㈠ 变电站自动化及其主要功能有哪些
变电站自动化
所谓变电站自动化就是将变电站的微机监控、微机保护和微机远动装置的功能统一起来,充分发挥微机作用、提高变电站自动化水平、提高变电站自动装置的可靠性、减少变电站二次系统连接线的综合自动化系统。它可以完成远动、保护、操作(防误)、测量、故障录波、事故顺序记录和运行参数自动记录等功能,并且具有很高的可靠性,可以实现变电站无人值班运行。变电站综合自动化的优点是:大大地简化了变电站二次部分的硬件配置,避免了重复;大大地简化了变电站二次设备之间的连线;大大地减轻了安装施工和维护工作量,也降低了总造价;为运行管理自动化水平的提高打下了基础。
变电站自动化系统功能分为:
1. 遥测:采集电力系统中的电流电压等参数进行上传到后台进行监测
2. 遥控:从后台操作电力系统中元器件(开关,闸刀,有载开关)的动作。
3. 遥调:调整定值。
4.进行巡回监视和召唤测量。
5.对开关量的状态进行判别,对被测量进行判别,功功率总加和电量累计等。
6.用彩色显示电力网接线图及实时数据、负荷(I、P、Q)、潮流方向、频率和电压以及环境温度、变压器档位等,当开关变位时,自动显示对应的网络画面,并通过音响和闪光显示提醒运行人员注意,进行报警打印,还能对被测量越限情况和事故顺序进行显示和打印。
7.进行报表打印、日运行负荷日志打印、月典型报表打印、月电量总加报表打印等。
8.具有汉字人机对话及提示功能,可随机打印和显示测量数据与图形(U、I、P)画面,以及管理功能。
㈡ 变电站自动化系统的发展趋势
1、整个系统的数字化、集成化、规范化
当前变电站自动化的发展趋势将会不断朝着高集成化、数字化、标准化方向发展。随着集成电路和计算机技术的飞速发展,各种新型的大规模集成电路将会进一步应用在继电保护和测控装置上,这些新器件的应用将使保护和测控装置的电路板更加小型集成化。高集成化可以使装置通信、数据存储及处理能力更强,降低成本,减少故障率,有利于实现统一的运行管理。
数字化是指变电站自动化系统的整体数字化、信息化以及与电力整体的协调操作。随着变电站一次设备的智能化,如智能开关设备、光电式电压和电流互感器和各类智能电子装置的出现和应用,变电站自动化将进人数字化阶段,有利于改进和优化现有的保护和控制功能。
变电站自动化系统将逐步向产品标准化方向发展。具体表现在:产品基本功能设计和要求的标准化及产品的对外接口和通讯协议的标准化,变电站内不同厂家的设备可以做到互换互连,“即插即用”增加了用户选择变电站内各类设备和更换设备的自由度,同时不满足标准化设计的厂商将被逐步淘汰,使变电站自动化专业逐步走向良性的发展。
2、从集中控制、功能分散型向分层分布式网络型发展
传统的保护、远动和站级监控、故障录波等设备是按功能分散考虑的。趋势是从一个功能模块管理多个间隔单元,向一个模块管理一个间隔单元发展,实现地理位置上的高度分散。这样发生故障时对系统的影响可大大减小,功能模块的独立性、适应性更强。通信接口的发展也是日新月异,早期的串行通信到现场总线,从现场总线再到工业以太网通信,工业以太网技术取得了飞速的发展,带宽的提高和交换技术等新技术的发展,使通信实时性得到了保障。在网络化的IEC61850 数字化变电站系统中,基于上述技术的交换式以太网,解决了基于HUB的共享式以太网冲突检测机制造成的丢包问题和交换式以太网的实时性不确定问题,以太网交换机除了用于构建各种网络架构和传输各种控制命令和监测数据以外,还通过网络传输间隔设备之间的跳闸命令和闭锁信号。因此,对工业以太网交换机在IEC61850 系统中的应用提出更高的要求,它已经成为组成变电站综自系统其中极为重要的设备。已有的实际工程应用中,这些交换机还存在着部分问题,如电源损坏率高,部分严酷情况下会出现丢包现象等,在设计中必须考虑采用符合IEC61850-3 标准的产品,应满足与安装在变电站间隔层就地的保护测控装置一样的环境、机械以及电磁兼容的要求。通信容量更大、实时性更高、可靠性更高的需求影响着未来通信技术的发展方向。
3、遥视系统的应用
遥视系统在综合自动化变电站内已广泛使用,它将变电站内采用摄像机拍摄的视频图象远距离传输到调度中心或集控站(主站),使主站的运行、管理人员可以借此对变电站电气设备的运行环境进行监控,以保证无人值班变电站的安全运行。遥视系统的视频图象监视在本质上还属于图象获取系统,将计算机视觉技术运用到图象信息的分析与理解中,可以实现变电站系统图象信息的智能处理。计算机视觉技术在变电站领域已成功应用的例子有指针式仪表表示值的自动检定、移动物体的自动识别报警和跟踪运行人员的操作过程。随着与计算机视觉相关的一些技术的不断发展应用,其在变电站领域显示出了良好的应用前景。
4、蓝牙技术的发展应用
蓝牙技术是一种无线数据与语音通信开放性全球规范,它是一种以低成本的近距离无线连接为基础、为固定与移动设备通信环境建立一个特别连接的短程无线电技术,解决了以太网用于变电站自动化布线难的问题。该技术具有小功率、微型化、低成本以及与网络时代相适应的特点。蓝牙技术是一项发展中的技术,其应用正处于起步阶段,但蓝牙技术标准统一、知识产权共享的优势是非常明显的,其未来的发展不可限量。可以预见,变电站内许多设备问采用无线方式通信在不久的将来就可以实现。
XNR-800型微机综合自动化系统,是在综合国内外多家微机保护的基础上,创造性地吸收当前国内外先进微机技术,采用国际最新的DSP为核心处理单元,研制成集保护、测控、远动、通讯于一体的综合自动化系统。该系统适用于110kV及以下电压等级变电站,具有保护、遥测、遥信、遥脉、遥调、遥控等功能,可实现对变电站全方位的控制和管理,实现了变电站无人值守功能。
该系统自投入市场以来,以其运行稳定、功能完善、采样准确、开入开出正确、通讯可靠而深受用户的好评。
该系统采用分层分布式控制模式,装置可以集中组屏,也可分散安装于开关柜的二次仪表室中。集中组屏时,屏柜采用2260(或2360)×800×600尺寸,每面屏柜可装4层装置,每层可装3个装置。其各种保护测控装置、自动化控制装置从物理性能上与空间分布至主变电站一次设备间隔层,各装置作为一个完整系统,具有独立的电源,CPU及独立的操作回路,完成对变电站对应间隔的保护、测量、控制等功能,各装置在软、硬件设计上是完全独立的,不依赖通讯网。
构成分布式系统的保护、测控装置的CPU芯片采用国际先进的DSP芯片,并采取了隔离、软硬件滤波、看门狗电路、抗干扰编码、智能诊断、各种开放、闭锁控制电路、抗震动、抗干扰的新型结构设计等多种软硬件方面的措施,提高了装置的可靠性。
在通讯系统中,各装置可通过现场总线直接连接微机进行通讯,也可与通讯管理机进行通讯,将采集到的各种信息通过通讯管理机上传给微机监控系统;同时通讯管理机把接收到的各种命令传送到所对应的装置中。控制设备层以站内一次设备为测控对象,面向对象,综合分析变电站对信息的采集、处理及控制要求,分布式配置小型化、高可靠性的微机保护和测控装置。各装置相对独立,可与变电站层设备通讯,实现变电站综合自动化。
㈢ 智能建筑变电站综合自动化系统有哪几个关键技术
变电站自动化监控系统的结构组成分类有很多种,一般来说比较常用的分法是把它分成这几个部分组成:
1. 间隔层:就是在现场运行的那些设备的数据采集,保护和控制装置。比如:综保继电器,保护控制柜,多功能电表啊等等。他们是和一次设备联系最紧密的部门,实际的数据采集,设备控制都是由它们来完成。
2. 通信层:间隔层和站控层(见如下)的数据需要通过一些通讯电缆/光缆进行传输,中间还得有一些通信设备比如通信管理机,交换机之类的,用来负责数据的分发和传输,以及原始数据的存储等等。
3. 站控层:其实我们通常所说的后台了,包括电脑,打印机监控屏幕等等。在这一层要对搜集上来的数据进行一些应用开发,以便显示在终端屏幕上;一些遥控指令也从这一层发出去,通过通信层最后送到间隔层去执行。
哪些部分是核心,就看你怎么理解了。我认为以上这三个部分都很重要,缺一不可。就好像站控层是大脑,通信层是组成身体的神经,心脏和血液和骨骼和肌肉;而间隔层是我们的神经末梢和手脚。
㈣ 智能化变电站的系统结构
在变电站自动化领域中,智能化电气的发展,特别是智能开关、光电式互感器机电一体化设备的出现,变电站自动化技术进入了数字化的新阶段。在高压和超高压变电站中,保护装置、测控装置、故障录波及其他自动装置的I/O单元,如A/D变换、光隔离器件、控制回路等将割列出来作为智能化一次设备的一部分。反言之,智能化一次设备的数字化传感器、数字化控制回路代替了常规继电保护装置、测控等装置的I/O部分;而在中低压变电站则将保护、监控装置小型化、紧凑化,完整地安装在开关柜上,实现了变电站机电一体化设计。
智能化变电站自动化系统的结构在物理上可分为两类,即智能化的一次设备和网络化的二次设备;在逻辑结构上可分为三个层次,根据IEC61850通信协议定义,这三个层次分别称为过程层、间隔层、站控层。所谓“过程层”就是由数字化变电站技术引进的合并单元和智能终端组成。
㈤ 变电站综合自动化系统的系统
1.系统构成:由间隔层综合自动化系统(包含监控单元和通讯总线)及变电站层监控系统构成;
2.系统特点:分层分布式结构,集测量、保护、控制、监测故障录波及其分析、运行日志、事件存储、保护投退、通讯及参数设置等多功能于一体;
3.适用范围:10KV电压等级的输配电线路保护,主设备保护和测量控制系统;
4.保护单元:线路、主设备保护装置,调压电容装置,小电流接地选线、微机五防和其他自动化装置;
5.监控软件规约:建立在IEC61968、IEC61970组件构架标准(SCADA/EMS)要求之上的平台级监控软件系统; 间隔层自动化系统主要由各种保护单元构成如线路保护装置、主设备保护、调压电容装置、小电流接地选线、 微机五防装置和自动化装置组成。在横向方面,间隔层的设备或监控单元均可直接下放到开关柜就地安装,大大减少了二次接线,各间隔设备相对独立,只仅仅处于同一现场通讯总线上。在安装方式
上,可采用分散、集 中组屏等安装方式。间隔层完成电量和非电量的采集计算,实现对设备、线路等的保护或控制,并为变电站层 监控系统提供可靠的通讯接口。
变电站综合自动化监控系统是将变电站的二次设备(包括测量仪表、信号系统、继电保护、自动装置和远动装置等)经过功能组合和优化设计,利用先进的计算机技术、现代电子技术、通讯技术和信号处理技术,实现对全变电站的主要设备和输、配电线路的自动监视、测量、自动控制和微机护,以及与调度通信等综合性的自动化功能。
变电站层自动化系统同样采用分布式结构,包括监控后台软件、当地监控PC机、远动通信接口和用于专业管理的工程师站PC机以及专用设备和网络设备等。有许多提供变电站综合自动化监控系统方案的生产商如三旺通信、瑞科电气、三意时代等,同时提供多种系统中的产品以及相关搭建问题。变电站层自动化系统通过组态完成全站检测功能,全面提供线路、 主设备等的电量、非电量等运行数据,完成对变压器、断路器等设备的控制等,并具有保护信息记录与分析、 运行报表、故障录波等功能。
㈥ 变电站智能化改造主要包括哪些内容
一般认为,智能变电站是以数字化变电站为依托,通过采用先进的传感器、电子、信息、通信、控制、智能分析软件等技术,建立全站所有信息采集、传输、分析、处理的数字化统一应用平台,实现变电站的自动控制运行、设备状态检修、运行状态自适应、提高管理和运行维护水平。
智能变电站中二次设备和一次设备之间用光纤代替了电缆、用电子式互感器代替了传统互感器、将传统一次设备改为智能一次设备,并且增加了合并单元与智能接口。与传统变电站相比,其结构设计紧凑、布局更加合理,占地面积小。使用价格低、质量轻的光纤,减少了有色金属的使用,有利于环保和节能。为了延长设备使用寿命,提高安全可靠性以及运行维护水平,对设备进行了寿命周期管理。智能变电站吸收了数字化变电站的优点,以数字化变电站为技术体系架构为基础,实现了一次设备智能化、二次设备网络化、信息交互标准化、运行控制自动化、设备的状态检修、经济运行与优化控制和智能告警等功能。
㈦ 智能变电站高级应用功能有哪些
智能变电站高级应用功能有:
1、智能变电站与大用户互动
智能变电站具有向大用户实时传送电价、电量、电能质量及电网负荷信息的功能,支持电力交易的有效开展,实现资源的优化配置;激励电力市场主体参与电网安全管理,从而实现智能电网各环节的协调运行。
2、智能变电站标准接口服务
①电能质量评估与决策
基于变电站电能质量监测系统,实现电能质量分析与决策的功能,为电能质量的评估和治理提供依据与决策。
②站间广域保护
基于网络通信、多点信息综合比较判断的广域保护利用广域信息来改善继电保护的性能。从缩短动作延时、减小故障切除范围等方面提高后备保护系统性能。保护IED 关联域的搜索是关键技术之一。广域信息下的集中协调控制系统不可能取代分散安装的主保护装置。
③电网运行状态自适应
在电网正常运行状态下,综合利用FACTS、变压器调压、无功补偿设备投切等手段,控制和优化潮流分配,提高输送能力和运行效率。
4、支撑智能电网功能
①支持安全状态评估/预警/控制
智能变电站为不同调度层面在线安全稳定防御系统提供信息交互接口,为在线安全状态评估系统提供实时可靠的信息,以便其进行实时在线评估、预警和控制,实现智能电网预防控制和紧急控制的协调。
②支持全网资产全寿命周期管理
智能变电站支持设备信息和运行维护策略与调度中心实现全面互动,实现基于状态的全寿命周期管理。通过建立精益化的评估体系,从资产全寿命周期的安全、效能和成本角度,逐步建立全寿命周期综合优化管理体系,提供综合最优的资产投资、运行维护和资产处置方案,提高变电站运行的安全性,为规划、生产、管理等一系列工作提供智能辅助决策支持。
③ 支持继电保护的自适应性等技术研究。
支持智能甩负荷研究,提供快速甩负荷。智能甩负荷通过计算扰动的类型、负荷、结构,结合负荷分配和优先级,计算出最小必需的被甩负荷。然后,智能甩负荷选择满足这要求的负荷最佳组合,通过顺序控制完成这一甩负荷操作。 所有这些在系统里发生扰动后200ms内即可完成。实现智能甩负荷控制可以甩较少负荷。在一个扰动中甩负荷时间越长,必须最终甩掉的负荷就越多。因为智能甩负荷的智能性和快速性,甩掉的实际数量远比用像频率继电器和PLC基础方案这样的传统方法要少,提高了供电的可靠性。
㈧ 变电站自动化系统的系统举例
XNR-800系统设计了系列化的测控装置:微机保护装置和综合一体化的保护测控装置。不同规模、不同一次接线、不同要求的变电站实现综合自动化,可以方便的应用这些面向对象设计的装置。
为了更好地满足用户的需求,XNR-800型系统已形成系列化产品如下:
(一)、差动保护部分
1、XNR-891 二圈变压器差动保护测控装置(不带操作回路)
2、XNR-892 二圈变压器差动保护测控装置(带操作回路)
3、XNR-893 三圈变压器差动保护测控装置
4、XNR-894 线路差动保护测控装置
5、XNR-896 电动机差动保护测控装置
6、XNR-897 线路光纤纵差保护测控装置
7、XNR-898 发电机差动保护测控装置
8、XNR-899 发变组差动保护测控装置
(二)、后备保护部分
1、XNR-882 二圈变压器(高/低)后备保护测控装置
2、XNR-883 三圈变压器(高/中/低)后备保护测控装置
3、XNR-888 发电机后备保护测控装置
4、XNR-889 发电机接地保护测控装置
5、XNR-885 主变后备保护操作装置
6、XNR-886 主变非电量保护测控装置
7、XNR-881 线路距离后备保护测控装置
(三)、负荷保护部分
1、XNR-871 线路保护测控装置
2、XNR-872 变压器保护测控装置
3、XNR-873 电动机保护测控装置
6、XNR-876 电容器保护测控装置
7、XNR-877 电抗器保护测控装置
8、XNR-878 线路距离保护测控装置
9、XNR-879 母联保护测控装置
(四)、辅助保护部分
1、XNR-862 备自投保护测控装置
2、XNR-863 母线PT保护测控装置
3、XNR-861 通讯管理总控装置
4、XNR-864 电容器自动投切保护测控装置
5、XNR-867 低压减载保护测控装置
6、 NPS-637 低周减载保护测控装置
7、 NPS-638 电压无功自动投切保护测控装置
(五)、低压保护部分
1、XNR-881 线路保护测控装置
2、XNR-882 发电机保护测控装置
3、XNR-883 电动机保护测控装置
XNR-800型分层分布式结构示意图如下:
常规水电站通讯示意图
110KV变电站通讯示意图 汉字显示:该装置采用大屏幕液晶直接显示电流、电压、功率等所需的电气量,并且将保护动作的各种信息显示在屏幕上,并记录其动作时间及大小。指示明确:保护装置上有六个指示灯,可以指示保护装置的工作状态、监视元件的状态及对断路器的跳合位监视。操作方便:保护装置的保护投退、定值整定、数据查询、开入检测、开出试验等都可在保护装置的面板上直接操作,大大提高了操作的方便性。保密性强:保护装置的保护投退、定值整定、开出试验等设计到数据改动及继电器的开出都需要输入密码,从而大大提高了操作的安全性。定值整定:所有的保护定值都通过操作菜单直接整定,在微机上及监控微机上进行定值整定都需要输入操作密码及权限,保证了整定值的安全性。开出操作:按照图纸对应的继电器回路,所有的继电器开出都可通过面板直接开出操作,但都需要输入其相应的密码。数据显示:保护装置所采集到的:测量电流、母线电压以及由此计算的线电压、有功功率、无功功率、功率因数、频率等电气量都集中显示在液晶屏上。采样性能:保护电路和测量电路具有独立的采样回路,既保证了监测精度,又保证了保护的抗饱和性能。出口独立:所有出口继电器都单独使用一个通道,方便保护的投入和退出。遥控分合、保护合闸、保护跳闸、事故信号、预告信号及其特殊信号出口都独立。软件开放:通过软件编辑的菜单,可查寻保护装置所采集的各种电气量,还可检查出负荷的运行状态,以及一些参数设置。事件记录:能够记录最新60条以上事件信息,主要元件任何变位都有信息记录,并且具有断电保持功能,该信息可在事件记录中查询。自保功能:每个断路器对应一个操作回路,紧急时可直接对开关进行操作;另外,装置具有断路器跳合闸线圈保护功能,避免因机械拒动而烧毁断路器线圈。抗扰性能:装置机箱均采用密闭式,内部双层屏蔽,减少了电磁对装置的干扰。防震性能:保护装置所有板件都是通过硬插件紧密相连,并有固定螺丝固定,避免了保护装置在长途运输中出现松动及脱落现象。替代性强:保护装置功能强大,具有“四遥”功能,完全可替代常规继电器的保护,数字式的输入方式,大大减少了维护量。设计灵活:根据现场情况,可设计成集中组屏式,也可分散安装于开关柜上。
运行可靠:完善的自检体系,硬件检测直到继电器跳闸出口,均采用可靠的元器件 本系统由电源及继电器模件、交流采样模件、CPU及开入量模件、总线模件、人机接口模件等组成。CPU采用DSP芯片,断路器操作模件代替了原来开关柜的全部操作。
各装置设有独立箱体,液晶显示屏、按键、运行指示灯、断路器位置指示灯、电源指示灯均装于面板上便于操作、观察。NPS-600系统采用模块化设计,即由相同的硬件构成不同种保护。
1)、硬件组成
NPS-600型微机保护测控装置由下列模件组成:交流采样模件,CPU及开入量模件,电源及继电器模件,总线模件,液晶显示模件,全封闭金属机箱。各模件之间有金属屏蔽板,减少电磁干扰的影响。
各模件功能简述如下:
1、电源及继电器模件:提供装置各种工作电源,直流或交流185-265V输入,输出±5V,+24V。二组电压均不共地,且采用浮地方式,同外壳不相连。
+5V用于CPU及外围芯片
+24V用于驱动继电器
同时此模件安装出口继电器及中央信号继电器,用于断路器控制和中央信号报警。
2、交流采样模件:将交流电压、电流转变为弱电信号,以便模数转换。保护CT与测量CT分开,保证保护要求的抗饱和特性与测量精度。交流模件共可以装13路交流输入回路?据用户所要求的保护功能及测量功能而配备。其原理图如下:
3、CPU及开入量模件:该模件是整个装置的核心部分,完成模拟量、开关量的采集、处理,各种保护判据的运算,判断,然后产生相应的控制出口,发信号及通讯传输等。
其原理及与相关插件的关系示意图如下所示:
同时,此模件可接入开入量,所有接入微机保护的开入量,可将开入量的一端作为公共端短接后接入微机保护的公共端,另外一端作为信号输入接到对应编号的端子上,所提供的开入量均做无源接点接入即可,保护装置内部已经提供了公共端电源。
4、 总线模件:各模件之间用可靠得接插件与总线板相连接,通过总线板相互传递数据。
5、人机接口模件:人机接口模件装有大屏幕液晶显示器、键盘和指示灯,完成人机之间的对话,例如显示电压电流、保护事件,修改定值等。
超高压变电站自动化系统主要模式
超高压变电站自动化系统的结构模式从早期的以集中为主,发展到现在的以相对分散和分层分布分散为主,经历了一个探索、改进和完善提高的过程,在模式设计和实际的工程建设中都有应用。
所谓集中模式,指的是保护、监控、通信等自动化功能模块均在控制室集中布置,各模块从物理上联系较弱甚至毫无联系。早期的系统,包括许多引进的产品,主要采用这种结构模式,目前仍有为数不少的这样的系统在运行。
相对分散模式,指的是自动化系统设备按站内的电压等级或一次设备布置区域划分成几个相对独立的小区,在该小区内建设相应的设备小室,保护、监控等设备安装于设备小室中,主站通信控制器、直流、录波等设备仍集中安装在控制室,各小室之间以及与控制室之间均通过工业总线网络互联。这种模式从90年代后期开始得到大量应用。
分层分布分散模式亦即全监控,指的是参照中低压变电站综合自动化的结构模式,除主变、母线和高压线路的保护测控、中央信号、通信仍采用集中组屏外,出线、电容器的保护、监控等设备完全按设备间隔安装于就地的设备小室或直接安装在一次设备上,各模块之间采用标准局域总线和通信规约互联。当然,也可按集中组屏的方式安装这些模块。这种模式在最近有迅速发展的势头。
随着新技术的发展、新标准的制订、新应用需求的提出,还会出现与之相适应的新的系统结构模式。
㈨ 智能变电站的自动化系统是如何构成的
智能变电站自动化系统的基本特点,分层:该系统分间隔层和站控层两层,层与层之间相对独立,通过具有冗余结构的前置层(通讯管理机)设备连接通信。间隔层设备包括保护设备、数据采集、控制设备及指示显示部分等。站控层设备包括工控机、综合自动化监控软件,可组单机网络,也可组多机热备用网络。站控层通过通信管理机与间隔层通信,实现站级协调、优化控制和当地监控;同时实现与远方调度中心的通信。既可完成RTU四遥和远程接入功能,也可直接进入上一级调度网络。分布:间隔层以站内一次设备(如变压器、电机、线路等)为间隔对象,面向对象,综合分析电站对信息的采集控制要求,分布式配置小型化、高可靠性的微机保护和测控单元装置。各间隔单元相对独立,通过可选择的RS485、CAN、以太网等网络互联。在功能分配上,凡可以在本间隔单元就地完成的功能,不依赖通信网络,即使网络瘫痪也不影响保护迅速切除故障。由于采用保护、测控一体化小型化设计,屏柜的数量较传统设计大为减少。分散:系统对35KV及以下电压等级的二次保护和监控单元设备,可选择就地分散安装在开关柜上,做到地理位置上的分散。对于无人值班的35KV及以下电站,根据用户需要,站控层的设备也可移到调度中心或集控站,电站内不设当地监控而只留接口,当维护人员进入电站时,使用便携机即可替代后台机。这样的分层、分布和分散式系统与集中式系统相比,具有明显优点:提高了系统可告性,任一部分设备有故障时,只影响局部;站内减少了二次电缆和屏柜,节省了投资,也简化了施工与维护;提高了系统可扩展性和灵活性,既适用于新建电站,也适用于老站改造;运行维护方便。
㈩ 变电站综合自动化系统的结构模式
从国内、外变电站综合自动化的开展情况而言,大致存在以下几种结构:1)分布式系统结构
按变电站被监控对象或系统功能分布的多台计算机单功能设备,将它们连接到能共享资源的网络上实现分布式处理。这里所谈的‘分布’是按变电站资源物理上的分布(未强调地理分布),强调的是从计算机的角度来研究分布问题的。这是一种较为理想的结构,要做到完全分布式结构,在可扩展性、通用性及开放性方面都具有较强的优势,然而在实际的工程应用及技术实现上就会遇到许多目前难以解决的一系列问题,如在分散安装布置时,恶劣运行环境、抗电磁干扰、信息传输途径及可靠性保证上存在的问题等等,就目前技术而言还不够十分成熟,一味地追求完全分布式结构,忽略工程实用性是不必要的。
2)集中式系统结构
系统的硬件装置、数据处理均集中配置,采用由前置机和后台机构成的集控式结构,由前置机完成数据输入输出、保护、控制及监测等功能,后台机完成数据处理、显示、打印及远方通讯等功能。目前国内许多的厂家尚属于这种结构方式,这种结构有以下不足:前置管理机任务繁重、引线多,是一个信息‘瓶颈’,降低了整个系统的可靠性,即在前置机故障情况下,将失去当地及远方的所有信息及功能,另外仍不能从工程设计角度上节约开支,仍需铺设电缆,并且扩展一些自动化需求的功能较难。在此值得一提的是这种结构形成的原由,变电站二次产品早期开发过程是按保护、测量、控制和通信部分分类、独立开发,没有从整个系统设计的指导思想下进行,随着技术的进步及电力系统自动化的要求,在进行变电站自动化工程的设计时,大多采用的是按功能‘拼凑’的方式开展,从而导致系统的性能指标下降以及出现许多无法解决的工程问题。
3)分层分布式结构
按变电站的控制层次和对象设置全站控制级(站级)和就地单元控制级(段级)的二层式分布控制系统结构。
站级系统大致包括站控系统(SCS)、站监视系统(SMS)、站工程师工作台(EWS)及同调度中心的通信系统(RTU):
站控系统(SCS):应具有快速的信息响应能力及相应的信息处理分析功能,完成站内的运行管理及控制(包括就地及远方控制管理两种方式),例如事件记录、开关控制及SCADA的数据收集功能。
站监视系统(SMS):应对站内所有运行设备进行监测,为站控系统提供运行状态及异常信息,即提供全面的运行信息功能,如扰动记录、站内设备运行状态、二次设备投入/退出状态及设备的额定参数等。
站工程师工作台(EWS):可对站内设备进行状态检查、参数整定、调试检验等功能,也可以用便携机进行就地及远端的维护工作。
上面是按大致功能基本分块,硬件可根据功能及信息特征在一台站控计算机中实现,也可以两台双备用,也可以按功能分别布置,但应能够共享数据信息,具有多任务时实处理功能。
段级在横向按站内一次设备(变压器或线路等)面向对象的分布式配置,在功能分配上,本着尽量下放的原则,即凡是可以在本间隔就地完成的功能决不依赖通讯网,特殊功能例外,如分散式录波及小电流接地选线等功能的实现。