A. 液力变矩器属于什么传动 液力变矩器的传动效率高吗
液力变矩器是一种以液体为工作介质的传动装置,它属于液压传动的一种形式。液力变矩器通过封闭的工作腔循环液体来传递动力,泵轮、涡轮和导轮分别与输入轴、输出轴和壳体相连。当动力机带动输入轴转动时,液体从离心泵轮流出,经过涡轮、导轮再回到泵轮,周而复始循环。泵轮将输入轴的机械能传递给液体,液体推动涡轮高速旋转,将能量传递给输出轴。
液力变矩器利用油液作为介质,将发动机的转矩倍增后传给自动变速箱。很多人关注液力变矩器的传动效率问题,液力变矩器的传动效率通常是否能达到100%?实际上,液力变矩器的传动效率通常不会达到100%。由于泵轮与涡轮是软性连接,涡轮速度小于泵轮速度,因此在传动过程中会产生热量和摩擦,造成一定的能量损失。在正常情况下,液力变矩器的传动效率约为95%,低于机械传动的效率。
为了提高液力变矩器的传动效率,现代液力变矩器中普遍配备了锁止离合器。锁止离合器可以直接连接发动机和传动桥,减少功率损失,进而降低因液流间接传递功率而产生的功率损失,提高传动效率。
B. 液力传动的液力传动装置
液力传动装置是以液体为工作介质以液体的动能来实现能量传递的装置,常见的有液力耦合器、液力变矩器和液力机械元件。
目前,液力传动元件主要有液力元件和液力机械两大类。液力元件有液力耦合器和液力变矩器;液力机械装置是液力传动装置与机械传动装置组合而成的,因此,它既具有液力传动变矩性能好的特点,又具有机械传动效率高的特征。
液力传动装置主要由三个关键部件组成,即泵轮、涡轮、导轮。
泵轮:能量输入部件,它能接受原动机传来的机械能并将其转换为液体的动能;
涡轮:能量输出部分,它将液体的动能转换为机械能而输出;
导轮:液体导流部件,它对流动的液体导向,使其根据一定的要求,按照一定的方向冲击泵轮的叶片。 下图a是液力变矩器的实物模型图,图b是其结构原理简图。它主要由泵轮、涡轮、导轮等构成。泵轮、涡轮分别与主动轴、从动轴连接,导轮则与壳体固定在一起不能转动。当液力变矩器工作时,因导轮D对液体的作用,而使液力变矩器输入力矩与输出力矩不相等。当传动比小时,输出力矩大,输出转速低;反之,输出力矩小而转速高。它可以随着负载的变化自动增大或减小输出力矩与转速。因此,液力变矩器是一个无级力矩变换器。
下面以目前广泛使用的三元件综合式液力变矩器来具体说明其工作原理。
如图4所示,泵轮与变矩器外壳连为一体,是主动元件;涡轮通过花键与输出轴相连,是从动元件;导轮置于泵轮和涡轮之间,通过单向离合器及导轮轴套固定在变速器外壳上。
发动机启动后,曲轴通过飞轮带动泵轮旋转,因旋转产生的离心力使泵轮叶片间的工作液沿叶片从内缘向外缘甩出;这部分工作液既具有随泵轮一起转动的园周向的分速度,又有冲向涡轮的轴向分速度。这些工作液冲击涡轮叶片,推动涡轮与泵轮同方向转动。
从涡轮流出工作液的速度可以看为工作液相对于涡轮叶片表面流出的切向速度与随涡轮一起转动的圆周速度的合成。当涡轮转速比较小时,从涡轮流出的工作液是向后的,工作液冲击导轮叶片的前面。因为导轮被单向离合器限定不能向后转动,所以导轮叶片将向后流动的工作液导向向前推动泵轮叶片,促进泵轮旋转,从而使作用于涡轮的转矩增大。
随着涡轮转速的增加,圆周速度变大,当切向速度与圆周速度的合速度开始指向导轮叶片的背面时,变矩器到达临界点。当涡轮转速进一步增加时,工作液将冲击导轮叶片的背面。因为单向离合器允许导轮与泵轮一同向前旋转,所以在工作液的带动下,导轮沿泵轮转动方向自由旋转,工作液顺利地回流到泵轮。当从涡轮流出的工作液正好与导轮叶片出口方向一致时,变矩器不产生增扭作用(这时液力变矩器的工况称为液力偶合工况)。
液力耦合器其实是一种非刚性联轴器,液力变矩器实质上是一种力矩变换器。它们所传递的功率大小与输入轴转速的3次方、与叶轮尺寸的5次方成正比。传动效率在额定工况附近较高:耦合器约为96~98.5%,变矩器约为85~92%。偏离额定工况时效率有较大的下降。根据使用场合的要求,液力传动可以是单独使用的液力变矩器或液力耦合器;也可以与齿轮变速器联合使用,或与具有功率分流的行星齿轮差速器(见行星齿轮传动)联合使用。与行星齿轮差速器联合组成的常称为液力-机械传动。
液力传动装置的整体性能跟它与原动机的匹配情况有关。若匹配不当便不能获得良好的传动性能。因此,应对总体动力性能和经济性能进行分析计算,在此基础上设计整个液力传动装置。为了构成一个完整的液力传动装置,还需要配备相应的供油、冷却和操作控制系统。
C. 坦克典型的液力传动有哪些介绍
现代主战坦克上,应用的液力传动类型很多,这里只介绍典型的液力传动简单工作原理及其特点。
液力传动的关键部件是液力元件,目前在坦克和其他战斗车辆上,广泛使用的液力元件兼有液力变矩器和液力偶合器的性能,这种液力元件称为综合式液力变距器。
它的泵轮与主动轴相连,泵轮转动时,泵轮内的工作液体得到泵轮内叶片给予的能量后,产生离心力,迫使液体流动。这就是把发动机的机械能变成了泵轮内工作液体的动能和压能。
液流进入涡轮,冲击涡轮内叶片。此时,液体的能量又变成与涡轮相连的被动轴上的机械能,使被动轴旋转。导轮在涡轮小转速下与壳体固定在一起作为一个外力矩支点,使液流的压能减小,动能增加。
然后液流再进入泵轮继续循环。导轮在涡轮大轮速时与壳体自动解脱联接,于是导轮开始在液流中空转,此时,变矩器作为偶合器工作。综合式变矩器在整个工作范围内,效率均比较高,因而得到广泛采用。
发动机的动力,从液力变矩器,或综合式变矩器之后分流,一路经变速箱输入左、右汇流行星排的齿圈,另一路经双向变量泵双向定量马达,经锥齿轮而输入左、右汇流行星排的太阳轮,由左、右汇流行星排框架轴输入主动轮,以带动两侧履带旋转。
坦克直线行驶时,液压泵排量为零,液压元件不参加工作,汇流行星排太阳轮由于液压马达锁住而不动。
此时,发动机动力经液力变矩器,或综合式变矩器,变速箱而传入左、右汇流行星排齿圈,经汇流排框架输入侧减速器,带动主动轮旋转。可见这种传动在直驶时为单流。
坦克转向对,液压泵、液压马达参加工作,发动机功率除按坦克直线行驶时输入左、右汇流行星排齿囵外,还通过液压泵、液压马达而输入汇流行星太阳轮,使左、右汇流行星排太阳轮发生大小相等、方向相反的旋转,这样使汇流行星排框架的左、右速度不同,从而使坦克两侧履带速度和牵引力不同,使坦克转向。
这种典型的液力传动除具有一般液力传动的优点外,还具有如下特点,即直驶时功率为单流传递,转向时功率为双流传递,通过控制液压泵排量的连续变化可使坦克获得无级转向的性能。
在空档时,还可以获得绕坦克几何中心的转向,此时,全部功率将由液压元件传递。这种传动由直驶到转向的过渡连续平稳,转向半径的范围宽,操纵特性好,高档修正方向的能力好。
液压机械传动
未来的坦克上可能采用HMPT-500型液压机械传动装置。该传动装置包括一个多片式主离合器,两个油冷多片式停车制动器,两套具有相同排量的球形活塞式液压泵-液压马达组和一套齿轮装置。
传动装置有三个排档和一个倒档,Ⅰ-倒档为液压传动,Ⅱ-Ⅲ档为液压机械传动。
就是说,该传动的Ⅰ-倒档为单流,Ⅱ-Ⅲ档为双流。该传动具有液力传动的一切优点,还克服了液力传动中液力元件自动调节性能的不足,它具有可控无级变速的优点,使用这种传动可使发动机按选择的一条耗油率最小的功率—速度曲线工作,以达到最好的经济性,它能与发动机实现最理想的匹配。
在Ⅰ-Ⅱ-Ⅲ档速度范围内,该传动的转向特性完全相同,即同一转向信号,使两履带产生相同的差动速度,内侧履带减速时产生的能量直接传输到外侧履带,使其增速,从而减小了功率损失。
对于给定的转向讯号,其转向半径随车速的增加而增大。这种传动,从坦克机动性观点来看是比较理想的,从技术方面来看,难度较大。