A. 光纤陀螺的特点
与机电陀螺或激光陀螺相比,光纤陀螺具有如下特点:
(1)零部件少,仪器牢固稳定专,具有较属强的抗冲击和抗加速运动的能力;
(2)绕制的光纤较长,使检测灵敏度和分辨率比激光陀螺仪提高了好几个数量级;
(3)无机械传动部件,不存在磨损问题,因而具有较长的使用寿命;
(4)易于采用集成光路技术,信号稳定,且可直接用数字输出,并与计算机接口联接;
(5)通过改变光纤的长度或光在线圈中的循环传播次数,可以实现不同的精度,并具有较宽的动态范围;
(6)相干光束的传播时间短,因而原理上可瞬间启动,无需预热;
(7)可与环形激光陀螺一起使用,构成各种惯导系统的传感器,尤其是捷联式惯导系统的传感器;
(8)结构简单、价格低,体积小、重量轻。
B. 光纤陀螺仪是怎么做的
原理:
塞格尼克理论、干涉理论。
塞格尼克理论的要点是这样的:当光束在一回个环形的通道中答前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。
当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。
光纤陀螺仪是激光陀螺仪的改进型,由于使用了光纤(光纤绕成圈),使得总光程大大增加,从而转动时的光程差也大大增加,提高了检测精度。
制作要点:
将绕成多匝环型的光纤两端接入一个迈克尔逊干涉仪,为了保障系统稳定可靠工作,通常将光纤和干涉仪制作成一个整体。
C. 求陀螺仪在卫星通信中的原理与应用
陀螺仪:利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。
陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。
陀螺仪在卫星通信中主要应用于动中通。应用于卫星通信动中通的目前市场上主要是光纤陀螺仪和激光陀螺仪
光纤陀螺仪是以光导纤维线圈为基础的敏感元件, 由激光二极管发射出的光线朝两个方向沿光导纤维传播。光传播路径的变,决定了敏感元件的角位移。光纤陀螺仪与传统的机械陀螺仪相比,优点是全固态,没有旋转部件和摩擦部件,寿命长,动态范围大,瞬时启动,结构简单,尺寸小,重量轻。与激光陀螺仪相比,光纤陀螺仪没有闭锁问题,也不用在石英块精密加工出光路,成本低。
激光陀螺仪的原理是利用光程差来测量旋转角速度。在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉,利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。
D. 光纤陀螺仪的技术难点
光纤陀螺仪需抄要突破的主要技术为灵敏度消失、噪声和光纤双折射引起的漂移和偏振状态改变引起的比例因子不稳定。
1. 灵敏度消失
在旋转速率接近零时,灵敏度会消失。这是由于检测器中的光密度正比于Sagnac相移的余弦量所引起。
2. 噪声问题
光纤陀螺仪的噪声是由于瑞利背向散射引起的。为了达到低噪声,应采用小相干长度的光源。
3. 光纤双折射引起的漂移
如果两束相反传播的光波在不同的光路上,就会产生飘移。造成光路长度差的原因是单模光纤有两正交偏振态,此两种偏振态光波一般以不同速度传播。由于环境影响,使两正交偏振态随机变化。
4. 偏振状态改变引起的比例因子不稳定。
E. 光纤陀螺仪的各国研制情况
1.美国
美国的光纤陀螺研制单位有:利顿公司、霍尼威尔公司、德雷泊实验室公司、斯坦福大学以及光纤传感技1术公司等。
(1)利顿公司研制的光纤陀螺
利顿公司的光纤陀螺技术在低、中精度应用领域已经成熟,并且已经产品化。1988年研制出SCIT实验惯性装置,惯件器件是光纤陀螺和硅加速度计。1989年公司研制的CIGIF论证系统飞行试验装置。1991/1992年研制出用于导弹和姿态与航向参考系统的惯性测量系统。1992年研制出GPS/INS组合导航系统。
(2)霍尼韦尔公司的集成光学光纤陀螺
霍尼韦尔公司研制的第一代高性能的干涉仪式光纤陀螺采用的是Ti内扩散集成光学相位调制器。采用的其他器件还有0.83um宽带光源、光电探测器/前置放大器模块、保偏光纤偏振器、两个保偏光纤熔融型耦合器以及由1km保偏光纤构成的传感环圈。
为了满足惯性级光纤陀螺的要求,霍尼韦尔公司研制的第二代高性能干涉仪式光纤陀螺采用了集成光学多功能芯片技术以及全数字闭环电路。
(3)美国德雷珀实验室
美国德雷珀实验室从1978年起为JPL空间应用研制高精度光纤陀螺,曾研制过谐振腔
式光纤陀螺,研制了9年,由于背向散射误差限制了精度,后来改为采用干涉仪式方案。
在研制干涉仪式光纤陀螺的过程中,采用了三大技术措施:
a.把光源、探测器和前置放大器做成一个模块;
b.光纤传感环圈结构影响精度很大,采用了无骨架绕制光纤环圈的技术途径;
c.多功能集成光学器件模块,包括了所有其余的光纤陀螺的光纤器件。
德雷珀实验室的研究人员认为:目前0.01°/h 的干涉仪式光纤陀螺成本较高,需要研制自动生产线,降低成本,保证质量。
对于今后的发展问题,德雷珀实验室的研究人员认为:
a.惯性级的干涉仪式光纤陀螺仪,可以取代动力调谐陀螺仪,并逐渐取代激光陀螺仪;
b.惯性级干涉仪式光纤陀螺仪的难点是必须采用1km长度的保偏光纤,如果改用谐振腔式光纤陀螺仪方案,则长度可减为10m左右的光纤。为此谐振腔式光纤陀螺仍在作为研制方向,使光纤陀螺仪小型化的谐振腔式光纤陀螺的难点在于:控制电路比干涉仪式光纤陀螺复杂。随着ASIC技术的发展,将来有可能得到满意的解决,使谐振腔式光纤陀螺成为产品。采用干涉仪式和谐振腔式混合方案的光纤陀螺仪具有良好的发展前景。
2.日本
日本研制光纤陀螺的单位有东京大学尖端技术室、日立公司、住友电工公司、三菱公司、日本航空电子工业公司。
日本的干涉式光纤陀螺仪已经完成了基础研究,正进入实用化阶段。偏值漂移已经达到 。东京大学进行研究的谐振腔光纤陀螺仪取得了很大进展。
日立公司研制用于汽车导航系统的光纤陀螺,1991年用于日产汽车。
在日本,光纤陀螺作为汽车的旋转速率传感器已进入市场。利用光纤陀螺仪进行导航时,用车轮转速计传感器测移动距离,用光纤陀螺测量车体的回转,同时采用图象匹配、GPS系统等配合计算汽车的位置和方位,显示在信息处理器上。
3.俄罗斯
俄罗斯的光纤陀螺有全光纤型和集成光学型。全光纤型采用的是光纤技术,即所有的光纤器件都做在同一根光纤上。
Fizoptika公司研制的光纤陀螺已经商品化,产品型号有:VG949、VG941B等。
4.中国
我国也非常重视光纤陀螺技术的研究,上世纪80年代后,许多大学和研究所相继启动光纤陀螺的研发项目,如航天工业总公司所属13所和上海803所、北京航空航天大学、清华大学、浙江大学等,也取得了一定的成绩,如1996年,航天总公司13所成功研制采用Y分支多功能集成光路、零偏稳定性达 全数字闭环保偏光纤陀螺,浙江大学和Honeywell公司几乎同时发现利用消偏可提高精度等。国内的光纤陀螺研制水平虽然与国际水平有一定距离,但已具备或接近中、低精度要求,并在近年来开始尝试产业化。
我国海军新型导弹配光纤陀螺仪 发射试验3发3中,也标志我国的光纤陀螺仪技术取得了很大的成功 。
F. 光纤陀螺仪的研究现状
自从抄1976年美国犹他大学的VALI和SHORTHILL等人成功研制第1个光纤陀螺(fiber-optic gyroscope, FOG)以来,光纤陀螺已经发展了30多年。在30多年的发展过程中,许多基础技术如光纤环绕制技术等都得到了深入地研究。
光纤陀螺仪的突出特点使其在航天航空、机载系统和军事技术上的应用十分理想,因此受到用户特别是军队的高度重视,以美、日、法为主体的光纤陀螺仪研究工作已取得很大的进展。光纤陀螺仪研究工作大部分集中在干涉式,只有少数公司仍在研究谐振式光纤陀螺。光纤陀螺的商品化是在上世纪90年代初才陆续展开,中低精度的光纤陀螺(特别是干涉式光纤陀螺)己经商品化,并在多领域内应用,高精度光纤陀螺仪的开发和研制正走向成熟阶段。
在国外,l°/h至0.01°/h的工程样机已用于飞行器惯性测量组合装置。美国利顿公司已将0.1°/h的光纤陀螺仪用于战术导弹惯导系统。新型导航系统FNA2012采用了l°/h的光纤陀螺仪和卫星导航GPS.美国国防部决定光纤陀螺仪的精度1996年达到0.01°/h ;2001年达到0.001°/h;2006年达到0.0001°/h ,有取代传统的机械陀螺仪的趋势。
G. 光纤陀螺仪的工作原理
光纤陀螺仪的实现主抄要基于塞格尼克理袭论:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用光程的变化,检测出两条光路的相位差或干涉条纹的变化,就可以测出光路旋转角速度,这便是光纤陀螺仪的工作原理。
H. 陀螺转速测量
http://www.wanfangdata.com.cn/qikan/periodical.Articles/jsjzdclykz/jsjz2000/0002/000215.htm
计算机自动测量与控制
COMPUTER AUTOMATED MEASUREMENT & CONTROL
2000 Vol.8 No.2 P.41~42
--------------------------------------------------------------------------------
导弹发射机构自动检测装置的研究与设计
李丹峰
摘要:介绍了一种由8031单片机控制的导弹发射机构的自动检测装置,详述了其组成、工作原理和软硬件设计方法。
关键词:单片机;自动检测;导弹发射机构;防空导弹
分类号:TP274;TJ768.3 文献标识码:A
文章编号:1007-0257(2000)02-0041-02
Research and Design of Automatic Testing Device for Missile Trigger Mechanism
LI Dan-feng
(Department of Electromechanic,Shaoguan University,Shaoguan 512003)
Abstract: A automatic testing device for the missile trigger mechanism controlled by 8031 single-chip microcomputer is presented, its principle of the work and software- hardware design are introced.
Key words:single-chip microcomputer; automatic test; missile trigger mechanism;air defense missile
1 引言
现有的便携式战术防空导弹发射机构检测仪,是供发射机构生产和检验使用的,待测参数较多,需由人工逐项读数检测,费时费力,且体积大、功耗大,不适宜部队野外使用。实际上,非专业设计、检测、维修人员在野外使用时,通常并不需要读出每一项参数的具体数值,而是只要知道各项参数是否在规定的范围之内即可。因此,有必要设计一种便携式发射机构自动检测装置,供野外使用时对发射机构的合格与否自动作出快速的判断。
2 装置构成
由于发射机构必须与发射筒及导弹对接以后才能正常工作,因此,该装置一方面要具备对各项参数的检测及判断功能,另一方面,又要能提供一些模拟信号,以模拟发射机构的正常工作环境。该装置主要由以下4部分构成。
2.1 参数检测及判断部分
该装置要检测频率、转速、时间、电压等参数。
参数名称 路数 量程 测量精度 信号类型
频率
转速
时间
直流电压
交流电压 1
1
5
4
3 0~100kHz
78~∞r/s
0~1s
-100V、-5V、
-25V、-10V
1V、2V、10V ±0.5kHz
±0.5r/s
±5ms
±0.5%
±0.5% 方波脉冲
方波脉冲
脉冲间隔
直流信号
正弦信号
各参数的允许范围预先固化于程序存储器的表格内,系统检测到各项参数后,并不将它显示出来,而是将它与允许值进行比较,如果全部参数均合格,则认为发射机构合格,否则,只要有一项不合格,就认为该机构不合格。
2.2 模拟信号部分
该装置为发射机构正常工作提供了三路模拟信号:陀螺起转信号(频率连续增大的方波脉冲信号)、信息信号(标准的正弦信号)、位标信号(带交越失真的正弦信号)。
2.3 机箱及面板
该装置设计为便携式单机工作方式,面板上设有:电源开关及自动检测按钮(均带LED指示)、复位按钮;发控工作程序LED显示;扳机操作揭示LED显示;检测判断结果数码管显示;检测接口插座。
2.4 直流稳压电源
该装置的电源为~220V输入,-40V、-22V、+5V、+15V、-15V五路直流输出。
3 设计原理
该装置是一个8031单片机应用系统,其硬件结构如图1所示,工作主流程如图2所示。整个系统主要包括以下6个模块:
图1 系统硬件结构
图2 工作主流程
3.1 陀螺起转模拟及转速测量
陀螺起转信号是频率连续增大的方波脉冲信号,其模拟及测量方法为:置8031单片机的T0为定时方式,从P1.0输出定时中断脉冲,改变T0的时间常数,即可得到不同频率的脉冲信号。为得到较好的周期波形和较低的频率,对脉冲信号进行分频,然后通过电平转换再到混频电路,便可产生发射机构所需的模拟角位置传感器信号。当单片机通过机构工作状态口检测到起转结束信号时,就将T0的时间常数锁定,作为测量到的转速信息,再调用参数转换程序即得到转速值。由于T0时间常数位数的限制,该装置只能模拟和测量量程内的值,超出量程,即认为是最小或最大。
3.2 信息信号、位标信号的模拟及测量
信息信号是标准的正弦信号,而位标信号是带交越失真的正弦信号,它们的产生和测量原理完全一样,如图3所示。将标准的(或带交越失真的)正弦波形离散化为256个数值,存于EPROM的256个连续的存储单元中(地址00H~FFH),EPROM的地址信号(A0~A7)由两个74LS191组成的分频电路提供,其频率与要产生的信息或位标信号的频率相一致,这样,EPROM就能按要求的频率逐一地送出256个离散化的数字量,再经DAC0808的转换,即可得到所需的模拟信号。在检测过程中,信号的幅值由单片机程序经74LS273输出数字量到DAC电路自动调整,当单片机通过机构工作状态口检测到发射机构内部对应的逻辑门翻转时,就锁定D/A电路的输出,并将它作为检测到的参数信息,调用参数标定程序就可得到待测值。与转速模拟及测量相似,由于DAC是8位的,因此,在量程范围内只能得到256个参数值,超出量程即认为是最小或最大,而每一个台阶则近似为测量的精度。
图3 信息、位标信号产生和测量原理图
3.3 直流电压测量
该装置有4路不同量程的待测直流电压,经比例运算电路的电平转换后,由同一片8位ADC0809电路采样到单片机内,通过数值标定程序得到所测参数。
3.4 频率测量
设8031单片机T1为计数方式,将待测频率信号输入到T1端,在软件延时4ms的时间内使T1计数,所得计数值乘以250即得待测频率值,误差近似为±0.25kHz。
3.5 时间测量
该装置有4个待测脉冲间隔时间,测量方法一样,均为软件定时计数法。即通过采样机构工作状态口,在两个脉冲间隔时间内,由程序每4ms对软件计数器(8031的工作寄存器R7)加1计数一次,再用最终得到的计数值乘以4ms即是所测得的时间值,误差近似为±4ms。
3.6 工作状态检测及数码管、LED显示
该模块属于简单的并行开关量输入输出。工作状态检测用于输入各种判断信号;一位数码管用于显示检测分析后的结果;LED用于指示机构的工作程序或对用户进行操作提示(提示用户抠动扳机到正确位置)。
4 结论
该装置主要模块的设计原理经实验证明是可行的,且完全满足检测的精度要求。相对现有的检测装置,本设计具有小型化、智能化、操作使用简单化、自动化等特点,具有现实的推广意义。
作者简介:李丹峰(1966-),男,广东韶关人,韶关大学机电系工程师,主要从事微机应用研究。
李丹峰(广东省韶关大学机电系,韶关 512003)
参考文献
〔1〕张友德.单片微型机原理、应用与实验〔M〕.上海:复旦大学出版社,1996.
〔2〕白驹珩,雷晓平.单片计算机及其应用〔M〕.成都:电子科技大学出版社,1994.
收稿日期:1999-12-10
请看PDF全文