导航:首页 > 装置知识 > 转炉倾动装置设计

转炉倾动装置设计

发布时间:2022-09-20 06:47:58

❶ 转炉在生产过程中的旋转转动速度是如何变化的

http://..com/question/462823849.html?oldq=1&from=commentTo#answer-1159352048
之前我回答的关于转炉角度的一个问题

我厂120t转炉倾动控制系统的基本要求:
转炉倾动机械设备采用4台交流变频电动机驱动,4台电动机采用4点啮合全悬挂形式,通过扭力杆装置进行力矩平衡。
4台电动机时:正常操作力矩时可以1.1r/min的全速倾动,当出现冻炉塌炉事故时以慢速0.1r/min倾倾动作业。
3台电动机时(1套驱动装置故障时):正常操作力矩时可以减速按1 r/min倾动,可以完成几炉钢的生产,但操作时间最好不超过24小时。
2台电动机时(2套驱动装置故障时):正常操作力矩时以0.1r/min速度倾动,但只能完成一炉钢的倾动作业。
自动减速:设有限位开关,当转炉到达出钢和倒渣位置时,自动开关动作,使转炉以低速倾动,具体根据你们厂具体情况来定。

❷ 100吨转炉的设备要求

转炉技术
今天,全世界大约有600台转炉在从事生产活动,午粗钢产量4.5亿t,约占全球粗钢总产量60%。以奥钢联投产世界第—台转炉为起点,现代高效碱性氧气转炉是50余年不断发展的产物,在炉体寿命、增大装人量和降低维护等方面取得了显著的进步。这种设备暴露在高温环境中,遭受机械冲击和热应力的作用,其工程设计是一个巨大的挑战。悬挂系统在实现转炉长寿方面是高度重要的。为了生产优质钢,改进工艺的经济性,开发 发诸如副抢.炉底搅拌装置和高度精密而复杂的自动化系统。
转炉设计
炼钢工艺的过程状态造成直接观察到转炉内所发生的一切几乎是不可能。目前,还没有数学模型能完整的描述高温冶金及流体动力学过程。从转炉炼钢诞生开始便不断的对其进行研究改进,故此对冶金反应的了解更全面。然而,下面的两个例子清楚地表明还有许多凋研工作要做。
炉底搅拌风口的位置仍有待优化。这些风口对钢水提供更好的搅拌效果,更快的降低碳含量,应该能缩短冶炼周期。然而,今天风口的最佳位置和数量是建立在经验的基础上。为了更深人的了解,国外有人在2000年进行了调研工作,很快发现,高温流体动力学过程的描述是非常复杂的,而且只有进行许多假设才可行,例如,只能近似的描述气泡及它们与钢水的反应。
对吹炼过程中转炉摆动的数学描述仍需要详细阐述,尤其是那些底吹或侧吹工艺,它们的摇动非常剧烈。这些震动是由自发过程引起。吹氧过程中引入的能量促使该系统以极低的艾根频率摆动,通常为0,5—2.0Hz。能够描述这种非线性化学/力学上的流体动力学系统的数学模型的发掘工作还没有完成。
转炉炉壳
在转炉的机械部分中,容纳钢水的是内衬耐火材料的炉壳。这些耐火材料表现出复杂的非线性的热粘弹缩性行为。与钢壳非线性接触。人们对钢壳自身的行为或多或少的了解一些,描述这种随温度而变化的弹塑性材料及它的蠕变效应是可能。然而,钢壳与耐火材料间的相互作用仍然有许多未知的东西。转炉设计更大程度上被视为艺术而不是科学,然而,经验的积累、材料的改进及计算机技术的应用都有助于更好的理解、设计这个机构。
在优化炉壳设计方面存在几个标准。最重要的一个是耐火材料所包围的内容积。为了拥有最大的反应空间,实现最佳的冶金过程,这个容积应该在可用空间范围内达到最大化。在进行比较时使用反应空间与钢水质量的比值,这个比值一般为近似1.0m3/t。然而,因不断地追求以最低的投资提高炼钢设备的生产率,导致钢厂在保持原有炉壳不变的情况下加大了装入量,这就降低了这个比值。其后果是严重的喷溅——倾向于炉容比降到0.7-0.8m3/t时发生。今天,转炉本体的形状,即上下锥角、径高比等由炼钢者决定,或者由现有装备确定,如烟气系统、倾转轴高度、倾动驱动等。因此,在设计新炉时,只有少量的参数可以改动。
现代转炉由带有炉头铁圈的上部锥体、桶状炉身和采用碟形底的下部锥体构成。近几年.拆掉了上下锥与炉身之间、下锥与炉底之间的关节构件。生产经验表明,这些区域的应力没有最初设想的那么严重,可以通过使用优质炉壳材料解决,故上述做法是可行的。
炉壳设计准则
设计过程的一个重要步骤是炉壳结构校验,即应力与变形计算,并与所允许极限值进行比较。像转炉这样的冶金容器,其设计无需满足特定的标准。在转炉设计艺术的演变历程中,最初的炉壳设计参照了锅炉和压力容器的设计标准。依此设计的产品的成功投产表明了这些标准也适用于炼钢生产实践。然而,转炉毕竟不是压力容器,其内部压力来源于耐火材料的热膨胀,而不是锅炉中的液体或者气体,而且,诸如裂纹等破损也不会导致像高压容器那样发生爆炸。这也是为什么转炉的设计没有完全遵循压力容器设计标准的所在。
炉壳厚度
传统压力容器壁厚度的选取主要以内部压力为依据。然而,在转炉上,这个压力是不能确切计算的,其原因是由耐火材料与炉壳之间的作用和生产操作两方面因素确定的。在决定炉壳厚度时,其它载荷、因素也要考虑在内,主要包括:因设备、耐火材料和钢水重量引起的机械载荷;炉壳与耐火材料衬相互作用产生的内部压力,即二次压力;由外力,如动态质量效应、兑铁水、加废钢、出钢等造成的机械载荷;炉壳上的温度与温度梯度;炉壳在温度作用下变形,在悬挂系统上引起机械载荷;因炉壳、悬挂系统温度分布不均,使炉壳产生二次应力。
AISE的第32小组委员会曾试图给出一个简单的“菜谱”程式来计算炉壳厚度。但有的研究表明,在确定炉壳厚度方面,定义一个简单的程式或者准则是不可能。这些准则在已经证实的基础上可以用来确定炉壳,然而,引入的力,例如来自悬挂系统的力,必须用有限元法进行详尽地计算。国外开发的悬挂系统是静定的,因此该系统内的所有载荷均能精确计算。这个特征的优点是能非常准确地计算出局部应力和变形。
转炉寿命
世界经验表明,因长期的变形,转炉寿命是有限的。当炉壳碰到托圈时转炉便走到了终点,通常是20~25a。这个变形是由蠕变引起的。蠕变是高温环境下(>350℃)材料的典型行为。蠕变变形与温度、应力水平和所用材料有关。只有有限的几种可行方法能延长转炉寿命,如冷却炉壳、材料选择和生产操作等。
冷却系统
原则上,设备的强制冷却并不是绝对必要的,自然通风冷却已经足够了。许多实际应用证明了这一点。然而,强制冷却降低了设备温度,对减轻蠕变变形有积极的效果,从而延长了耐火材料的寿命,保证了在生产温度下有更高的屈服强度。一些钢厂对转炉壳应用了冷却系统,如水冷、强制通风、复合气水冷却(气雾冷却)等。最有效的冷却手段是水冷。
材料选择
最初,炉壳材料主要选用耐高温的压力容器钢。为了承受许多未知的载荷与应力,尤其偏重细晶粒钢。这种钢材屈服强度比较低,但在屈服点以亡有相当高的应变硬化容量。其优点是,当发生过载时,会有足够的过余强度,甚至在出现裂纹时也不会发生脆性裂纹扩,裂纹要么终止发展,要么以非常缓慢的速度生长。炉壳用钢一般选用A516Cr.60、Alr41、Altherm4l、WStE285、WStE355、P275NH、P355NH等。
这个原则对新转炉仍然是有效的,但最近的10—15年内,由于使用了镁碳砖、溅渣护炉技术等,炉衬寿命延长。这些变化导致炉壳温度上升,促进了蠕变效应,致使炉壳寿命缩短。为了抵消蠕变效应,更多的选用了抗蠕变材料,如A204Cn60、16M03、A387Cn 11、A387Cr.22、13CrM044等。不利的因素是这些钢材具有昔通晶粒尺寸,且焊接困难。
悬挂系统是转炉的一个重要零部件。理想的悬挂系统不应该影响炉壳的行为,生产中无须维护。在过去的数年中开发出了许多不同的转炉悬挂系统。最初,托圈与转炉是一体的,但很快就分开了。各种悬挂系统的原理基础是不同的,例如,日本采用刚性系统,与“自由转炉”对立。刚性托圈抑制了炉壳的变形,但对热膨胀的任何约束都会产生非常高的应力,增加了炉壳产生裂纹的机会。
要允许转炉膨胀或者变形,且托圈不能制造附加应力,这就要求将悬挂系统设计成静定的。根据这一原理,VAI开发了一系列转炉悬挂系统,如托架系统、VAI-CON Disk、VAI-CON Link、VM-CON Quick等。VM-CON Link是一个无需维护的悬挂系统,它的设计获得了良好的应用反馈。一个典型的应用是巴西保利斯塔黑色冶金公司的160t转炉。其尺寸参数为:钢水量160t、容积160m3、炉容比1.0 m3/t、转炉高8920mm、炉身部炉壳厚度70mm、底锥厚度55mm、碟形底厚度55mm、转炉外径7300mm。炉壳材质为Mo合金钢16Mo3(相当于ASTM A204GrB)。托圈采用箱型截面焊接结构,与炉壳间隙250mm,以便与炉身空冷板组装在一起。上锥装备了已经被充分验证的水冷系统。这两个冷却系统主要是延长耐火炉衬的寿命,同时也冷却炉壳。该转炉采用了VAI-CON Link悬挂系统。出于冶金上的原因,炉壳上装备了6个炉底搅拌风口。
转炉技术
与转炉设计一道,现代先进的转炉技术包括:
*使用惰性气体的炉底搅拌和少渣操作改善了冶金过程;
*大量的二次冶金并入了转炉技术中;
*计算机工艺自动化及相关传感器技术提高了质量、生产效率、生产安全性,降低了生产成本;
*用于设备平稳操作的工具、装备,易维护性,以及寿命延长的耐材;
*提高废弃物环境兼容性的系统。
转炉技术继续深入开发的目标是改进工艺的经济性,即优化物流和设备操作,优化工艺技术。工艺技术的优化不是简单的局限于目标分析、目标温度的确定和添加材料的选择,他还包括生产操作,如氧枪操作的枪位和吹炼模式、副枪的浸没时间与深度、添加系统的添加模式、炉底搅拌系统的搅拌模式等。所有这些都必须在设备投产前标准化,在试车调试中针对所生产的钢种进行优化。
动态工艺控制需要副枪系统和放散煤气分析。副枪系统测量温度、含碳量和熔池液面位置,在炼钢过程中取样。因此,在吹炼中实现测量时可能的,也不会损失生产时间。副枪系统是完全自动化的,测量探针能在90s内能完成更换。近几年在工艺自动化领域里的发展是使用Dynacon系统实现了完全的动态控制。该系统通过连续的煤气分析,实现从吹炼起点到吹炼终点的炼钢过程控制。
挡渣器的作用是降低盛钢桶的炉渣携带量。挡渣操作降低了脱氧材料的消耗,尤其是在生产低碳钢种时。另一个特点是在二次冶金中需要钢包渣脱硫,挡渣操作也能降低钢包渣添加剂的用量。同时,也避免了盛钢桶的除渣操作和温度损失。二次冶金需要的钢包渣就这样在转炉出钢过程中形成了。
根据经验,当不使用挡渣器时,出钢时的炉渣携带量为10-14kg/t钢,在采用挡渣后,炉渣携带量降低到了3-5kg/t钢的水平。与炉渣感应器配合使用,炉渣携带量可稳定地控制在2、3kg/t钢的范围内。它的另一个优点是降低了磷含量,从大约30ppm降到了10ppm。因此,磷含量不合格的炉次减少了。
鉴于底吹转炉改进的冶金效果,如OBM/Q-BOP、K-OBM等,决定开发顶吹转炉的炉底惰性气体搅拌技术。该系统应该利用底吹的优点,同时要避免炉役中期更换炉底的缺点。以奥钢联第三转炉厂为例,当1650℃无搅拌条件下,吹炼终点碳含量0,035%[C]×ao的平 均值为0.0033,当采用吨钢流量为0.08Nm3/min的底吹搅拌时,这个值降低到了0.0023。如果不采用底吹搅拌,大约有1%的铁损,石灰消耗增加约25%。假定钢包中炉渣携带量12kg./t钢(无挡渣),则吨钢铝消耗量增加0.7kg。而且,相应的,转炉渣量越大,也越能消耗耐火材料。在没有底吹搅拌的BOF转炉上,吹炼终点碳达到0.035%是不经济的,碳含量一般限定在0.045%~0.050%范围内。
物流优化和路径算法是专门为钢厂和生产设备的布置而设计的,用来寻找最佳的配置。用户友好型界面和标准化输出使其成为一个非常好用的工具,能够优化、模拟任何钢厂的配置,允许用户测试多种不同的布局和工艺选择方案。它使用户能够找到在生产时间管 理、维护、附属设备产能等方面的最佳的解决方案。
为了确定不同钢种最经济的生产方式和使用不同的生产设备,就需要长期的经验积累和大量的计算,来比较各种可供选择的办法。计算机辅助工具,比如炼钢专家系统,对于进行这种计算是必需的。这种工具可以应用到整个生产线中。
仅供参考,希望对你有所帮助!

❸ 转炉炉体由哪几部分组成,炉底的结构有哪两种形式各有什么特点,炉壳采用什么材料制作

转炉炉体是由炉帽、炉身、炉底3部分组成。其中炉底结构有两种类型,即固定式 死炉底和可拆卸式活炉底。固定式炉底的转炉,其炉壳是一个整体,修砌炉衬时,从炉口进入炉内工作, 称为上修法。可拆卸炉底的转炉,炉帽与炉身的外壳是一个整体,炉底与炉身用螺栓固定;修炉时首先拆下炉底,炉身内衬与炉底分别进行拆、砌,然后将修砌好的炉底运来安装;修炉时是从炉身下部进入炉内,因此也称下修法。 吹炼过程中,转炉炉壳始终处在高温下工作,制作炉壳的钢板不仅要承受耐火材料、金属液、熔渣液的全部重量;倾动时要承受扭转力矩的作用,还要适应高温频繁作业的特点。为此要求炉壳在高温下不变形,在热应力作用下不破裂,具有足够的强度和刚度。采用优质低合金钢容器钢板制作。炉壳钢板厚度可根据转炉的公称吨位,并参考已投产相应转炉的数据及国家钢板标准选用。

❹ 机械设计制造及其自动化专业 毕业设计题目 汽车

★免耕精量播种机设计

★流体播种穴播排种器建模与仿真

★大棚除尘(除雪)机设计

★蔬菜播种机设计

★无人飞行喷雾机设计

★种绳捻制机设计研究

★培养料翻料搅拌机的研制

★草坪清理机理研究及清理机部件的设计

★小型玉米授粉机的设计

★饲料粉碎机设计

★折叠式接种箱的研制

★种绳捻制机仿真设计

★芦苇收割机设计

★大枣采摘机的设计

★多物料动态精确定位仿真研究

★纸载体种绳播种技术所需原料物理机械特性研究

★免耕播种机开沟播种装置的设计

★桥式起重机生产不安全因素发生部位及其相关信号采集的研究

★矩形熔炼炉钢结构总体设计

★盘元钢筋矫直机设计

★推块式分拣机分拣系统道岔执行机构的设计

★塑料注射机液压系统的改造

★垃圾焚烧发电设备选型数据库及推理方法研究

★钢坯剪切定尺机设计

★50T
精炼炉液压系统设计

★基于微波干燥方法的水分测量仪器的设计

★ZJ50ZPD
钻机模拟实验台气控系统设计

★工业固体废物回转焚烧炉窑装置设计

★4063m3
炼铁高炉气动开口机设计

★炼铁厂带式输送机设计

★球塞气举往复式投球装置设计

★钢坯回转台设计

★连铸坯定尺火焰切割机设计

★摩托车减振特性的有限元分析

★塑料注射机液压系统的改造

★翻板机设计

★基于
PLC
和变频技术的恒压供水系统设计

★300t
炼钢转炉倾动及抗扭装置设计

★钻井液振动筛设计及关键零部件疲劳设计研究

★发动机水泵轴承液压机设计

★垃圾焚烧发电设备选型设计系统研究

★摩托车发动机
156FMI
摇臂制造工艺及工装设计

★滚动轴承噪声测量与研究

★ZJ50ZPD
钻机模拟实验台设计

★卡车大梁钻孔翻转台传动系统设计

★基于微波衰减方法的水分测量仪器的设计

★高粘度采出液井口动态旋流除砂器设计

★转炉设备生产不安全因素发生部位及其信号采集的研究

★多参量便携式电梯性能检测仪

★4.5
吨齿条式推钢机设计

★1.5×4.5
热矿振动筛设计

★气举提升装置的设计

★洗轮机设计

★专用圆形剪切机的设计与分析

★振动实验台隔振系统分析与设计

★自控循环采油装置—井下捞油组件设计

★振动实验台综合性能测试系统设计

★自动捞油绞车滚筒自动排绳器设计

★基于
VB
的平面连杆机构运动分析软件开发

★折叠波导慢波结构的设计

★关于企业设备安全运转体系建立的初步研究

★钢坯推入机设计

★自动刮蜡装置设计

★机械横移式加热炉出钢机设计

★基于
VB
的平面连杆机构运动分析软件开发

★连铸机设备生产不安全因素信号分析处理与预报的研究

★全功能保护控制天然气灶设计研究

★往复回转式全平衡抽油机设计

★液压泥炮液压系统的改造

★铅阳极立模铸造系统设计

★600T
垃圾焚烧炉液压系统设计

★绞车传动轴扭矩仪设计

★长冲程抽汲作业井口钢丝绳旋转密封装置设计

★球塞气举回转式投球装置设计

★ZJ50ZPD
钻机模拟实验台设计

★地下储气井安全装置设计与分析

★窄带钢轧机
AGC
性能研究与设计

★基于自组网的
CA
系统模型研究

★连铸机液压系统油液污染的状态监测与故障诊断

★农用喷雾器水泵性能测试台控制系统设计

★基于
PLC
和变频技术的恒压供水系统设计

★捞油绞车滚筒自动排绳器设计

★洗轮机设计

★转炉设备生产不安全因素信号分析处理与预报的研究

★洗碗机的开发与设计

★凸轮形线参数测量仪的研究

★冷床下料装置设计

★球团矿
CX

1
型圆盘造球机设计

❺ 转炉扭力杆的作用

采用全悬挂扭力杆平衡型式倾动装置由以下几部分组成:驱动电动机、一次减速机、二次减速机、扭力杆平衡装置等。
扭力杆平衡装置是平衡转炉倾动时引起悬挂减速机(二次减速机)壳体旋转的旋转力矩平衡装置,是通过扭力杆扭转来吸收扭矩并将扭矩转化为垂直的拉力和压力,使此力通过扭力杆轴的固定轴承座和浮动轴承座传递到基础上。

❻ 转炉的器具

转炉炉体由炉壳和炉衬组成。炉壳由钢板焊成,而炉衬由工作层、永久层和充填层三部分组成。工作层直接与炉内液体金属、炉渣和炉气接触,易受浸蚀,国内通常用沥青镁砖砌筑。永久层紧贴炉壳,用以保护炉壳钢板,修炉时永久层可不拆除。在永久层和工作层之间设充填层,由焦油镁砂或焦油白云石组成,其作用是减轻工作层热膨胀对炉壳的压力,并便于拆炉。
1.炉帽
为了减少吹炼时的喷溅和热量损失以及炉气的排出,故炉帽的形状皆做成截圆锥形或球缺截圆锥形,其炉口均为正炉口,用来加料,插入吹氧管,排出炉气和倒渣。由于炉帽处于高温炉气区,直接受喷溅物烧损,并受烟罩辐射热的作用,其温度经常高达300*400+,在高温的作用下,炉帽和炉口极易产生变形。为了保护炉口,目前普遍采用通入循环水强制冷却的水冷炉口,这样既可减少炉口变形又便于炉口结渣的清除。为防止发生事故,水冷部分应加强维护。
水冷炉口有水箱式和埋管式两种结构。水箱式水冷炉口见图4-1-3,它采用钢板焊接结构,其水箱内焊有若干隔水板,使冷却水在水箱内形成一个回路,同时也起加强筋的作用。这种结构冷却强度较大,制造容易,但是由于焊口易开裂,因此安全性较差。
埋管式水冷炉口如图4-1-4所示,它是把通冷却水用的蛇形钢管埋铸于铸铁中,这种结构冷却强度不如水箱式,但安全性和寿命均比水箱式高。
水冷炉口可用楔与炉帽联结,但由于炉渣的粘结,往往在更换损坏了的炉口时不得不用火焰切割。因此,我国在中小型转炉较多采用卡板焊接的方法将炉口固接在炉帽上。
2.炉身
炉身是整个炉子承载部分,皆采用圆柱型。出钢口通常设置在炉帽和炉身耐火炉衬的交界处。其位置、角度和长度的设计,应考虑出钢过程中炉内钢水液面;炉口和盛钢桶间的相互位置及其移动关系;堵出钢口方便否;能否保证炉内钢水全部倒完;出钢时钢流对盛钢桶内的铁合金应有一定的冲击搅拌能力等。在生产过程中,由于出钢口烧损较严重,为便于修砌、维修和更换,出钢口可设计短些。
3.炉底
炉底有截锥型和球型两种。截锥型炉底制造和砌砖都较为简便,但其强度不如球型底好,故只适用于中小型转炉。球型炉底的优缺点与截锥型相反,故为大型转炉采用。
炉帽、炉身和炉底三段的联结有三种方式:死炉帽活炉底、活炉帽死炉底和整体炉壳。三种联结的型式与修炉方式有关,死炉底和整体炉壳都采取上修,而活炉底的则采取下修。 早期的贝塞麦转炉炼钢法和托马斯转炉炼钢法都用空气通过底部风嘴鼓入钢水进行吹炼。侧吹转炉容量一般较小,从炉墙侧面吹入空气。炼钢转炉按不同需要用酸性或碱性耐火材料作炉衬。直立式圆筒形的炉体,通过托圈、耳轴架置于支座轴承上,操作时用机械倾动装置使炉体围绕横轴转动(见图空气底吹转炉示意图)。
50年代发展起来的氧气转炉仍保持直立式圆筒形,随着技术改进,发展成顶吹喷氧枪供氧,因而得名氧气顶吹转炉,即L-D转炉(见氧气顶吹转炉炼钢);用带吹冷却剂的炉底喷嘴的,称为氧气底吹转炉(见氧气底吹转炉炼钢)。在应用氧气炼钢的初期还使用过卡尔多转炉和罗托转炉,通过炉体回转改善炉内反应,但由于设备复杂,炉衬寿命短未能获得推广。 转炉钢包喷溅
一、喷溅机理
转炉使用的氧化剂主要是氧气,纯度>99%。使用压力为6~12kgf/cm2通过吹氧来降低钢水中的碳含量。并氧化其它元素。碳氧反应的方程式为:
[C]+[O]={CO}↑+Q
反应生成CO,并放出大量的热。本炉冶炼终点含C0.10%。剔除锰铁及碳化硅进入钢中的碳,冶炼终点碳低于0.05%。说明本炉钢是过氧化钢,根据钢中碳与氧的乘积为一常数
[C][O]=m
这一原理,说明本次钢中含有大量的[O],钢中氧与投入包底的碳化硅突然反应,产生大量的CO气体,将钢水、钢渣喷出。同时,由于钢水过氧化,钢中氧含量高,钢中氧的溶解度随着温度的降低而下降,随着温度的下降钢中的氧大量析出,产生大量的气体,也是造成大喷的主要原因。
二、预防对策
1、钢水过氧化是产生喷溅的主要原因。因此,如何避免钢水过氧化是预防钢水大喷的根本措施。
2、 炉前在冶炼操作时,应采取的措施是增大供氧强度,采用多孔喷头,低枪位操作,这样可以降低渣中FeO含量从而降低钢中氧含量,提高一次拉碳命中率,应尽量减少补吹。加入合金脱氧时,应按照先弱后强的顺序,先加入硅铁,然后加入锰铁,以保证良好的脱氧效果。
3、保证拉碳准确,避免过低量的碳,然后补加碳粉或SiC来增碳,从而降低钢中的氧含量。
4、加入碳粉或碳化硅时,不要将碳粉或碳化硅一次性加入包底,以防被钢包底部渣子裹住,钢水翻入后,不能及时反应,待到温度达到碳氧反应条件后,急剧反应,另外,在钢包水中不能自动开浇,用氧气烧眼引流时,大量的氧气进入钢包中,打破钢包内原有的平衡,钢包内原有存在的大量气体,在外界因素的导致下,突然反应而导致大喷。
5、钢包要洁净,以防钢水注入钢包前期温度过底,碳粉或碳化硅与钢中氧不反应,待温度升高后,突然反应造成大喷。
6、炉前要加强吹氩搅拌,通过吹氩,来均匀钢水成份、温度,确保气体和夹杂物上浮,保证吹氩时间大于3min,吹氩压力保证钢包内钢水微微浮起为最佳,钢水翻花太大,钢包内钢水渣层被破坏,钢水吸气,使钢水二次氧化,钢水不翻花,吹氩搅拌效果不好,达不到去气去夹杂的效果。
7、加强终脱氧力度,凡终点碳低于0.05%个时,应加大硅铝钡量用,将硅铝钡用量提高到0.5~1kg/t。
8、连铸浇铸前必须将包盖扣好,钢包沿要清理好,以防止包盖不严,钢水、钢渣从缝隙中喷出,并在适当增加大包包盖的宽度。
9、防止钢包喷溅的关键是炉前避免出过氧化钢。因此,规范炉前冶炼操作是杜绝过氧化钢出现的主要措施。
10、顶吹转炉吹炼低碳钢种,可以直接一次拉碳,但为了一次有效地去除磷、硫,并使终点温度达到钢种要求,在吹炼低碳钢时,都要采用高拉调温一次补吹的工艺操作。
11、第一次拉碳时,钢中含碳量最好控制在0.16%~0.20%的范围内,倒炉测温、取样,根据炉温确定冷却剂加入数量,根据含碳量确定补吹时间。
12、 第一次拉碳时的炉渣碱度为3.4~3.6。
13、注意控制好炉渣,早化渣、化好渣,全程化透。通过调节枪位促进化渣。
14、第一次倒炉时要尽量多倒渣,可以加入石灰和白云石调温,如果加入调温剂的数量较多,可以在开始氧化时分批加入。 负能、煤气回收
1、转炉炼钢工序能耗实现负值——负能炼钢
在转炉内,把铁水炼成钢的过程,主要是降碳、升温、脱磷、脱硫以及脱氧和合金化等高温物理化学反应过程,其工艺操作是控制供氧、造渣、温度及加入合金料等,以获得所要求的钢液并浇铸成钢锭或连铸坯。氧气顶吹转炉炼钢法的特点之一是不需要外来热源,根据物料和热平衡计算:以铁水的物理热和化学热为主要热收入,抵消金属和炉渣的含热量以及各项热损失外,还有剩余热量。因此常将废钢、铁矿石和石灰石等作为冷却剂加入炉内以平衡热量防止炉温过高。
1.1炼钢过程的能量消耗
炼钢过程需要有足够的能量输入才能完成,通常要消耗电力、氧气、燃气、惰性气体、压缩空气以及水、蒸汽等。以宝钢一期工程为例,详见表1。
1.2炼钢过程能量的释放
在吹炼过程中,碳氧反应是冶炼过程始终存在的一个重要反应,反应的生成物主要是C0气体(浓度约为85%~90%),但也有少量碳与氧直接作用生成CO2,其化学反应式为
2C+O2→2CO↑
2C+2O2→2CO2↑
2CO+O2→2CO2↑
在冶炼过程中炉内处于高温,碳氧反应形成的CO气体也称转炉煤气,温度约在1600℃。此时高温转炉煤气的能量约为1GJ/t,其中煤气显热能约占1/5,其余4/5为潜能(燃烧时转化为热能,不燃烧时为化学能),这就是转炉冶炼过程中释放出的主要能量。因此,转炉煤气回收利用是炼钢节能降耗的重要途径。
1.3炼钢工序能耗实现负值分析
炼钢工序能耗是按生产出每吨合格产品(钢锭或连铸坯)所用的各种能量之和扣除相应回收的能量(标煤)进行计算的。
消耗能量>回收能量时,耗能为正值
消耗能量-回收能量=0时(称“零”能炼钢)
消耗能量<回收能量时,耗能为负值(称“负”能炼钢)
1.4实现负能炼钢是可能的
转炉炼钢过程中释放出的能量是以高温煤气为载体,若以热能加以度量分析,具体表现为潜热占83.6%,显热占16.4%,详见图3。显然,煤气所拥有的能量占总热量中的绝大部分。从图2中也可看出回收煤气对降低炼钢工序能耗所起的作用。因此,要做到负能炼钢必须回收煤气,而且应尽可能提高回收煤气的数量和质量。
1.5实现转炉负能炼钢必须回收煤气
1.6实现负能炼钢的主要技术途径
(1)采用新技术系统集成,提高煤气回收的质量与数量;
(2)采用交流变频调速新技术,降低炼钢工序大功率电机的电力消耗;
(3)改进炼钢(包括连铸等)操作水平,降低物料、燃料消耗;
(4)提高管理水平及人员素质,保证安全、正常、稳定生产。
2、转炉煤气回收技术
2.1转炉煤气净化回收主要代表流程
中国于1966年在上钢一厂30t转炉上首先实现了煤气回收,是湿法流程,简称OG法,主要采用两级文丘里型煤气除尘器,贮气为湿式煤气柜,至今中国已回收煤气的企业均为湿法流程(图4)。此流程基建技资较低,操作运行简单、安全,但运行费用相对较高,要附设除尘污水处理设施。
另一种干法流程,简称LT法(图5),为宝钢三期250t转炉引进奥钢联技术建设的煤气回收装置。转炉煤气净化采用干式静电除尘器,贮气为干式煤气柜。此流程基本建设投资较高,运行费用较低,操作较为复杂,没有污水处理设施,将与宝钢250t转炉同时投产。
2.2中国转炉煤气回收技术水平与国外先进水平的比较
①线性矩形可调喉口文丘里除尘器;
②可调喉口液压伺服装置;
③炉口微差压自动调节系统;
④快速三通切换阀;
⑤大管径文丘里型煤气流量计;
⑥煤气回收自动控制装置;
⑦煤气成分自动分析装置。
2.3回收煤气的节能潜力巨大
自1966年中国开始回收转炉煤气以来,经历了30年,到1996年已有20个企业回收了煤气(表4),占应回收煤气企业的51%。全行业转炉煤气回收利用率平均为51%,重点钢铁企业为70%,中小骨干企业仅为6%。如果目前还没有回收煤气的19个企业尽快增添回收设施,采用新技术装备,初期回收先按中等水平要求,即每吨钢回收65m3,煤气热值为1800×4.18kJ/m3,每年回收的煤气折合标煤可达34万t。已做到低水平回收的17个企业,用新技术进行技术改造,把回收水平提高到较高水平,即每吨钢回收70m3,煤气热值为1950×4.18kJ/m3,则每年多回收的煤气折合标煤可达16万t。上述二者之和,将达到每年回收能量约40万t,上述36个企业转炉炼钢工序能耗(标煤)将平均下降9.2kg/t,节能潜力是巨大的。
转炉负能炼钢是先进炼钢技术的重要标志之一,是炼钢工艺、装备、操作以及管理诸方面先进水平的综合体现,也是节能降耗、降低生产成本、提高企业竞争力的主要技术措施。实现负能炼钢也是一项艰难的科技攻关系统工程,需要将许多先进技术集成、配套,尤其离不开企业现代化的科学管理和生产,必须千方百计提高转炉煤气回收的数量与质量。 转炉烟气净化与回收
1 回收基本原理
1.1 烟气的收集、冷却和净化
转炉烟气离开炉口时温度为1 400~1 500℃,主要采用循环水冷法令其迅速冷却。烟气经过众多毛细管环绕的活动烟罩、上部固定烟罩和汽化冷却烟道后,冷却至800~1 000℃,然后经溢流文氏管(以下简称“一文”)进行饱和冷却降温、除尘,此时温度已降至75℃左右。冷却后的烟气经重力脱水器进入矩形线性可调文氏管(以下简称“二文”),进行精除尘。此时,烟气与喷入二文内的水滴高速碰撞,由于扩散、惯性作用,烟气中的尘粒与水珠结合后凝聚而被除下。二文采用矩形“R-D”线性可调文氏管,通过阀板(米字阀)调节其开度,控制罩内差压。回收时,将罩内烟气压力调节至微正压(一般约为0~20 Pa),以控制空气吸入量(即控制O2的吸入量),减少烟气中CO的燃烧,使回收的煤气浓度增高。
1.2 烟气的抽取、放散及回收
煤气鼓风机是烟气除尘系统的重要设备,依靠它的强大抽吸能力将吹炼产生的大量烟尘抽走。淮钢风机通过液力耦合器调速,其转速根据生产工艺进行调整(淮钢烟气鼓风机高速为2 700 r/min;低速为800 r/min),动力源采用防爆电机。一般情况下,在转炉吹炼期,鼓风机升至高速;非吹炼期,降至低速。在鼓风机的烟气出口处,设有煤气分析仪,录检测到CO含量>40%,O2含量<1.5%时,烟气送入煤气加压站,作为燃料储存,否则引至烟囱放散。
2 主要设备选型与系统基本配置
转炉烟气净化回收自动控制系统,采用西门子SMATIC S7-400作为主站,挂接ET200M远程站,I/O模板选用S7-300系列,主从站间采用PROFIBUS-DP网通信,主干环网选用SIMATICNET。软件平台选用WINDOWS 2000 PROFESSIONAL,PLC编程环境采用Step7 V5.2,上位监控软件采用WIN CC V5.2,网络通信采用Soft Net软件。从运行效果看,硬件系统运行稳定可靠,软件系统刷新速度快,实时更新性好,配合报警与趋势功能,极大地满足了操作人员对于数值监测,设备控制以及数据记录的需要。
3 控制要求的实现
3.1 基本控制流程
在整个烟气净化与回收的过程中,由于烟气温度很高,且属易燃易爆气体,一旦出现泄漏将出现不可估量的后果,所以在控制方式上对自动化要求很高。
3.2 主要控制回路
(1)炉口微差压控制。采用闭环PID调节回路,将炉口微差压的检测值作为过程值,设定值一般在10 Pa左右,利用闭环调节二文阀芯开度。由于炉口微差压调节的好坏,直接影响煤气回收的质量,所以要求将比例调节值P和积分调节值I调节到使输出较为灵敏的数值处。此外,降罩后进行调节,抬罩后将二文阀芯开度设定到50%。
(2)风机转速控制。风机的全程自动调节取决于两点,即兑铁时刻和出钢时刻。当OG系统收到顶吹“兑铁”信号后,负机自动升至高速,吹炼完毕,转炉转至出钢角时,风机自动降为低速。风机高低速的转换,必须平滑,实现斜坡速度上升或下降,否则电流变化过猛,会对电机造成损害,缩短电机寿命。
(3)三通阀组连锁控制。三通阀组是决定煤气回收、放散的核心装置,阀组的控制也是OG系统中比较复杂的环节。在这一环节中,包括对三通阀体的控制,对水封逆止阀以及旁通阀的控制,对N2吹扫B1阀、B2阀、D阀的控制以及对冲洗电磁阀的控制。
4 尚待完善提高的环节
本设计完全满足了炼钢车间对于烟气净化与回收系统的工艺要求,控制系统运行稳定可靠,极大地方便了操作人员对于整个OG系统的监控。但纵观整体设计,存在以下两点不足:
(1)二文喉口处的喷水量直接决定着除尘效果的好坏,因这里总有大量烟尘通过,极易堵塞,厂家在这里设计了氮气捅针。操作工定时操作捅针,对二文喉口喷水处进行清堵处理。但这项上作琐碎易忘,导致堵塞后的除尘效果不好,冒出大量黄烟。在今后的设计中,应将这一过程加入PLC自控系统,以便定期自动完成清堵工作。
(2)自控系统很大程度上依赖于仪表测量到的准确数据。由于本系统处于高温、高粉尘环境中,所以某些位置的仪表易出故障,导致操作工无法正确了解各段设备的情况,不但直接影响除尘效果,更易发生意想不到的危险。所以今后在设计这类工况下的仪表时,务必在选型和安装位置上仔细斟酌,以便能够长期测量到准确的数据。

❼ 转炉系统单体试车方案

1.开炉操作人员要求
1.1 生产操作人员熟知三大规程。
1.2生产岗位人员熟悉开炉方案、安全防护措施及开炉安全方案。
1.3维护岗位人员熟悉设备,能够进行事故维修。
1.4全面落实各项生产准备工作,包括原辅材料、生产工具、各型吊具、测温取样工具。
2.开新炉及炼钢条件
2.1开新炉条件
2.1.1转炉倾动(三个操作台控制、“0”位信号、倾动事故急停)及润滑系统正常;
2.1.2钢包车、渣车各自的运行、制动、转换、电缆卷筒正常;
2.1.3罩裙位置合适,挡火门行走正常;
2.1.4主控室转炉、氧枪控制系统、计算机画面信号显示正常;
2.1.5氧枪控制、显示系统(升降、制动、极限、各控制点、枪高显示、故障信号、事故提升、事故开关氧)正常;
2.1.6主要检测装置(氧流量及压力、全部水流量及压力、氧枪冷却水流量差、氮气及氩气压力、电子称)正常;
2.1.7氧气系统(快速切断阀、流量调节阀、高压水切断阀、阀门动作气源、手动节门)正常;
2.1.8散状料、铁合金料仓、皮带机正常;溜槽正常;
2.1.9氧枪转炉联锁、报警提枪系统正常;
2.1.10各种试验(试水、试氧)正常;
2.1.11干法除尘及操作系统正常;
2.2烘炉前试水要求
2.2.1安排试水前将转炉摇至60度停留(摇出烟罩)。
2.2.2试水工作确认结束后,方准拆除炉口苫布,方可试氧枪升降。
2.2.3开炉前炉下有积水,必须处理。
2.3烘炉前试氧要求
2.3.1试氧前要确保转炉周围15m区域停止施工,严禁动火;
2.3.2氧枪试氧前要启动除尘风机,使氧枪喷头处于烟罩下,炉体上方。
2.3.3转炉摇至负60度;
2.3.4先点动两次试氧后正式试氧;
2.3.5试氧参考表
氧流量Nm3/h 10000~20000 25000 28000 30000
试氧时间 30” 30” 30” 30”
注:使用喷头:五孔、中心夹角12度、M=2.0
2.4新炉烘炉操作要求
2.4.1提前与干法除尘人员联系,确认干法除尘设备是否具备烘炉条件,在加焦碳前再次由干法除尘人员确认。
2.4.2用废钢斗向炉内先加入焦炭3t,并摇炉使其均匀分布于炉底,再用废钢斗向炉内加入洒好柴油的木料1~1.5t。
2.4.3与干法除尘人员联系,确认是否具备下枪条件。
2.4.4用油棉丝火把点火,一经引火,立即吹氧,避免断氧。
2.4.5降氧枪至炉底2.5m处,点火前氧气流量10000Nm3/h(氧压0.3Mpa),供氧2′30″后氧气流量调整为12000 Nm3/h。吹氧约40min开始补加焦碳,每15min加入焦碳0.4t。烘炉过程枪位控制在1.5~2.0m。焦碳加入以后上下动枪2~3次,枪位范围1.5~2.5m。
2.4.6烘炉时底吹选择氮气搅拌,流量控制在210Nm3/h。
2.4.7总烘炉时间不少于5小时。
2.4.8烘炉结束, 关闭炉前挡火门,摇炉75度,观察烘炉质量及残焦情况,检查炉衬及出钢口,其它方面具备开炉条件时,烘炉结束,不倒残余焦碳装铁炼钢。
2.4.9烘炉前解除氧气工作压力报警提枪连锁,烘炉结束恢复。
2.4.10烘炉期间对设备系统状况进行全面检查,发现问题及时安排处理。
2.4.11升温曲线

2.5 开新炉操作
2.5.1 烘炉结束后,保证烧结好炉衬,炉衬温度要均匀。检查确认炉衬无重大缺陷,砖缝严密。
2.5.2兑铁前与干法除尘人员联系确认是否具备兑铁生产条件。
2.5.3第一炉为全铁冶炼,铁水装入量为133±1t,冶炼钢种为普碳钢。
2.5.4第一炉操作氧压控制在0.80~0.85Mpa,氧气流量设定为自动调节,开吹时氧流量16000m3/h,40秒后氧流量调整为设定值,开吹枪位距离液面2.1~2.2m,过程枪位1.8~2.0m,终点降枪1.6m。
2.5.5密切注意枪位与化渣情况,第一批渣料在开吹的同时加入,加入量为总量的70%~80%,其余石灰根据化渣情况分批加入,应在吹炼10分钟内加完。
2.5.6炉渣碱度控制在3.0~3.5,纯吹氧时间18~20分钟,以保证足够的烧结时间。
2.5.7出钢温度控制在1720~1740℃(如经LF炉处理,则出钢温度可控制在1700~1720℃。
2.5.8出钢前先检查出钢口,拉碳后快速组织出钢。
2.5.9开新炉1~10炉内要求连续冶炼。
2.5.10开新炉只允许冶炼普通碳素结构钢。
2.5.11其它操作执行正常炉次操作规程。

❽ 转炉设备的何种倾动机构~下图并分析它的优点

悬挂式倾动机构 占地小

❾ 炼钢厂的氧枪有哪些连锁啊转炉倾动又有哪些连锁请教各位大大

氧枪的连锁,一、氧枪在等待点时转炉不在零位也就是转炉不在垂直位置时氧枪只能上升不能下降。
二、氧枪降到下极限时不能再下降,提枪到上极限时不能再提枪。
三、氧枪高压水压力和流量达不到规定值时不能降枪。
四、氧枪高压水进回水温差和流量差超过规定值时不能降枪。
五、氧气和氮气达不到规定值时不能降枪。
六、钢丝绳张力超过规定范围时氧枪停电。
七、汽包水位低于规定值时不能降枪,有的钢厂也会把风机的转速加入连锁,风机在低速状态不能降枪。
转炉的连锁
一、氧枪在等待点以下时转炉停电。
二、稀油泵站不工作时或者停电或者是低速运转。
常见的就这么多的连锁,可能不太全面,有些钢厂也可能不都使用,这个一般都是设计院给做好了的,也有的是根据生产中的实际需要进行改进的。

❿ 转炉倾动系统有几台电机带动 采用

一般是4台电机,四点接触全悬挂扭力杆式转炉倾动系统,

阅读全文

与转炉倾动装置设计相关的资料

热点内容
肋夹玻璃幕墙配套五金件 浏览:356
录音有什么便携式设备 浏览:764
机床皮带跑偏怎么调 浏览:986
上海新建高档五金电器批发市场 浏览:195
战斧机械键盘怎么样 浏览:863
天水商用厨房设备哪里有 浏览:666
samp工具箱手机下载 浏览:775
荧光笔怎么开安全阀门 浏览:114
数控车床后轴承怎么紧 浏览:218
设备日常检查注意哪些 浏览:646
煤矿井下设备三证一标志是什么 浏览:111
铸造企业土地使用税怎么计算 浏览:780
管道蝶形阀门 浏览:703
家用燃气阀门怎样安装 浏览:906
阀门铭牌的压力是什么压力 浏览:406
轴承代号LF代表什么意思 浏览:822
手动控制喷泉用什么阀门 浏览:148
阀门阀杆阀芯怎么制作 浏览:970
用图1装置验证动量守恒定律实验中 浏览:861
空调阀门结冰是怎么回事 浏览:968