Ⅰ 汽车中的油水分离器的作用是什么都有些什么
油水分离器的原理就是汽油比水清,所以水下沉,只要比汽油重都会沉淀
Ⅱ 硝酸尾气处理!
硝酸尾气的处理
国际上对硝酸尾气排放标准日趋严格,一般NOX排放浓度不得大于2×10-4(质量分数),我国规定居住区氮氧化物(换算成NO2)的最高容许浓度为0.15mg/m ,生产车间空气中氮氧化物(换算成NO2)为5mg/m )。尽管采用加压法产生的尾气中NO的含量很小,但治理硝酸尾气对环境保护意义重大。目前,国内外硝酸尾气的处理可归纳为三大类:一是用溶液进行湿法吸收;二是用固体物质进行吸收或吸附;三是用催化剂进行催化转化。
9.1溶液吸收法
湿法吸收的优点是处理气量大,不受操作压力限制,且方法简便,操作稳定。采用常压、低压吸收的硝酸厂用此法处理尾气是比较适合的。其缺点是处理精度不高,副产物用量不大。近年来对湿法吸收进行了一些改进,还提出了用新型的活性溶液作吸收剂的方法,如采用酸性尿素溶液或高锰酸钾溶液作吸收剂等。湿法吸收通用H2SO4、HNO3、NaOH和NaCO3等
9.1.1 碱液吸收
常用有碱液是NaOH、NaCO3、以及Ca(OH)2、NH4OH和Mg(OH)2等。
用NaOH或NaCO3吸收尾气中氮氧化物的反应如下:
2NO2+2NaOH=NaNO2+NaNO3+H2O (1)
NO+NO2+2NaOH=2NaNO2+H2O (2)
2NO2+Na2CO3=NaNO2+NaNO3+CO2 (3)
由于NaOH价格比较昂贵,而便宜的Ca(OH)2,又因溶解度较小容易堵塞设备,所以目前常用的是NaCO3。其浓度一般控制在20~30%,浓度过高时速度会稍有下降,且可能会有结晶析出,浓度太低,循环碱液量大,增加设备窖和动力消耗,并蒸浓溶液耗热量多。
碱液吸收中采用Mg(OH)2的悬浮水溶液作吸收剂是较新的方法。该法的基本原理是:Mg(OH)2水溶液吸收氮氧化物后生成亚硝酸镁悬浮液。亚硝酸镁加热至140℃,便分解为NO和硝酸镁,硝酸镁用氨处理,并以硝酸铵形态回收,所得Mg(OH)2水溶液再用于吸收。吸收和再生反应为:
Mg(OH)2+NO+NO2=Mg(NO2)2+H2O (1)
3Mg(NO2)2+2H2O=2Mg(OH)2+Mg(NO3)2+4NO (2)
Mg(NO3)2+2NH3+2H2O=2NH4NO3+Mg(OH)2 (3)
该法与一般碱液吸收的区别在于:应用此法可回收NO以增加硝酸产量,同时吸收液可循环使用,这在经济上是有利的。
9.1.2 亚硫酸溶液吸收法
利用硫酸尾气回收的排出液(亚硫酸铵和亚硫酸氢铵)来洗涤硝酸尾气中的NOx达到较好的综合效果,吸收率可达75%以上。吸收反应如下:
Ⅲ B装置中的四氯化碳硝酸银溶液的作用是什么
四氯化碳是为了处复理由于反应系统制升温而挥发出来的溴。
硝酸银在这里可能的作用有两个,一个是处理没有被完全吸收的含溴无机物,再一个是为了确定最后的尾气不会存在含溴无机物。而前者可能性比较小,因为如果要处理尾气中残留的含溴无机物(在这个实验中有可能是溴单质或溴化氢,由于溴单质在四氯化碳中的溶解度相对较高,故考虑溴化氢即可),我们一般采取使用氢氧化钠溶液的方式而不是硝酸银。硝酸银在这里的作用更多的是确定尾气中不存在含溴无机物(即尾气通入硝酸银溶液不会产生溴化银沉淀)。
然而B这个装置存在相当大的不合理性,这个题后面应该会提到让你说明或改正B装置的不合理处的问题。所以这里你不需要较真,后面应该会给你提到的。
Ⅳ 硝酸的工业制法 原理,尾气处理-------------尽可能详细
HNO3的工业制法
其法以氨和空气为原料,用Pt—Rh合金网为催化剂在氧化炉中于800℃进行氧化反应,生成的NO在冷却时与O2生NO2,NO2在吸收塔内用水吸收在过量空气中O2的作用下转化为硝酸,最高浓度可达50%.
4NH3+5O2=催化剂、高温=4N0+6H20①
2NO+O2==2NO2②
3NO2+H2O==2HNO3+NO③
4NO2+O2+2H2O==4HNO3④
③中的NO可以进入②中继续利用制取的50%的硝酸用硝酸镁或者浓H2SO4做吸水剂,蒸馏,可得到高浓度的硝酸, 甚至98%以上的“发烟”硝酸.
尾气处理, 生产过程中NO循环使用,可以最大程度利用原料,并且减少尾气中的NOX的排放,
尾气一般用NaOH溶液进行吸收 ,发生氧化还原反应,可以综合利用尾气中的NOX
2NO2+2NaOH =NaNO2 +NaNO3 +H2O
NO +NO2 +2NaOH =2NANO3+H2O
制取的50%的硝酸用硝酸镁或者浓H2SO4做吸水剂,蒸馏,可得到高浓度的硝酸, 甚至98%以上的“发烟”硝酸.
尾气处理, 生产过程中NO循环使用,可以最大程度利用原料,并且减少尾气中的NOX的排放,
尾气一般用NaOH溶液进行吸收 ,发生氧化还原反应,可以综合利用尾气中的NOX
2NO2+2NaOH =NaNO2 +NaNO3 +H2O
NO +NO2 +2NaOH =2NANO3+H2O
其法以氨和空气为原料,用Pt—Rh合金网为催化剂在氧化炉中于800℃进行氧化反应,生成的NO在冷却时与O2生NO2,NO2在吸收塔内用水吸收在过量空气中O2的作用下转化为硝酸,最高浓度可达50%.
4NH3+5O2=催化剂、高温=4N0+6H20①
2NO+O2==2NO2 ②
3NO2+H2O==2HNO3+NO ③
4NO2+O2+2H2O==4HNO3 ④
③中的NO可以进入②中继续利用
Ⅳ 铜片与浓硝酸反应装置中氢氧化钠的作用
氢氧化钠的作用是为了防止污染.
在试管里盛放足量氢氧化钠溶液.以吸收反应回产生的气体NO2.
Cu+4HNO3
(浓)答=Cu(NO3)2+2NO2↑+2H2O.
NO2气体有毒,这个实验是学生实验室实验,为了学生安全,不能任由有毒气体排放到教室,所以需要加氢氧化钠并且足量。
2NO2+2NaOH=NaNO2+NaNO3+H2O
发生歧化反应,消耗了NO2
Ⅵ 工业制硝酸的尾气处理
工业制硝酸的尾气是酸性气体,用碱液吸收就可以了一般用NaOH溶液来吸收专.具体方程如属下:
NO2+NO+2NaOH==2NaNO2+H2O
2NO2+2NaOH==NaNO3+NaNO2+H2O
Ⅶ 尾气分析对汽车检测的意义是什么
科学分析表明,汽车尾气中含有上百种不同的化合物,其中的污染物有固体悬浮微粒、一氧化碳、二氧化碳、碳氢化合物、氮氧化合物、铅及硫氧化合物等。一辆轿车一年排出的有害废气比自身重量大3倍。英国空气洁净和环境保护协会曾发表研究报告称,与交通事故遇难者相比,英国每年死于空气污染的人要多出10倍。现在,我们来分析一下汽车尾气中的有害物质。
固体悬浮颗粒:固体悬浮颗粒的成分很复杂,并具有较强的吸附能力,可以吸附各种金属粉尘、强致癌物苯并芘和病原微生物等。固体悬浮颗粒随呼吸进入人体肺部,以碰撞、扩散、沉积等方式滞留在呼吸道的不同部位,引起呼吸系统疾病。当悬浮颗粒积累到临界浓度时,便会激发形成恶性肿瘤。此外,悬浮颗粒物还能直接接触皮肤和眼睛,阻塞皮肤的毛囊和汗腺,引起皮肤炎和眼结膜炎,甚至造成角膜损伤。
一氧化碳:一氧化碳与血液中的血红蛋白结合的速度比氧气快250倍。一氧化碳经呼吸道进入血液循环,与血红蛋白亲合后生成碳氧血红蛋白,从而削弱血液向各组织输送氧的功能,危害中枢神经系统,造成人的感觉、反应、理解、记忆力等机能障碍,重者危害血液循环系统,导致生命危险。所以,即使是微量吸入一氧化碳,也可能给人造成可怕的缺氧性伤害。
氮氧化物:氮氧化物主要是指一氧化氮、二氧化氮,它们都是对人体有害的气体,特别是对呼吸系统有危害。在二氧化氮浓度为9.4毫克/立方米的空气中暴露10分钟,即可造成人的呼吸系统功能失调。
碳氢化合物:目前还不清楚它对人体健康的直接危害。但当氮氧化物和碳氢化合物在太阳紫外线的作用下,会产生一种具有刺激性的浅蓝色烟雾,其中包含有臭氧、醛类、硝酸脂类等多种复杂化合物。这种光化学烟雾对人体最突出的危害是刺激眼睛和上呼吸道黏膜,引起眼睛红肿和喉炎。1952年12月,伦敦发生光化学烟雾,4天中死亡人数较常年同期多4000人,45岁以上的死亡最多,约为平时的3倍;1岁以下的约为平时的2倍。
铅:铅是有毒的重金属元素,汽车用油大多数掺有防爆剂四乙基铅或甲基铅,燃烧后生成的铅及其化合物均为有毒物质。城市大气中的铅60%以上来自汽车含铅汽油的燃烧。人体中铅含量超标可引发心血管系统疾病,并影响肝、肾等重要器官的功能及神经系统。由于铅尘比重大,通常积聚在1米左右高度的空气中,因此对儿童的威胁最大。
间接危害
尾气在直接危害人体健康的同时,还会对人类生活的环境产生深远影响。尾气中的二氧化硫具有强烈的刺激气味,达到一定浓度时容易导致“酸雨”的发生,造成土壤和水源酸化,影响农作物和森林的生长。近100年来,气候变暖已成为人类的一大祸患。冰川融化、水位上涨、厄尔尼诺现象、拉尼娜现象等都对人类的生存带来了严峻的挑战。而二氧化碳则是地球变暖的罪魁祸首。
Ⅷ 工业生产硝酸的尾气中含有氮氧化物NOx(NO和NO2的混合物,假设不含N2O4),对生态环境和人类健康带来较大
(1)①氯化铵固体和氢氧化钙固体在加热的条件下发生反应生成氨气,所以装置A的反应是:2NH4Cl+Ca(OH)2
|