参数和技术特性,考虑到输送量较大,运输距离较长,且为固定用输送机,为此初选输送带采用钢丝绳芯输送带,它既有良好的强度,又具有较好的防撕裂性能,是目前井下带式输送机首选带型。可以初选输送带如下:
输送带型号:ST2500输送带
带宽:1200mm
带质量:qd=35.3kg/m2
4.3 输送机布置形式及基本参数的确定
4.3.1 输送带布置形式
对于角度不大的长距离、大运量带式输送机系统,一般可采取双滚筒1:1或2:1的功率配比,这样既可以实现电机的分时起动(煤矿井下变电所容量有限制),同时可以降低输送带的强度。为了降低输送带的强度,本驱动系统采用了头部双滚筒驱动,并把拉紧装置放在紧跟驱动滚筒后部,有利于起动时自动拉紧,同时减少了电力线路铺设长度,保证了控制响应及时。驱动部布置的位置对输送带强度的影响较大,但对于本输送系统,进行分析后得出,驱动部布置在上部效果较理想。同时遵循尽量减少施工工作量、简化设备的原则,降低制作成本,其具体布置示意图如输送机总装图所示。考虑到煤的输送质量较大,本机各类托辊组间距为:
承载托辊间距lt'=1.2m
回程托辊间距lt"=3m
缓冲托辊间距lth=0. 6m
承载托辊直径dt=φ133mm Gt'=34.92Kg
回程托辊直径dt'=φ133mm Gt"=30.63Kg
4.3.2 输送机基本参数的确定
1)输送带质量qd
由上述输送带选型结果可知qd=35.3kg/m2×1.2m=42.36kg/m
2)物料线质量q
当已知设计输送能力和带速时,物料的线质量由下式求得:
q= = =159kg/m
式中 Q—每小时运输量,t/h;
v—运输带运输速度,m/s
3)托辊旋转部分线质量qt′,qt″
由前述托辊组的选择情况可知
qt′= Gt'/ lt'=29.1kg/m
qt″= Gt"/ lt"=10.21 kg/m
⑵ 机械设计课程设计关于设计带式运输机上的二级圆柱齿轮减速器要怎么做
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况:
载
鼓轮的直径D(mm):350
运输带速度V(m/s):0.7
带速允许偏差(%):5
使用年限(年):5
工作制度(班/日):2
四. 设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份
六. 设计进度
1、 第一阶段:总体计算和传动件参数计算
2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写
传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择
1) 工作机所需功率Pw
Pw=3.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW
3.电动机转速的选择
nd=(i1’?i2’…in’)nw
初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=38.4
i=25.14
2.合理分配各级传动比
由于减速箱是同轴式布置,所以i1=i2。
因为i=25.14,取i=25,i1=i2=5
速度偏差为0.5%<5%,所以可行。
各轴转速、输入功率、输入转矩
项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮
转速(r/min) 960 960 192 38.4 38.4
功率(kW) 4 3.96 3.84 3.72 3.57
转矩(N?m) 39.8 39.4 191 925.2 888.4
传动比 1 1 5 5 1
效率 1 0.99 0.97 0.97 0.97
传动件设计计算
1. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的;
4) 选取螺旋角。初选螺旋角β=14°
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即
dt≥
1) 确定公式内的各计算数值
(1) 试选Kt=1.6
(2) 由图10-30选取区域系数ZH=2.433
(3) 由表10-7选取尺宽系数φd=1
(4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62
(5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(7) 由式10-13计算应力循环次数
N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8
N2=N1/5=6.64×107
(8) 由图10-19查得接触疲劳寿命系数KHN1=0.95;KHN2=0.98
(9) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]1==0.95×600MPa=570MPa
[σH]2==0.98×550MPa=539MPa
[
⑶ 求帮忙设计带式输送机传动装置--一级圆柱齿轮减速器
一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW
3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m
五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.
六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm
II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N?m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm
(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N?m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危险截面C的强度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。
主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N?m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够
(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min
(1)已知nII=121.67(r/min)
两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够
二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够
⑷ 带式传输机传动装置的设计
设计用于带式运输机上的单级直齿圆柱减速器,已知条件:运输带的工作拉力F=1350 N,运输带的速度V=1.6 m/s,卷筒直径D=260 mm。两班制工作(12小时),连续单向运转,载荷平移,工作年限10年,每年300工作日,运输带速度允许误差为±5%,卷筒效率0.96。
一.传动方案分析:如图所示,减速传动由带传动和单级圆柱齿轮传动组成,带传动置于高速级,具有缓冲吸振能力和过载保护作用。带传动依靠摩擦力工作,有利于减少传动的结构尺寸,而圆柱齿轮传动布置在低速级,有利于发挥其过载能力大的优势。
二.选择电动机:(1)电动机的类型和结构形式,按工作要求和工作条件,选用一般用途的Y系列三相异步交流电动机。(2)电动机容量:①卷筒轴的输出功率Pw=FV/1000=1350×1.6/1000=2.16 kw。②电动机输出功率Pd=Pw/η,传动系统的总效率:η=0.96×0.99×0.97×0.96≈0.88。故: Pd= Pw/η=2.16/0.88≈2.45 kw。③电动机额定功率由表取得=3 kw。(3)电动机的转速:由已知条件计算卷筒的转速,即: =60×1000V/πD=60×1000×1.6/3.14×260=118 r/min。V带传动常用传动比范围=2-4,单级圆柱齿轮的传动比范围=2-4,于是转速可选范围为 ==118×(2~4)×(2~4)=472~1888 r/min。可见同步转速为500 r/min和2000 r/min的电动机均合适,为使传动装置的传动比较小,结构尺寸紧凑,这里选用同步转速为960 r/min的电动机。传动系统总传动比i=≈2.04。
根据V带传动的常用范围=2-4取=4,于是单级圆柱齿轮减速器传动比==≈2.04。
⑸ 机械设计-课程设计-带式运输机传动装置-二级齿轮减速器
一、设计题目:二级直齿圆柱齿轮减速器
1. 要求:
- 传动关系:由电动机、V带、减速器、联轴器、工作机构构成。
- 工作条件:双班工作,有轻微振动,小批量生产,单向传动,使用5年,运输带允许误差5%。
- 知条件:运输带卷筒转速,减速箱输出轴功率 4KW,二级齿轮减速器传动比 i=8。
二、传动装置总体设计:
1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。其传动方案如下:
三、选择电机:
1. 计算电机所需功率:
- 查手册第3页表1-7:带传动效率 0.96,每对轴承传动效率 0.99,圆柱齿轮的传动效率 0.96,联轴器的传动效率 0.993,卷筒的传动效率 0.96。
- 电机至工作机之间的传动装置的总效率:2。
- 确定电机转速:查指导书第7页表1,取V带传动比 i=2。
四、确定传动装置的传动比和分配传动比:
- 总传动比:8。
- 分配传动比:取 i=8。
- 经计算,i=750/1000=0.75,i=8。
五、计算传动装置的运动和动力参数:
- 各轴转速:
- 各轴输入功率:
- 各轴输入转矩:
- 运动和动力参数结果如下表:
六、设计V带和带轮:
1. 设计V带:
- 确定V带型号:查课本第206页表13-7,取 A 型 V 带,取 e=0.8。
- 验算带速:带速在 5-20 m/s 范围内,合适。
- 取V带基准长度和中心距 a:初步选取中心距 a,由课本第195页式(13-2)得,查课本第202页表13-2取,由课本第206页式13-6计算实际中心距。
- 验算小带轮包角:由课本第195页式(13-1)得。
- 求V带根数 Z:由课本第204页式13-15得,查课本第203页表13-3由内插值法得。
七、齿轮的设计:
1. 高速级大小齿轮的设计:
- 材料:高速级小齿轮选用 钢调质,齿面硬度为250HBS。高速级大齿轮选用 钢正火,齿面硬度为220HBS。
- 设计参数:查课本第166页表11-7,查课本第165页表11-4,查课本第168页表11-10C图。
- 按齿面接触强度设计:9级精度制造,查课本第164页表11-3得,计算中心距。
- 验算轮齿弯曲强度:查课本第167页表11-9得,按最小齿宽计算。
- 齿轮的圆周速度:查课本第162页表11-2知选用9级的精度是合适的。
八、减速器机体结构尺寸如下:
- 名称、符号、计算公式、结果。
九、轴的设计:
1. 高速轴设计:
- 材料:选用45号钢调质处理。
- 各轴段直径的确定:根据课本第230页式14-2得。
- 校核该轴和轴承:计算作用力、力矩和危险截面的当量弯矩。
- 轴承寿命校核:轴承寿命可由式进行校核。
- 弯矩及轴的受力分析图如下。
十、键的设计与校核:
- 设计键:已知,参考教材表10-9,由挤压强度条件,键的校核为。
十一、联轴器的选择:
- 计算联轴器所需的转矩:查手册94页表8-7选用型号为HL6的弹性柱销联轴器。
十二、润滑方式的确定:
- 因为传动装置属于轻型的,且传速较低,所以其速度远远小于,采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度。
十三、其他有关数据见装配图的明细表和手册中的有关数据。
十四、参考资料:
- 《机械设计课程设计手册》(第二版)——清华大学吴宗泽,北京科技大学罗圣国主编。
- 《机械设计课程设计指导书》(第二版)——罗圣国,李平林等主编。
- 《机械课程设计》(重庆大学出版社)——周元康等主编。
- 《机械设计基础》(第四版)课本——杨可桢程光蕴主编。
⑹ 急求带式输送机传动装置中的二级圆柱齿轮减速器毕业设计
前 言
机械设计综合课程设计在机械工程学科中占有重要地位,它是理论应用于实际的重要实践环节。本课程设计培养了我们机械设计中的总体设计能力,将机械设计系列课程设计中所学的有关机构原理方案设计、运动和动力学分析、机械零部件设计理论、方法、结构及工艺设计等内容有机地结合进行综合设计实践训练,使课程设计与机械设计实际的联系更为紧密。此外,它还培养了我们机械系统创新设计的能力,增强了机械构思设计和创新设计。
本课程设计的设计任务是展开式二级圆柱齿轮减速器的设计。减速器是一种将由电动机输出的高转速降至要求的转速比较典型的机械装置,可以广泛地应用于矿山、冶金、石油、化工、起重运输、纺织印染、制药、造船、机械、环保及食品轻工等领域。
本次设计综合运用机械设计及其他先修课的知识,进行机械设计训练,使已学知识得以巩固、加深和扩展;学习和掌握通用机械零件、部件、机械传动及一般机械的基本设计方法和步骤,培养学生工程设计能力和分析问题,解决问题的能力;提高我们在计算、制图、运用设计资料(手册、 图册)进行经验估算及考虑技术决策等机械设计方面的基本技能,同时给了我们练习电脑绘图的机会。
最后借此机会,对本次课程设计的各位指导老师以及参与校对、帮助的同学表示衷心的感谢。
由于缺乏经验、水平有限,设计中难免有不妥之处,恳请各位老师及同学提出宝贵意见。
带式输送机概论
带式输送机是一种摩擦驱动以连续方式运输燃料的机械。应用它可以将物料在一定的输送线上,从最初的供料点到最终的卸料点间形成一种物料的输送流程。它既可以进行碎散物料的输送,也可以进行成件物品的输送。除进行纯粹的物料输送外,还可以与各工业企业生产流程中的工艺过程的要求相配合,形成有节奏的流水作业运输线。所以带式输送机广泛应用于现代化的各种工业企业中。在矿山的井下巷道、矿井地面运输系统、露天采矿场及选矿厂中,广泛应用带式输送机。它用于水平运输或倾斜运输。使用非常方便。
输送机发展历史
中国古代的高转筒车和提水的翻车,是现代斗式提升机和刮板输送机的雏形;17世纪中,开始应用架
空索道输送散状物料;19世纪中叶,各种现代结构的输送机相继出现。
1868年,在英国出现了带式输送机;1887年,在美国出现了螺旋输送机;1905年,在瑞士出现了钢带式输送机;1906年,在英国和德国出现了惯性输送机。此后,输送机受到机械制造、电机、化工和冶金工业技术进步的影响,不断完善,逐步由完成车间内部的输送,发展到完成在企业内部、企业之间甚至城市之间的物料搬运,成为材料搬运系统机械化和自动化不可缺少的组成部分。
输送机的特点
带式输送机是煤矿最理想的高效连续运输设备,与其他运输设备(如机车类)相比具有输送距离长、运量大、连续输送等优点,而且运行可靠,易于实现自动化和集中化控制,尤其对高产高效矿井,带式输送机已成为煤炭开采机电一体化技术与装备的关键设备。
带式输送机主要特点是机身可以很方便的伸缩,设有储带仓,机尾可随采煤工作面的推进伸长或缩短,结构紧凑,可不设基础,直接在巷道底板上铺设,机架轻巧,拆装十分方便。当输送能力和运距较大时,可配中间驱动装置来满足要求。根据输送工艺的要求,可以单机输送,也可多机组合成水平或倾斜的运输系统来输送物料。
带式输送机广泛地应用在冶金、煤炭、交通、水电、化工等部门,是因为它具有输送量大、结构简单、维修方便、成本低、通用性强等优点。
带式输送机还应用于建材、电力、轻工、粮食、港口、船舶等部门。
一、 设计任务书
设计一用于带式运输机上同轴式二级圆柱齿轮减速器
1. 总体布置简图
2. 工作情况
工作平稳、单向运转
3. 原始数据
运输机卷筒扭矩(N•m) 运输带速度(m/s) 卷筒直径(mm) 使用年限(年) 工作制度(班/日)
350 0.85 380 10 1
4. 设计内容
(1) 电动机的选择与参数计算
(2) 斜齿轮传动设计计算
(3) 轴的设计
(4) 滚动轴承的选择
(5) 键和联轴器的选择与校核
(6) 装配图、零件图的绘制
(7) 设计计算说明书的编写
5. 设计任务
(1) 减速器总装配图1张(0号或1号图纸)
(2) 齿轮、轴、轴承零件图各1张(2号或3号图纸)
(3) 设计计算说明书一份
二、 传动方案的拟定及说明
为了估计传动装置的总传动比范围,以便选择合适的传动机构和拟定传动:方案,可由已知条件计算其驱动卷筒的转速nw:
三. 电动机的选择
1. 电动机类型选:Y行三相异步电动机
2. 电动机容量
(1) 卷筒轴的输出功率
(2) 电动机的输出功率
传动装置的总效率
式中, 为从电动机至卷筒轴之间的各传动机构和轴承的效率。由《机械设计课程设计》(以下未作说明皆为此书中查得)表2-4查得:V带传动 ;滚动轴承 ;圆柱齿轮传动 ;弹性联轴器 ;卷筒轴滑动轴承 ,则
故
(3) 电动机额定功率
由第二十章表20-1选取电动机额定功率
由表2-1查得V带传动常用传动比范围 ,由表2-2查得两级展开式圆柱齿轮减速器传动比范围 ,则电动机转速可选范围为
可选符合这一范围的同步转速的电动3000 。
根据电动机所需容量和转速,由有关手册查出只有一种使用的电动机型号,此种传动比方案如下表:
电动机型号 额定功率
电动机转速
传动装置传动比
Y100L-2 3 同步 满载 总传动比 V带 减速器
3000 2880 62.06 2
三、 计算传动装置总传动比和分配各级传动比
1. 传动装置总传动比
2. 分配各级传动比
取V带传动的传动比 ,则两级圆柱齿轮减速器的传动比为
按展开式布置考虑润滑条件,为使两级大齿轮直径相近由图12展开式曲线的
则i
所得 符合一般圆柱齿轮传动和两级圆柱齿轮减速器传动比的常用范围。
四、计算传动装置的运动和动力参数:
按电动机轴至工作机运动传递路线推算,得到各轴的运动和动力参数
1.各轴转速:
2.各轴输入功率:
Ⅰ~Ⅲ轴的输出功率分别为输入功率乘轴承效率0.99,卷筒轴输出功率则为输入功率乘卷筒的传动效率0.96,计算结果见下表。
3. 各轴输入转矩:
Ⅰ~Ⅲ轴的输出转矩分别为输入转矩乘轴承效率0.99,卷筒轴输出转矩则为输入转矩乘卷筒的传动效率0.96,计算结果见下表。
综上,传动装置的运动和动力参数计算结果整理于下表:
轴名 功率
转矩
转速
传动比
效率
输入 输出 输入 输出
电机轴 2.3 7.63 2880 2
0.96
I轴 2.21 14.65 1440
7.13
0.95
II轴 2.1 99.29 201. 96
4.35 0.95
III轴
2.0 410.58 46.43
1.00 0.98
卷筒轴 1.94 398.34
第三章 主要零部件的设计计算
§3.1 展开式二级圆柱齿轮减速器齿轮传动设计
§3.1.1 高速级齿轮传动设计
1. 选定齿轮类型、精度等级、材料及齿数
1)按以上的传动方案,选用直齿圆柱齿轮传动。
2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。
3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,大齿轮为正火处理,小齿轮热处理均为调质处理且大、小齿轮的齿面硬度分别为260HBS,215HBS。
4)选小齿轮的齿数 ,大齿轮的齿数为 。
2. 按齿面接触强度设计
由设计公式进行试算,即
(1) 确定公式内的各计算数值
1) 试选载荷系数
2) 由以上计算得小齿轮的转矩:
3) 查6-12(机械设计基础)表选取齿宽系数 ,查图6-37(机械设计基础)按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。
计算接触疲劳许用应力,取失效概率为1%,安全系数S=1
4)计算应力循环次数
5) 按接触疲劳寿命系数
(2) 计算:
1) 带入 中较小的值,求得小齿轮分度圆直径 的最小值为
3) 计算齿宽: 取 ,
4) 计算分度圆直径与模数、中心距:
模数: 取第一系列标准值m=1.5
分度圆直径:
中心距:
5) 校核弯曲疲劳强度:
符合齿形因数 由图6-40得 =4.35, =3.98
弯曲疲劳需用应力:
1) 查图6-41得弯曲疲劳强度极限 : ;
2) 查图6-42取弯曲疲劳寿命系数
3) 计算弯曲疲劳许用应力.
取弯曲疲劳安全系数S=1,得
4) 校核计算:
<
<
故弯曲疲劳强度足够
确定齿轮传动精度:
圆周速度:
对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级
§3.1.2 低速级齿轮传动设计
1. 选定齿轮类型、精度等级、材料及齿数
1)按以上的传动方案,选用直齿圆柱齿轮传动。
2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。
3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,热处理均为正火调质处理且大、小齿轮的齿面硬度分别为200HBS,250HBS,二者材料硬度差为40HBS。
4)选小齿轮的齿数 ,大齿轮的齿数为 ,取 。
2. 按齿面接触强度设计
由设计公式进行试算,即
2) 确定公式内的各计算数值
1) 试选载荷系数
2) 由以上计算得小齿轮的转矩
3) 查表及其图选取齿宽系数 ,由图6-37按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。
4) 计算接触疲劳许用应力,取失效概率为1%,安全系数S=1
5) 查图6-42取弯曲疲劳寿命系数
按接触疲劳寿命系数
模数: 由表6-2取第一系列标准模数
分度圆直径:
中心距:
齿宽:
校核弯曲疲劳强度:
复合齿形因数 由图6-40得
6)计算接触疲劳许用应力,取失效概率为1%,安全系数S=1
得
校核计算: <
<
故弯曲疲劳强度足够
确定齿轮传动精度:
圆周速度:
对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级
对各个轴齿轮相关计算尺寸
表6-3高速轴齿轮各个参数计算列表
名称 代号 计算公式
齿数 Z
模数
压力角
齿高系数
顶隙系数
齿距 P
齿槽宽 e
齿厚 s
齿顶高
齿根高
齿高 h
分度圆直径 d
基圆直径
齿顶圆直径
齿根圆直径
中心距
表6-3低速轴齿轮各个参数计算列表
名称 代号 计算公式
齿数 Z
模数
压力角
齿高系数
顶隙系数
齿距 P
齿槽宽 e
齿厚 s
齿顶高
齿根高
齿高 h
分度圆直径 d
基圆直径
齿顶圆直径
齿根圆直径
中心距
V带的设计
1)计算功率
2)选择带型
据 和 =2880由图10-12<械设计基础>选取z型带
3)确定带轮基准直径
由表10-9确定 <械设计基础>
1) 验算带速
因为 故符合要求
2) 验算带长
初定中心距
由表10-6选取相近
3) 确定中心距
4) 验算小带轮包角
故符合要求
5) 单根V带传递额定功率
据 和 查图10-9得
8) 时单根V带的额定功率增量:据带型及 查表10-2<械设计基础>得
10)确定带根数
查表10-3 查表10-4 <械设计基础>
11) 单根V带的初拉力
查表10-5
12)用的轴上的力
13带轮的结构和尺寸
以小带轮为例确定其结构和尺寸,由图10-11<械设计基础>带轮宽
§3.3 轴系结构设计
§3.3.1 高速轴的轴系结构设计
一、轴的结构尺寸设计
根据结构及使用要求,把该轴设计成阶梯轴且为齿轮轴,共分七段,其中第5段为齿轮,如图2所示:
图2
由于结构及工作需要将该轴定为齿轮轴,因此其材料须与齿轮材料相同,均为合金钢,热处理为调制处理, 材料系数C为118。
所以,有该轴的最小轴径为:
考虑到该段开键槽的影响,轴径增大6%,于是有:
标准化取
其他各段轴径、长度的设计计算依据和过程见下表:
表6 高速轴结构尺寸设计
阶梯轴段 设计计算依据和过程 计算结果
第1段
(考虑键槽影响)
13.6
16
60
第2段
(由唇形密封圈尺寸确定)
20(18.88)
50
第3段 由轴承尺寸确定
(轴承预选6004 B1=12)
20
23
第4段
24(23.6)
145
第5段 齿顶圆直径
齿宽
33
38
第6段
24
10
第7段
20
23
二、轴的受力分析及计算
轴的受力模型简化(见图3)及受力计算
L1=92.5 L2=192.5 L3=40
三、轴承的寿命校核
鉴于调整间隙的方便,轴承均采用正装.预设轴承寿命为3年即12480h.
校核步骤及计算结果见下表:
表7 轴承寿命校核步骤及计算结果
计算步骤及内容 计算结果
6007轴承
A端 B端
由手册查出Cr、C0r及e、Y值 Cr=12.5kN
C0r=8.60kN
e=0.68
计算Fs=eFr(7类)、Fr/2Y(3类) FsA=1809.55 FsB=1584.66
计算比值Fa/Fr FaA /FrA>e FaB /FrB< e
确定X、Y值 XA= 1,YA = 0, XB =1 YB=0
查载荷系数fP 1.2
计算当量载荷
P=Fp(XFr+YFa) PA=981.039 PB=981.039
计算轴承寿命
9425.45h
小于
12480h
由计算结果可见轴承6007合格.
表8 中间轴结构尺寸设计
阶梯轴段 设计计算依据和过程 计算结果
第1段
由轴承尺寸确定
(轴承预选6008 )
33.6
40
25
第2段
(考虑键槽影响)
45(44.68)
77.5
第3段
50
12.5
第4段
99
109
第5段
46
39
考虑到低速轴的载荷较大,材料选用45,热处理调质处理,取材料系数
所以,有该轴的最小轴径为:
考虑到该段开键槽的影响,轴径增大6%,于是有:
标准化取
其他各段轴径、长度的设计计算依据和过程见下表:
表10 低速轴结构尺寸设计
阶梯轴段 设计计算依据和过程 计算结果
第1段
(考虑键槽影响)
(由联轴器宽度尺寸确定)
52.49
60(55.64)
142
第2段
(由唇形密封圈尺寸确定)
64(63.84)
50
第3段
66
16
第4段 由轴承尺寸确定
(轴承预选6014C )
70
24
第5段
78
75
第6段
20
88
20
第7段
齿宽+10
80(79.8)
119
§3.3.4 各轴键、键槽的选择及其校核
因减速器中的键联结均为静联结,因此只需进行挤压应力的校核.
一、 高速级键的选择及校核:
带轮处键:按照带轮处的轴径及轴长选 键B8X7,键长50,GB/T1096
联结处的材料分别为: 45钢(键) 、40Cr(轴)
二、中间级键的选择及校核:
(1) 高速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B14X9GB/T1096
联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、20Cr(轴)
此时, 键联结合格.
三、低速级级键的选择及校核
(1)低速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B22X14,键长 GB/T1096
联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、45(轴)
其中键的强度最低,因此按其许用应力进行校核,查手册其
该键联结合格
(2)联轴器处键: 按照联轴器处的轴径及轴长选 键16X10,键长100,GB/T1096
联结处的材料分别为: 45钢 (联轴器) 、45钢(键) 、45(轴)
其中键的强度最低,因此按其许用应力进行校核,查手册其
该键联结合格.
第四章 减速器箱体及其附件的设计
§4.1箱体结构设计
根据箱体的支撑强度和铸造、加工工艺要求及其内部传动零件、外部附件的空间位置确定二级齿轮减速器箱体的相关尺寸如下:(表中a=322.5)
表12 箱体结构尺寸
名称 符号 设计依据 设计结果
箱座壁厚 δ 0.025a+3=11 11
考虑铸造工艺,所有壁厚都不应小于8
箱盖壁厚 δ1 0.02a+3≥8 9.45
箱座凸缘厚度 b 1.5δ 16.5
箱盖凸缘厚度 b1 1.5δ1 14.18
箱座底凸缘厚度 b2 2.5δ 27.5
地脚螺栓直径 df 0.036a+12 24(23.61)
地脚螺栓数目 n 时,n=6
6
轴承旁联结螺栓直径 d1 0.75df 18
箱盖与箱座联接螺栓直径 d 2 (0.5~0.6)df 12
轴承端盖螺钉直径和数目 d3,n (0.4~0.5)df,n 10,6
窥视孔盖螺钉直径 d4 (0.3~0.4)df 8
定位销直径 d (0.7~0.8) d 2 9
轴承旁凸台半径 R1 c2 16
凸台高度 h 根据位置及轴承座外径确定,以便于扳手操作为准 34
外箱壁至轴承座端面距离 l1 c1+c2+ (5~10) 42
大齿轮顶圆距内壁距离 ∆1 >1.2δ 11
齿轮端面与内壁距离 ∆2 >δ 10
箱盖、箱座肋厚 m1 、 m m1≈0.85δ1 =8.03 m≈0.85δ=9.35 7
轴承端盖凸缘厚度 t (1~1.2) d3 10
轴承端盖外径 D2 D+(5~5.5) d3 120
轴承旁边连接
螺栓距离
S
120
第五章 运输、安装和使用维护要求
1、减速器的安装
(1)减速器输入轴直接与原动机连接时,推荐采用弹性联轴器;减速器输出轴与工作机联接时,推荐采用齿式联轴器或其他非刚性联轴器。联轴器不得用锤击装到轴上。
(2)减速器应牢固地安装在稳定的水平基础上,排油槽的油应能排除,且冷却空气循环流畅。
(3)减速器、原动机和工作机之间必须仔细对中,其误差不得大于所用联轴器的许用补偿量。
(4)减速器安装好后用手转动必须灵活,无卡死现象。
(5)安装好的减速器在正式使用前,应进行空载,部分额定载荷间歇运转1~3h后方可正式运转,运转应平稳、无冲击、无异常振动和噪声及渗漏油等现象,最高油温不得超过100℃;并按标准规定检查轮齿面接触区位置、面积,如发现故障,应及时排除。
2、使用维护
本类型系列减速器结构简单牢固,使用维护方便,承载能力范围大,公称输入功率0.85—6660kw,公称输出转矩100—410000N.m,不怕工况条件恶劣,是适用性很好,应用量大面广的产品。可通用于矿山、冶金、运输、建材、化工、纺织、轻工、能源等行业的机械传动。但有以下限制条件:
1.减速器高速轴转速不高于1000r/min;
2.减速器齿轮圆周速度不高于20m/s;
3.减速器工作环境温度为—40~45℃,低于0℃时,启动前润滑油应预热到8℃以上,高于45℃时应采取隔热措施。
3、减速器润滑油的更换:
(1)减速器第一次使用时,当运转150~300h后须更换润滑油,在以后的使用中应定期检查油的质量。对于混入杂质或变质的油须及时更换。一般情况下,对于长期工作的减速器,每500~1000h必须换油一次。对于每天工作时间不超过8h的减速器,每1200~3000h换油一次。
(2)减速器应加入与原来牌号相同的油,不得与不同牌号的油相混用。牌号相同而粘度不同的油允许混合用。
(3)换油过程中,蜗轮应使用与运转时相同牌号的油清洗。
(4)工作中,当发现油温温升超过80℃或油池温度超过100℃及产生不正常的噪声等现象时,应停止使用,检查原因。如因齿面胶合等原因所致,必须排除故障,更换润滑油后,方可继续运转。
减速器应定期检修。如发现擦伤、胶合及显著磨损,必须采用有效措施制止或予以排除。备件必须按标准制造,更新的备件必须经过跑合和负荷试验后才能正式使用。 用户应有合理的使用维护规章制度,对减速器的运转情况和检验中发现的问题应做认真的记录 。
小 结
转眼两周的时间过去了,感觉时间过得真快,忙忙碌碌终于把机械设计做出来了。我通过这次设计学到了很多东西。使我对机械设计的内容有了进一步的了解.
因为刚结束课程就搞设计,还没有来得及复习,所以刚开始遇到好多的问题,都感觉很棘手.因为机械设计是把我们这学期所学知识全部综合起来了,还用到了许多先前开的课程,例如金属工艺学,材料力学,机械原理等.
首先,我们要运用知识想好用什么结构,然后进行轴大小长短的设计,要校核,选轴承。最后还要校核低速轴,看能否用。键也是一件重要的零件,校核也不可避免。所有这些都用到了力学和机械设计得内容,可是我当时力学没有学好,机械设计又没完全掌握,做这次设计真是不容易啊!.
但通过这次机械设计学到了许多,不仅是在知识方面,重要是在观念方面。以往我们不管做什么都有现成的东西,而我们只要算别人现有的东西就可以了,其实那就是抄。但现在很多是自己设计,没有约束了反而不知所措了。其次,我在这次设计中出现了许多问题,经过常老师得指点,我学到了许多课本上没有的东西他并且给我们讲了一些实际用到的经验.收获真是破多啊!最后就是我们大学的课程开了这么多,我们一定要把基础打牢,为以后的综合运用打下基础啊.这次机械设计课程就体现了,我们现在很缺乏把自己学的东西联系起来的能力.
最后我总结一下通过这次机械设计我学到的。实践出真知,不假。通过设计我现在可以了解真正的设计是一个怎样的程序啊.而且其中出现了许多错误,为以后工作增加经验。虽然机设很累,但我很充实,我学到了许多知识,我增加了社会竞争力,我又多了解了机械,又进步了。总之,这次机械设计虽然很累,但是我学到了好多自己从前不知道和没有经历的经验。
参 考 文 献
1 <<机械设计>>第八版 濮良贵主编 高等教育出版社 ,2006
2 <<机械设计课程设计>>第1版 . 王昆,何小柏主编 .机械工业出版社 ,2004
3 <<机械原理>> 申永胜主编 清华大学出版社 ,1999
4 <<材料力学 >> 刘鸿文主编 高等教育出版社 ,2004
5 <<几何公差与测量>>第五版 甘永力主编 上海科学技术出版社 ,2003
6 <<机械制图>>
⑺ 设计一用于带式运输机上的单级圆柱齿轮减
我也在做这个,写不下的这么多,不过可以参考机械设计手册!这种设计 在学校帮忙做是200元
械设计课程设计任务书
班 级 姓 名
设计题目:带式运输机传动装置设计
布置形式:设计用于带式运输机的一级直齿圆柱齿轮减速器(Ⅰ)
传动简图
原始数据:
数据编号 1 2 3 4 5 6
运输带工作拉力F/N 800 850 900 950 1100 1150
运输带工作速度v/(m/s) 1.5 1.6 1.7 1.5 1.55 1.6
卷筒直径D/mm 250 260 270 240 250 260
工作条件:一班制,连续单向运转。载荷平稳,室内工作,有粉尘。
使用期限:10 年
生产批量:10 套
动力来源:三相交流电(220V/380V )
运输带速度允许误差:±5% 。
提问者: 浪人5 - 试用期 一级 其他回答 共 1 条
这个是我好不容易才找到的,一个东东啊,你可以自己看看啊,就差不多能自己理解了。。。给我你的邮箱发给你啊!我的是[email protected]
目 录
设计任务书…………………………………………………2
第一部分 传动装置总体设计……………………………4
第二部分 V带设计………………………………………6
第三部分 各齿轮的设计计算……………………………9
第四部分 轴的设计………………………………………13
第五部分 校核……………………………………………19
第六部分 主要尺寸及数据………………………………21
设 计 任 务 书
一、 课程设计题目:
设计带式运输机传动装置(简图如下)
原始数据:
数据编号 3 5 7 10
运输机工作转矩T/(N.m) 690 630 760 620
运输机带速V/(m/s) 0.8 0.9 0.75 0.9
卷筒直径D/mm 320 380 320 360
工作条件:
连续单向运转,工作时有轻微振动,使用期限为10年,小批量生产,单班制工作(8小时/天)。运输速度允许误差为 。
二、 课程设计内容
1)传动装置的总体设计。
2)传动件及支承的设计计算。
3)减速器装配图及零件工作图。
4)设计计算说明书编写。
每个学生应完成:
1) 部件装配图一张(A1)。
2) 零件工作图两张(A3)
3) 设计说明书一份(6000~8000字)。
本组设计数据:
第三组数据:运输机工作轴转矩T/(N.m) 690 。
运输机带速V/(m/s) 0.8 。
卷筒直径D/mm 320 。
已给方案:外传动机构为V带传动。
减速器为两级展开式圆柱齿轮减速器。
第一部分 传动装置总体设计
一、 传动方案(已给定)
1) 外传动为V带传动。
2) 减速器为两级展开式圆柱齿轮减速器。
3) 方案简图如下:
二、该方案的优缺点:
该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。减速器部分两级展开式圆柱齿轮减速,这是两级减速器中应用最广泛的一种。齿轮相对于轴承不对称,要求轴具有较大的刚度。高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。原动机部分为Y系列三相交流 异步电动机。
总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。
计 算 与 说 明 结果
三、原动机选择(Y系列三相交流异步电动机)
工作机所需功率: =0.96 (见课设P9)
传动装置总效率: (见课设式2-4)
(见课设表12-8)
电动机的输出功率: (见课设式2-1)
取
选择电动机为Y132M1-6 m型 (见课设表19-1)
技术数据:额定功率( ) 4 满载转矩( ) 960
额定转矩( ) 2.0 最大转矩( ) 2.0
Y132M1-6电动机的外型尺寸(mm): (见课设表19-3)
A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:
⑻ 机械设计-课程设计-带式运输机传动装置-二级齿轮减速器
一、 设计题目:二级直齿圆柱齿轮减速器
1. 要求:拟定传动关系:由电动机、V带、减速器、联轴器、工作机构成。
2. 工作条件:双班工作,有轻微振动,小批量生产,单向传动,使用5年,运输带允许误差5%。
3. 知条件:运输带卷筒转速 ,
减速箱输出轴功率 马力,
二、 传动装置总体设计:
1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。 其传动方案如下:
三、 选择电机
1. 计算电机所需功率 : 查手册第3页表1-7:
-带传动效率:0.96
-每对轴承传动效率:0.99
-圆柱齿轮的传动效率:0.96
-联轴器的传动效率:0.993
—卷筒的传动效率:0.96
说明:
-电机至工作机之间的传动装置的总效率:
2确定电机转速:查指导书第7页表1:取V带传动比i=2 4
二级圆柱齿轮减速器传动比i=8 40所以电动机转速的可选范围是:
符合这一范围的转速有:750、1000、1500、3000
根据电动机所需功率和转速查手册第155页表12-1有4种适用的电动机型号,因此有4种传动比方案如下:
方案 电动机型号 额定功率 同步转速
r/min 额定转速
r/min 重量 总传动比
1 Y112M-2 4KW 3000 2890 45Kg 152.11
2 Y112M-4 4KW 1500 1440 43Kg 75.79
3 Y132M1-6 4KW 1000 960 73Kg 50.53
4 Y160M1-8 4KW 750 720 118Kg 37.89
综合考虑电动机和传动装置的尺寸、重量、和带传动、减速器的传动比,可见第3种方案比较合适,因此选用电动机型号为Y132M1-6,其主要参数如下:
额定功率kW 满载转速 同步转速 质量 A D E F G H L AB
4 960 1000 73 216 38 80 10 33 132 515 280
四 确定传动装置的总传动比和分配传动比:
总传动比:
分配传动比:取 则
取 经计算
注: 为带轮传动比, 为高速级传动比, 为低速级传动比。
五 计算传动装置的运动和动力参数:
将传动装置各轴由高速到低速依次定为1轴、2轴、3轴、4轴
——依次为电机与轴1,轴1与轴2,轴2与轴3,轴3与轴4之间的传动效率。
1. 各轴转速:
2各轴输入功率:
3各轴输入转矩:
运动和动力参数结果如下表:
轴名 功率P KW 转矩T Nm 转速r/min
输入 输出 输入 输出
电动机轴 3.67 36.5 960
1轴 3.52 3.48 106.9 105.8 314.86
2轴 3.21 3.18 470.3 465.6 68
3轴 3.05 3.02 1591.5 1559.6 19.1
4轴 3 2.97 1575.6 1512.6 19.1
六 设计V带和带轮:
1.设计V带
①确定V带型号
查课本 表13-6得: 则
根据 =4.4, =960r/min,由课本 图13-5,选择A型V带,取 。
查课本第206页表13-7取 。
为带传动的滑动率 。
②验算带速: 带速在 范围内,合适。
③取V带基准长度 和中心距a:
初步选取中心距a: ,取 。
由课本第195页式(13-2)得: 查课本第202页表13-2取 。由课本第206页式13-6计算实际中心距: 。
④验算小带轮包角 :由课本第195页式13-1得: 。
⑤求V带根数Z:由课本第204页式13-15得:
查课本第203页表13-3由内插值法得 。
EF=0.1
=1.37+0.1=1.38
EF=0.08
查课本第202页表13-2得 。
查课本第204页表13-5由内插值法得 。 =163.0 EF=0.009
=0.95+0.009=0.959
则
取 根。
⑥求作用在带轮轴上的压力 :查课本201页表13-1得q=0.10kg/m,故由课本第197页式13-7得单根V带的初拉力:
作用在轴上压力:
。
七 齿轮的设计:
1高速级大小齿轮的设计:
①材料:高速级小齿轮选用 钢调质,齿面硬度为250HBS。高速级大齿轮选用 钢正火,齿面硬度为220HBS。
②查课本第166页表11-7得: 。
查课本第165页表11-4得: 。
故 。
查课本第168页表11-10C图得: 。
故 。
③按齿面接触强度设计:9级精度制造,查课本第164页表11-3得:载荷系数 ,取齿宽系数 计算中心距:由课本第165页式11-5得:
考虑高速级大齿轮与低速级大齿轮相差不大取
则 取
实际传动比:
传动比误差: 。
齿宽: 取
高速级大齿轮: 高速级小齿轮:
④验算轮齿弯曲强度:
查课本第167页表11-9得:
按最小齿宽 计算:
所以安全。
⑤齿轮的圆周速度:
查课本第162页表11-2知选用9级的的精度是合适的。
2低速级大小齿轮的设计:
①材料:低速级小齿轮选用 钢调质,齿面硬度为250HBS。
低速级大齿轮选用 钢正火,齿面硬度为220HBS。
②查课本第166页表11-7得: 。
查课本第165页表11-4得: 。
故 。
查课本第168页表11-10C图得: 。
故 。
③按齿面接触强度设计:9级精度制造,查课本第164页表11-3得:载荷系数 ,取齿宽系数
计算中心距: 由课本第165页式11-5得:
取 则 取
计算传动比误差: 合适
齿宽: 则取
低速级大齿轮:
低速级小齿轮:
④验算轮齿弯曲强度:查课本第167页表11-9得:
按最小齿宽 计算:
安全。
⑤齿轮的圆周速度:
查课本第162页表11-2知选用9级的的精度是合适的。
八 减速器机体结构尺寸如下:
名称 符号 计算公式 结果
箱座厚度
10
箱盖厚度
9
箱盖凸缘厚度
12
箱座凸缘厚度
15
箱座底凸缘厚度
25
地脚螺钉直径
M24
地脚螺钉数目
查手册 6
轴承旁联结螺栓直径
M12
盖与座联结螺栓直径
=(0.5 0.6)
M10
轴承端盖螺钉直径
=(0.4 0.5)
10
视孔盖螺钉直径
=(0.3 0.4)
8
定位销直径
=(0.7 0.8)
8
, , 至外箱壁的距离
查手册表11—2 34
22
18
, 至凸缘边缘距离
查手册表11—2 28
16
外箱壁至轴承端面距离
= + +(5 10)
50
大齿轮顶圆与内箱壁距离
>1.2
15
齿轮端面与内箱壁距离
>
10
箱盖,箱座肋厚
9
8.5
轴承端盖外径
+(5 5.5)
120(1轴)
125(2轴)
150(3轴)
轴承旁联结螺栓距离
120(1轴)
125(2轴)
150(3轴)
九 轴的设计:
1高速轴设计:
①材料:选用45号钢调质处理。查课本第230页表14-2取 C=100。
②各轴段直径的确定:根据课本第230页式14-2得: 又因为装小带轮的电动机轴径 ,又因为高速轴第一段轴径装配大带轮,且 所以查手册第9页表1-16取 。L1=1.75d1-3=60。
因为大带轮要靠轴肩定位,且还要配合密封圈,所以查手册85页表7-12取 ,L2=m+e+l+5=28+9+16+5=58。
段装配轴承且 ,所以查手册62页表6-1取 。选用6009轴承。
L3=B+ +2=16+10+2=28。
段主要是定位轴承,取 。L4根据箱体内壁线确定后在确定。
装配齿轮段直径:判断是不是作成齿轮轴:
查手册51页表4-1得:
得:e=5.9<6.25。
段装配轴承所以 L6= L3=28。
2 校核该轴和轴承:L1=73 L2=211 L3=96
作用在齿轮上的圆周力为:
径向力为
作用在轴1带轮上的外力:
求垂直面的支反力:
求垂直弯矩,并绘制垂直弯矩图:
求水平面的支承力:
由 得
N
N
求并绘制水平面弯矩图:
求F在支点产生的反力:
求并绘制F力产生的弯矩图:
F在a处产生的弯矩:
求合成弯矩图:
考虑最不利的情况,把 与 直接相加。
求危险截面当量弯矩:
从图可见,m-m处截面最危险,其当量弯矩为:(取折合系数 )
计算危险截面处轴的直径:
因为材料选择 调质,查课本225页表14-1得 ,查课本231页表14-3得许用弯曲应力 ,则:
因为 ,所以该轴是安全的。
3轴承寿命校核:
轴承寿命可由式 进行校核,由于轴承主要承受径向载荷的作用,所以 ,查课本259页表16-9,10取 取
按最不利考虑,则有:
则 因此所该轴承符合要求。
4弯矩及轴的受力分析图如下:
5键的设计与校核:
根据 ,确定V带轮选铸铁HT200,参考教材表10-9,由于 在 范围内,故 轴段上采用键 : ,
采用A型普通键:
键校核.为L1=1.75d1-3=60综合考虑取 =50得 查课本155页表10-10 所选键为:
中间轴的设计:
①材料:选用45号钢调质处理。查课本第230页表14-2取 C=100。
②根据课本第230页式14-2得:
段要装配轴承,所以查手册第9页表1-16取 ,查手册62页表6-1选用6208轴承,L1=B+ + + =18+10+10+2=40。
装配低速级小齿轮,且 取 ,L2=128,因为要比齿轮孔长度少 。
段主要是定位高速级大齿轮,所以取 ,L3= =10。
装配高速级大齿轮,取 L4=84-2=82。
段要装配轴承,所以查手册第9页表1-16取 ,查手册62页表6-1选用6208轴承,L1=B+ + +3+ =18+10+10+2=43。
③校核该轴和轴承:L1=74 L2=117 L3=94
作用在2、3齿轮上的圆周力:
N
径向力:
求垂直面的支反力
计算垂直弯矩:
求水平面的支承力:
计算、绘制水平面弯矩图:
求合成弯矩图,按最不利情况考虑:
求危险截面当量弯矩:
从图可见,m-m,n-n处截面最危险,其当量弯矩为:(取折合系数 )
计算危险截面处轴的直径:
n-n截面:
m-m截面:
由于 ,所以该轴是安全的。
轴承寿命校核:
轴承寿命可由式 进行校核,由于轴承主要承受径向载荷的作用,所以 ,查课本259页表16-9,10取 取
则 ,轴承使用寿命在 年范围内,因此所该轴承符合要求。
④弯矩及轴的受力分析图如下:
⑤键的设计与校核:
已知 参考教材表10-11,由于 所以取
因为齿轮材料为45钢。查课本155页表10-10得
L=128-18=110取键长为110. L=82-12=70取键长为70
根据挤压强度条件,键的校核为:
所以所选键为:
从动轴的设计:
⑴确定各轴段直径
①计算最小轴段直径。
因为轴主要承受转矩作用,所以按扭转强度计算,由式14-2得:
考虑到该轴段上开有键槽,因此取
查手册9页表1-16圆整成标准值,取
②为使联轴器轴向定位,在外伸端设置轴肩,则第二段轴径 。查手册85页表7-2,此尺寸符合轴承盖和密封圈标准值,因此取 。
③设计轴段 ,为使轴承装拆方便,查手册62页,表6-1,取 ,采用挡油环给轴承定位。选轴承6215: 。
④设计轴段 ,考虑到挡油环轴向定位,故取
⑤设计另一端轴颈 ,取 ,轴承由挡油环定位,挡油环另一端靠齿轮齿根处定位。
⑥ 轮装拆方便,设计轴头 ,取 ,查手册9页表1-16取 。
⑦设计轴环 及宽度b
使齿轮轴向定位,故取 取
,
⑵确定各轴段长度。
有联轴器的尺寸决定 (后面将会讲到).
因为 ,所以
轴头长度 因为此段要比此轮孔的长度短
其它各轴段长度由结构决定。
(4).校核该轴和轴承:L1=97.5 L2=204.5 L3=116
求作用力、力矩和和力矩、危险截面的当量弯矩。
作用在齿轮上的圆周力:
径向力:
求垂直面的支反力:
计算垂直弯矩:
.m
求水平面的支承力。
计算、绘制水平面弯矩图。
求F在支点产生的反力
求F力产生的弯矩图。
F在a处产生的弯矩:
求合成弯矩图。
考虑最不利的情况,把 与 直接相加。
求危险截面当量弯矩。
从图可见,m-m处截面最危险,其当量弯矩为:(取折合系数 )
计算危险截面处轴的直径。
因为材料选择 调质,查课本225页表14-1得 ,查课本231页表14-3得许用弯曲应力 ,则:
考虑到键槽的影响,取
因为 ,所以该轴是安全的。
(5).轴承寿命校核。
轴承寿命可由式 进行校核,由于轴承主要承受径向载荷的作用,所以 ,查课本259页表16-9,10取 取
按最不利考虑,则有:
则 ,
该轴承寿命为64.8年,所以轴上的轴承是适合要求的。
(6)弯矩及轴的受力分析图如下:
(7)键的设计与校核:
因为d1=63装联轴器查课本153页表10-9选键为 查课本155页表10-10得
因为L1=107初选键长为100,校核 所以所选键为:
装齿轮查课本153页表10-9选键为 查课本155页表10-10得
因为L6=122初选键长为100,校核
所以所选键为: .
十 高速轴大齿轮的设计
因 采用腹板式结构
代号 结构尺寸和计算公式 结果
轮毂处直径
72
轮毂轴向长度
84
倒角尺寸
1
齿根圆处的厚度
10
腹板最大直径
321.25
板孔直径
62.5
腹板厚度
25.2
电动机带轮的设计
代号 结构尺寸和计算公式 结果
手册157页 38mm
68.4mm
取60mm
81mm
74.7mm
10mm
15mm
5mm
十一.联轴器的选择:
计算联轴器所需的转矩: 查课本269表17-1取 查手册94页表8-7选用型号为HL6的弹性柱销联轴器。
十二润滑方式的确定:
因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度。
十三.其他有关数据见装配图的明细表和手册中的有关数据。
十四.参考资料:
《机械设计课程设计手册》(第二版)——清华大学 吴宗泽,北京科技大学 罗圣国主编。
《机械设计课程设计指导书》(第二版)——罗圣国,李平林等主编。
《机械课程设计》(重庆大学出版社)——周元康等主编。
《机械设计基础》(第四版)课本——杨可桢 程光蕴 主编。
⑼ 带式运输机用同轴式二级圆柱齿轮减速器课程设计
一种单级圆柱齿轮减速器,主要由主、从动变位齿轮、轴承、挡圈、端盖、主、副壳体、花键轴、内花键套法兰、压盖、轴承座组成。
其特点是主动变位齿轮是台阶式的,一端部齿轮与从动变位齿轮联接,另一端部与轴承、挡圈固定联接,轴承的外套与轴承座联接,轴承座与副壳体表面联接固定。
此减速器由于主、从齿轮采用变位齿轮,主动变位齿轮的另一端部增加轴承、轴承座,改变过去的悬臂状态,加强齿轮的工作强度,提高了减速器的寿命。
下面是设计说明书:
修改参数:输送带工作拉力:2300N
输送带工作速度:1.5m/s
滚筒直径:400mm
每日工作时数:24h
传动工作年限:3年
机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器 目 录
设计任务书……………………………………………………1
传动方案的拟定及说明………………………………………4
电动机的选择…………………………………………………4
计算传动装置的运动和动力参数……………………………5
传动件的设计计算……………………………………………5
轴的设计计算…………………………………………………8
滚动轴承的选择及计算………………………………………14
键联接的选择及校核计算……………………………………16
连轴器的选择…………………………………………………16
减速器附件的选择……………………………………………17
润滑与密封……………………………………………………18
设计小结………………………………………………………18
参考资料目录…………………………………………………18
机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况:
载荷平稳、单向旋转
三. 原始数据
鼓轮的扭矩T(N•m):850
鼓轮的直径D(mm):350
运输带速度V(m/s):0.7
带速允许偏差(%):5
使用年限(年):5
工作制度(班/日):2
四. 设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份
六. 设计进度
1、 第一阶段:总体计算和传动件参数计算
2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写
传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择
1) 工作机所需功率Pw
Pw=3.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW
3.电动机转速的选择
nd=(i1’•i2’…in’)nw
初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=38.4
i=25.14
2.合理分配各级传动比
由于减速箱是同轴式布置,所以i1=i2。
因为i=25.14,取i=25,i1=i2=5
速度偏差为0.5%<5%,所以可行。
各轴转速、输入功率、输入转矩
项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮
转速(r/min) 960 960 192 38.4 38.4
功率(kW) 4 3.96 3.84 3.72 3.57
转矩(N•m) 39.8 39.4 191 925.2 888.4
传动比 1 1 5 5 1
效率 1 0.99 0.97 0.97 0.97
传动件设计计算
1. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的;
4) 选取螺旋角。初选螺旋角β=14°
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即
dt≥
1) 确定公式内的各计算数值
(1) 试选Kt=1.6
(2) 由图10-30选取区域系数ZH=2.433
(3) 由表10-7选取尺宽系数φd=1
(4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62
(5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(7) 由式10-13计算应力循环次数
N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8
N2=N1/5=6.64×107
(8) 由图10-19查得接触疲劳寿命系数KHN1=0.95;KHN2=0.98
(9) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]1==0.95×600MPa=570MPa
[σH]2==0.98×550MPa=539MPa
[σH]=[σH]1+[σH]2/2=554.5MPa
2) 计算
(1) 试算小齿轮分度圆直径d1t
d1t≥ = =67.85
(2) 计算圆周速度
v= = =0.68m/s
(3) 计算齿宽b及模数mnt
b=φdd1t=1×67.85mm=67.85mm
mnt= = =3.39
h=2.25mnt=2.25×3.39mm=7.63mm
b/h=67.85/7.63=8.89
(4) 计算纵向重合度εβ
εβ= =0.318×1×tan14 =1.59
(5) 计算载荷系数K
已知载荷平稳,所以取KA=1
根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同,
故 KHβ=1.12+0.18(1+0.6×1 )1×1 +0.23×10 67.85=1.42
由表10—13查得KFβ=1.36
由表10—3查得KHα=KHα=1.4。故载荷系数
K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05
(6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得
d1= = mm=73.6mm
(7) 计算模数mn
mn = mm=3.74
3.按齿根弯曲强度设计
由式(10—17 mn≥
1) 确定计算参数
(1) 计算载荷系数
K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96
(2) 根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88
(3) 计算当量齿数
z1=z1/cos β=20/cos 14 =21.89
z2=z2/cos β=100/cos 14 =109.47
(4) 查取齿型系数
由表10-5查得YFa1=2.724;Yfa2=2.172
(5) 查取应力校正系数
由表10-5查得Ysa1=1.569;Ysa2=1.798
(6) 计算[σF]
σF1=500Mpa
σF2=380MPa
KFN1=0.95
KFN2=0.98
[σF1]=339.29Mpa
[σF2]=266MPa
(7) 计算大、小齿轮的 并加以比较
= =0.0126
= =0.01468
大齿轮的数值大。
2) 设计计算
mn≥ =2.4
mn=2.5
4.几何尺寸计算
1) 计算中心距
z1 =32.9,取z1=33
z2=165
a =255.07mm
a圆整后取255mm
2) 按圆整后的中心距修正螺旋角
β=arcos =13 55’50”
3) 计算大、小齿轮的分度圆直径
d1 =85.00mm
d2 =425mm
4) 计算齿轮宽度
b=φdd1
b=85mm
B1=90mm,B2=85mm
5) 结构设计
以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。其他有关尺寸参看大齿轮零件图。
轴的设计计算
拟定输入轴齿轮为右旋
II轴:
1.初步确定轴的最小直径
d≥ = =34.2mm
2.求作用在齿轮上的受力
Ft1= =899N
Fr1=Ft =337N
Fa1=Fttanβ=223N;
Ft2=4494N
Fr2=1685N
Fa2=1115N
3.轴的结构设计
1) 拟定轴上零件的装配方案
i. I-II段轴用于安装轴承30307,故取直径为35mm。
ii. II-III段轴肩用于固定轴承,查手册得到直径为44mm。
iii. III-IV段为小齿轮,外径90mm。
iv. IV-V段分隔两齿轮,直径为55mm。
v. V-VI段安装大齿轮,直径为40mm。
vi. VI-VIII段安装套筒和轴承,直径为35mm。
2) 根据轴向定位的要求确定轴的各段直径和长度
1. I-II段轴承宽度为22.75mm,所以长度为22.75mm。
2. II-III段轴肩考虑到齿轮和箱体的间隙12mm,轴承和箱体的间隙4mm,所以长度为16mm。
3. III-IV段为小齿轮,长度就等于小齿轮宽度90mm。
4. IV-V段用于隔开两个齿轮,长度为120mm。
5. V-VI段用于安装大齿轮,长度略小于齿轮的宽度,为83mm。
6. VI-VIII长度为44mm。
4. 求轴上的载荷
66 207.5 63.5
Fr1=1418.5N
Fr2=603.5N
查得轴承30307的Y值为1.6
Fd1=443N
Fd2=189N
因为两个齿轮旋向都是左旋。
故:Fa1=638N
Fa2=189N
5.精确校核轴的疲劳强度
1) 判断危险截面
由于截面IV处受的载荷较大,直径较小,所以判断为危险截面
2) 截面IV右侧的
截面上的转切应力为
由于轴选用40cr,调质处理,所以
([2]P355表15-1)
a) 综合系数的计算
由 , 经直线插入,知道因轴肩而形成的理论应力集中为 , ,
([2]P38附表3-2经直线插入)
轴的材料敏感系数为 , ,
([2]P37附图3-1)
故有效应力集中系数为
查得尺寸系数为 ,扭转尺寸系数为 ,
([2]P37附图3-2)([2]P39附图3-3)
轴采用磨削加工,表面质量系数为 ,
([2]P40附图3-4)
轴表面未经强化处理,即 ,则综合系数值为
b) 碳钢系数的确定
碳钢的特性系数取为 ,
c) 安全系数的计算
轴的疲劳安全系数为
故轴的选用安全。
I轴:
1.作用在齿轮上的力
FH1=FH2=337/2=168.5
Fv1=Fv2=889/2=444.5
2.初步确定轴的最小直径
3.轴的结构设计
1) 确定轴上零件的装配方案
2)根据轴向定位的要求确定轴的各段直径和长度
d) 由于联轴器一端连接电动机,另一端连接输入轴,所以该段直径尺寸受到电动机外伸轴直径尺寸的限制,选为25mm。
e) 考虑到联轴器的轴向定位可靠,定位轴肩高度应达2.5mm,所以该段直径选为30。
f) 该段轴要安装轴承,考虑到轴肩要有2mm的圆角,则轴承选用30207型,即该段直径定为35mm。
g) 该段轴要安装齿轮,考虑到轴肩要有2mm的圆角,经标准化,定为40mm。
h) 为了齿轮轴向定位可靠,定位轴肩高度应达5mm,所以该段直径选为46mm。
i) 轴肩固定轴承,直径为42mm。
j) 该段轴要安装轴承,直径定为35mm。
2) 各段长度的确定
各段长度的确定从左到右分述如下:
a) 该段轴安装轴承和挡油盘,轴承宽18.25mm,该段长度定为18.25mm。
b) 该段为轴环,宽度不小于7mm,定为11mm。
c) 该段安装齿轮,要求长度要比轮毂短2mm,齿轮宽为90mm,定为88mm。
d) 该段综合考虑齿轮与箱体内壁的距离取13.5mm、轴承与箱体内壁距离取4mm(采用油润滑),轴承宽18.25mm,定为41.25mm。
e) 该段综合考虑箱体突缘厚度、调整垫片厚度、端盖厚度及联轴器安装尺寸,定为57mm。
f) 该段由联轴器孔长决定为42mm
4.按弯扭合成应力校核轴的强度
W=62748N.mm
T=39400N.mm
45钢的强度极限为 ,又由于轴受的载荷为脉动的,所以 。
III轴
1.作用在齿轮上的力
FH1=FH2=4494/2=2247N
Fv1=Fv2=1685/2=842.5N
2.初步确定轴的最小直径
3.轴的结构设计
1) 轴上零件的装配方案
2) 据轴向定位的要求确定轴的各段直径和长度
I-II II-IV IV-V V-VI VI-VII VII-VIII
直径 60 70 75 87 79 70
长度 105 113.75 83 9 9.5 33.25
5.求轴上的载荷
Mm=316767N.mm
T=925200N.mm
6. 弯扭校合
滚动轴承的选择及计算
I轴:
1.求两轴承受到的径向载荷
5、 轴承30206的校核
1) 径向力
2) 派生力
3) 轴向力
由于 ,
所以轴向力为 ,
4) 当量载荷
由于 , ,
所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
II轴:
6、 轴承30307的校核
1) 径向力
2) 派生力
,
3) 轴向力
由于 ,
所以轴向力为 ,
4) 当量载荷
由于 , ,
所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
III轴:
7、 轴承32214的校核
1) 径向力
2) 派生力
3) 轴向力
由于 ,
所以轴向力为 ,
4) 当量载荷
由于 , ,
所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
键连接的选择及校核计算
代号 直径
(mm) 工作长度
(mm) 工作高度
(mm) 转矩
(N•m) 极限应力
(MPa)
高速轴 8×7×60(单头) 25 35 3.5 39.8 26.0
12×8×80(单头) 40 68 4 39.8 7.32
中间轴 12×8×70(单头) 40 58 4 191 41.2
低速轴 20×12×80(单头) 75 60 6 925.2 68.5
18×11×110(单头) 60 107 5.5 925.2 52.4
由于键采用静联接,冲击轻微,所以许用挤压应力为 ,所以上述键皆安全。
连轴器的选择
由于弹性联轴器的诸多优点,所以考虑选用它。
二、高速轴用联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以考虑选用弹性柱销联轴器TL4(GB4323-84),但由于联轴器一端与电动机相连,其孔径受电动机外伸轴径限制,所以选用TL5(GB4323-84)
其主要参数如下:
材料HT200
公称转矩
轴孔直径 ,
轴孔长 ,
装配尺寸
半联轴器厚
([1]P163表17-3)(GB4323-84
三、第二个联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以选用弹性柱销联轴器TL10(GB4323-84)
其主要参数如下:
材料HT200
公称转矩
轴孔直径
轴孔长 ,
装配尺寸
半联轴器厚
([1]P163表17-3)(GB4323-84
减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M16
起吊装置
采用箱盖吊耳、箱座吊耳
放油螺塞
选用外六角油塞及垫片M16×1.5
润滑与密封
一、齿轮的润滑
采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。
二、滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
三、润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用L-AN15润滑油。
四、密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。
密封圈型号按所装配轴的直径确定为(F)B25-42-7-ACM,(F)B70-90-10-ACM。
轴承盖结构尺寸按用其定位的轴承的外径决定。
设计小结
由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的。