1. 请问汽车检测的标准有哪些
1、汽车技术状况:定量测得的表征某一时刻汽车外观和性能的参数值的总和。
2、汽车检测:确定汽车技术状况或工作能力进行的检查和测量。
3、汽车诊断:在不解体(或仅卸下个别小件)条件下,确定汽车技术状况或查明故障部位、原因进行的检测、分析与判断。
4、汽车诊断参数包括工作过程参数、伴随过程参数和几何尺寸参数。
5、诊断参数的选择原则:灵敏性、单值性、稳定性、信息性、经济性6诊断标准的类型:国家、行业、地方、企业
7、诊断参数标准的组成:初始值Pf、许用值Pd和极限值Pn。
8、测量误差的分类:按测量误差的表示方法分为绝对和相对,按测量误差出现的规律分为系统、随机和过失,按测量误差的状态分为静态和动态。
9、绝对误差是测量值与被测量值之间的差值;相对误差是测量值的绝对误差与被测量值真值的比值,用百分比表示。
10、检测设备一般采用最大引用误差不能超过的允许值,作为划分精度等级尺度,常见的精度等级有0.1、0.2、0.5、1.0、1.5、2.0、2.5、5.0
11、系统误差:在同一测量条件下多次测量同一量时,测量误差的大小和符号保持不变或按一定规律变化的误差;随机~:在同一测量条件下多次测量同一值时,误差的大小和符号以不可预见的方式变化着的~
12、发动机总成(气缸压力表);底盘总成(前束尺);量具与计量仪表(电解液密度计、高频放电叉)
13、检测站的类型:按服务功能分( 安全~维修~ 综合~);综合检测站按职能分(A级B级C级);安全~ :定期检测车辆中与安全和环保有关的项目,以保证汽车安全行驶,并将污染降低到允许的限度;维修~:从车辆使用和维修的角度,担负车辆维修前、后的技术状况检测;综合~:既能担负车辆管理部门的安全环保检测,又能担负车辆使用、维修企业的技术状况诊断,还能承接科研或教学方面的性能试验和参数测试;A级站:能全面承担检测站的任务;B 级站:能承担在用车辆技术状况和车辆维修质量的检测;C级站:能承担在用车辆技术状况的检测。
14、汽车资料输入及安全装置检查工位:本工位除将汽车资料输入登录微机并发给检测线主控制微机外,还进行汽车上部的灯光和安全装置等项目的外观检查,可简称为L工位。侧滑制动车速表工位:由侧滑检测、轴重检测、制动检测和车速表检测组成,简称ABS工位。灯光尾气工位:主要由前照灯检测、排气检测、烟度检测和喇叭声级检测组成,简称HX~。车底检查工位简称P~,本工位是车辆底部的外观检查,由检测人员在地沟内人工检查底盘各装置及发动机的连接是否牢固可靠,有无弯扭断裂、松旷及漏油、漏水、漏气、漏电等现象。
15、轴制动力与轴荷的百分比=(左轮制动力+右轮~)/轴荷*100%
16、ABS工位检测程序:1)四轮汽车(后驱、后驻):侧滑—前制动—后制动—驻车制动—车速表2)四轮汽车(前驱、前驻):侧滑—前制动—驻车制动—车速表—后制动3)四轮汽车(前驱、后驻):侧滑—前制动—车速表—后制动—驻车制动。
17、示波器可显示电压随时间变化的波形,是一种多用途的汽车检测设备,可以用来显示电火系波形、电子元器件波形、柴油机高压油管波形和发动机异响波形等用途愈来愈广泛。它的基本功能是显示电压随时间的变化,除用于观察状态变化外,还可以检测电压、频率和脉冲宽度等
18、气缸密封性与气缸、气缸盖、气缸衬垫、活塞、活塞环和进排气门等零件的技术状况有关;气缸密封性的诊断参数主要有气缸压缩压力、曲轴箱漏气量、气缸漏气量、气缸漏气率及进气管真空度等。
19、气缸压力表检测条件:发动机运转至正常工作温度。用起动机带动带动已拆除全部火花塞或喷油器的发动机运转,其转速应符合原厂的规定。
诊断参数标准:发动机各气缸压力应不小于原设计规定值的85%,每缸压力与各缸平均压力的差,汽油机应不大于8%。柴油机不大于10%;大修竣工发动机的气缸压力应符合原设计规定,每缸压力与各缸平均压力的差,汽油机不超过8%,柴油机不超过10%
20、FA触点闭合后,先是产生二次闭合振荡,尔后二次电压由一定负值逐渐变化到零
21 、发动机异响的类别:主要有机械异响,燃烧异响,空气动力异响和电磁异响等。(1)机械异响主要是运动副配合间隙太大后配合表面有损伤运动中引起冲击和振动造成的。(2)燃烧异响主要是发动机不正常燃烧造成的。(3)空气动力异响主要是发动机在进气口、排气口行和运转中的风扇处,因气流振动而造成的。(4)电磁异响主要是发动机、电动机和某些电磁器件内,由于磁场的交替变化,引起机械中某些部件或某一部分空间产生振动而造成的。发动机的异响的影响因素有转速、温度、负荷和润滑条件;汽油机过热时,往往产生点火敲击声(爆燃或表面点火);柴油发动机温度过低时,往往产生着火敲击声(工作粗暴)。
22、曲轴主轴承响:1)现象:汽车加速行驶或发动机突然加速时,发动机发出沉重而有力的“铛、铛、铛”或“刚、刚、刚”的金属敲击声,严重时机体发生很大振动,响声随发动机转速的提高而增大,随负荷的增加而增强,产生响声的部位在曲轴上与曲轴轴线齐平处,单缸断火时响声无明显变化,相邻两缸同时断火时,响声明显减弱或消失,温度变化时响声变化不明显,响声严重时,机油压力明显降低。2)原因:(1)曲轴主轴承盖固定螺钉松动;(2)曲轴主轴承减磨合金烧毁或脱落(3)曲轴主轴承和轴颈磨损过甚、轴向止推装置磨损过甚,造成径向和轴向间隙过大(4)曲轴弯曲未得到校正,发动机装合时不得不将某些主轴承与轴颈的配合间隙放大(5)机油压力太低、黏度太小或机油变质。
23、曲轴连杆轴承响:1)现象:汽车加速行驶和发动机突然加速时,发动机发出“铛,铛。铛”连续明显、轻而短促的金属敲击声(主要特征);连杆轴承严重松旷时,怠速运转也能听到明显的响声,且机油压力降低;发动机温度变化时,响声变化不明显;响声随发动机转速的提高而增大,随负荷的增加而增强,产生响声的部位在曲轴箱上部;单缸断火,响声明显减弱或消失,但复火时又重新出现,即具有所谓响声“上缸”现象。2)原因:(1)曲轴连杆轴承盖的固定螺栓松动或折断(2)曲轴连杆轴承减磨合金烧毁或脱落(3)曲轴连杆轴承或轴颈磨损过甚,造成径向间隙太大(4)曲轴内通连杆轴颈的油道堵塞(5)机油压力太大、黏度太小或机油变质
24、传动系游动角度,是离合器、变速器、万向传动装置、驱动桥的游动角度之和,也称为传动系总游动角度。检测方法有经验检查法和仪器检查法;仪器检测有指针式和数字式;指针式检测仪由指针、刻度盘、测量扳手组成,数字式由倾角传感器和测量仪组成;经验检测法检测步骤:用经验检测法检查传动系游动角时可分段进行,然后将各段涌动角度求和即可获得传动系总的游动角度。(1)离合器与变速器游动角的检查:离合区处于结合状态,变速器挂在要检查的档上,松开驻车制动器,然后在车下用手将变速器输出轴上的凸缘盘或驻车制动盘从一个极端位置转到另一个极端位置,两个极端位置之间的转角即为在该档下从离合器至变速器输出端的游动角度。依次挂入每一档,可获得各档下的这一游动角度。(2)万向传动装置游动角度的检查:支起驱动桥,拉紧驻车制动器,然后在车下用手将驱动桥凸缘盘从一个极端位置转到另一个极端位置,两极端位置之间的转角即为万向传动装置的游动角度。(3)驱动桥游动角的检查:松开驻车制动器,变速器置空档位置,驱动桥着地或处于制动状态,然后在车下将驱动桥凸缘盘从一个极端位置转到另一个极端位置,两极端位置之间的转角即为驱动桥的游动角度。以上三段即为传动系的游动角度。
25、倾角传感器其作用是将传感器外壳随传动轴游动之倾角转换为相应频率的电振荡。
2. 赛尔号电击兔怎么得
去扭蛋机扭,几率很低得到利利,利利进化再进化就是点击兔
3. 蝎毒的应用
蝎作为药物早在至少宋代就已经得到广泛应用,历代医家论述全蝎功效大体类似,即走窜之力迅速,能走窜四肢、搜尽一身之风邪,并能引诸药达病所,为治风要药。治疗小儿风痫、口眼歪斜、痎疟、骨节疼痛、诸风疮、女人带下之证。一切内虚似风之症切忌。但蝎毒类似蛇神经素,服药不当或过量的不良反应包括严重的过敏反应,临床上表现全身剥脱性皮炎、大疱性表皮坏死松解症和剧烈腹痛。而且全蝎对心血管、泌尿系统也有损害。患者用药后可能出现心悸、心慌,心动过缓,血压升高,继之血压突然下降,小便涩痛不利,尿少,尿蛋白等反应。而且蝎毒对骨骼肌有直接抑制作用,可诱发骨骼肌自发性颤搐和强直性收缩,最后导致不易恢复的麻痹。全蝎提取液还可对非特异性免疫和体液免疫功能有抑制作用。而且,全蝎盐制后,其有毒微量元素钯含量明显增高,提示盐制后可能使其毒性增加。故临床上应严格遵循其使用范围、剂量及方法,应详细询问患者病史、既往史、过敏史,切不可忽视患者的体质及个体差异。对于连续用药者,应加强监护,以防发生体内蓄积中毒。
传统运用蝎毒素的方式都是“清水漂去盐质,晒干或微火焙用”,盐制法确实可以提高Cu、Mn含量,且有毒微量元素Pb含量明显降低。但全蝎的主要成分蝎毒素是一种毒性蛋白,长时间受热大部分被破坏,影响药效。根据研究资料看,盐水煮的目的在于利用盐的高渗作用,避免全蝎腐烂变质,虽然这样实际上降低了主体成分蝎毒的作用。而盐制造成处方量不准,盐的成分不同对药材各种元素含量有影响,并且降低了蛋白质、氨基酸等成分的含量,提高了总灰分与酸不溶性成分的含量,因此有人建议取消传统的盐水煮制法。 全蝎及其制剂对多种难治性疼痛有较好的抑制作用。中国对全蝎的镇痛作用研究始于20世纪80年代,将全蝎蝎身与蝎尾分开,分别用100℃热水提取,提取液过滤,调节等渗,pH7.2溶液,用大鼠和小鼠常规热辐射用甩尾及醋酸扭体法测定,蝎身和蝎尾制剂不论灌胃或静注,对小鼠内脏痛、皮肤痛及刺激大鼠三叉神经诱发皮层电位均有较强的抑制作用,可能是作用于中枢与痛觉有关的神经元而发挥镇痛效应,蝎尾的作用比蝎身强5倍;镇痛作用为粗制蝎毒的3倍,同时蝎尾较蝎身毒性约大6倍,镇痛作用强度与剂量呈S型曲线,与阿斯匹林、安痛定和吗啡进行比较,蝎毒0.89mg/kg作用与安痛定最大强度相似;蝎毒对皮肤灼痛亦有明显镇痛作用,效果随剂量增加而加强。蝎毒还对三叉神经电刺激在皮层诱发电位的N波有明显压抑作用,0.15mg/kg蝎毒对N波抑制率与大剂量(10mg/kg)吗啡相近。
虽然全蝎及其粗毒素具有一定的镇痛效果,但如临床直接应用则有较大的毒副作用。为减少这种副作用,一般是对蝎毒进行分离纯化,提取出具有镇痛作用的单一有效成份。有人用凝胶过滤及离子交换层析法从东亚钳蝎毒中分离纯化出一种蝎毒镇痛活肽,蝎毒素-Ⅲ(Tityystoxin-Ⅲ,简称TT-Ⅲ),小鼠光热甩尾法实验结果TT-Ⅲ(0.424mg/kg)使痛阈(甩尾反应时间)提高4倍,侧脑室注射TT-Ⅲ抑制皮诱发电位N波与等剂量吗啡相似。利血平化后,对皮层诱发电位N波失去抑制作用。由侧脑室注射注入5-HT后,TT-Ⅲ对N波抑制率恢复到68.9%。将蝎毒注射到大鼠侧脑室,痛阈迅速明显升高且能维持较长时间,表明蝎毒经外周给药时,以某种特殊方式透过血脑屏障,作用于中枢某些镇痛结构而发挥镇痛作用。向大鼠中脑导水管周围灰质(PAG)内微量注射蝎毒和吗啡,以热辐射为指标,作用强于吗啡4倍,其机制可能在于蝎毒通过大鼠中脑导水管周围起作用。
有人通过两步层析法从粗毒中分离纯化了镇痛活性肽SV-IV,临床验证表明从蛛网膜下腔注入后可显著压抑屈肌反射,提示SVC-IV镇痛机制与吗啡不同,不是通过阿片受体发挥镇痛作用。而且不但对大鼠急慢性躯体痛有显著的抑制作用,并具有一定的促进神经再生之特殊功效。可能是由于其能改善神经损伤局部粗细神经纤维的形态和功能。应用离体脑片技术及细胞内生物电记录方法研究表明蝎毒的某些活性物质对海马区痛放电有抑制作用,其作用途径一方面通过激活内源性阿片系统,另一方面增加乙酰胆碱的释放,从而协同蝎毒的镇痛作用。且与血压无关。已用大、小鼠及猴三种动物五种模型对蝎毒的依赖性进行评价,结果表明蝎毒不具备阿片类的身体依赖性。提示蝎毒有效镇痛成份在临床应用中不会产生像吗啡样的依赖性问题。 全蝎及其提取物可提高巨噬细胞的非特异及特异性免疫反应。通过单核-巨噬细胞碳粒廓清功能测定发现蝎毒乙醇提取物TSV可明显增强巨噬细胞的廓清吞噬能力,以不同浓度全蝎粉混悬液对小鼠进行药物干预,发现高、中、低剂量全蝎组均可明显提高小鼠腹腔巨噬细胞对红细胞的吞噬率和吞噬指数。原因可能是TSV刺激巨噬细胞分泌IFN-γ,从而使巨噬细胞分泌NO增加,且具有剂量-效果关系,而TSV对巨噬细胞分泌无明显影响,说明可提高巨噬细胞特异性反应。这可能也就是全蝎作为传统中药能广泛用于类风湿性关节炎、红斑狼疮等免疫性疾病的治疗的机制之一。
有人对超低温冷冻粉碎制成的全蝎粉进行了免疫功能试验,结果表明,全蝎粉可促进小鼠巨噬细胞吞噬功能,促进溶血素、溶血斑形成,促进淋巴细胞转化,说明全蝎粉对小鼠免疫功能具有较好的促进作用,可作为免疫兴奋药。通过分别给小鼠灌服全蝎与蝎身煎剂(2g/kg),6天后,发现小鼠网状内皮系统对碳粒的廓清作用和血清半数溶血指数值均明显降低,二者对非特异性免疫和体液免疫功能有相似的抑制作用。这说明不同的用药方法作用有异,与临床上治疗肿瘤时常以全蝎粉吞服为用、治疗痹症时常以煎剂入用是吻合的。 蝎毒治疗肿瘤的优点有许多,如蝎毒来源丰富,蝎毒有效成分较其他肿瘤化疗药物不良反应小,蝎毒不抑制肿瘤宿主的免疫功能,甚至增强机体的免疫功能,蝎毒对人直肠腺癌细胞有显著抑制作用,而腺癌细胞对化疗和放疗不敏感等。研究已经表明,用蝎毒治疗晚期肝癌、肺癌、鼻咽癌和胃癌患者,生存期较对照组有所延长。实验证明,蝎毒小剂量 (半数致死量的1/10-1/30)具有明显抗肿瘤作用及抗凝和促凝双向效应,当然大剂量(亚致死量或超过半数致死量)则产生严重毒副作用。通过将乙醇加热回流法制取的全蝎提取液注射于带瘤小鼠皮下,发现可使网状细胞肉瘤(SRS)和乳腺癌(MA-737)两种瘤组织的DNA明显减少,并使肿瘤生长得到明显抑制。进一步研究发现,全蝎粗提物(全蝎粉经乙醇提取后进一步减压、浓缩而得)可使体外培养的人体子宫颈癌细胞(Hela细胞)全部死亡脱壁,并呈现明显的量效关系;不但对肺腺癌(LA-795)带瘤小鼠的肿瘤生长有明显抑制作用,还可防止其胸腺萎缩,恢复并增强胸腺的免疫功能,故停药后机体对肿瘤的生长仍有较高的抑制率。
全蝎的醇制剂在体外能显著抑制人肝癌细胞呼吸,并对结肠癌和人肝癌细胞的生长均有明显抑制作用;对全蝎的不同部位进行分段提取,观察到蝎尾提取物(灌胃法)对肉瘤(S180)接种前后的抑瘤率分别为45.0%和47.6%,而蝎体提取物则无抗肿瘤作用。表明蝎尾提取物对肿瘤兼有预防和治疗的双重作用。进一步研究发现,干燥蝎尾的粗提物与蝎毒在成分及生物活性方面非常类似,均具有明显的抗肿瘤作用。
蝎毒的抗癌机制并不太明确,研究认为,蝎毒可抑制Eca109,S180等多种癌细胞的生长,并使分裂指数及克隆形成率降低;对Eca109细胞具有细胞毒作用,并抑制Eca109细胞内线粒体脱氢酶的活性,使线粒体脱氧酶活性下降,导致细胞代谢降低,细胞缺氧,甚至因代谢紊乱而死亡,而蝎毒对正常人血淋巴细胞无诱变作用。实验证明,蝎毒小鼠腹腔注射10天后,艾氏腹水癌带瘤小鼠的生命延长率为52.04%-54.38%;停药10天后,带瘤小鼠的体质量抑制率尚为24.2%-31.1%,表明蝎毒对带瘤小鼠的肿瘤抑制及延长其生命有意义。蝎毒的抗癌机制可能与其多肽有关,比如APBMV(antineoplastic polypeptide fromButhus MatensiiVenom)是从东亚钳蝎中分离的多肽类物质,对人低分化鼻咽癌上皮细胞CNE 2Z、人早幼粒白血病细胞HL 60、人肝癌细胞株SMMC 7211、人胃癌细胞株MCG803、人食管上皮癌细胞株Eca 109、小鼠肝癌H22和小鼠黑色素瘤(melanoma B16)的生长具有明显的抑制作用。
另外,蝎毒素含有的靶向氯离子通道阻断剂也可能有其作用,比如脑神经胶质瘤细胞表现一种独特的氯电流(称GCC电流),且表达量与肿瘤恶化程度正相关,而该GCC电流形成的主要原因是由于肿瘤细胞表面存在的一种特异性氯离子通道的异常表达,而这种电流在正常细胞中表达量很低或不表达。
蝎毒在治疗白血病方面可能有特效,因为粘附及侵袭是白血病发生髓外浸润的重要环节。而蝎毒及其组分可以减少白血病细胞从骨髓内的逸出,抑制白血病细胞对血管内皮细胞的粘附及跨血管迁移,干预白血病细胞对细胞外基质的降解。通过对NOD/SCID小鼠注射白血病患者骨髓单个核细胞建立白血病小鼠模型,再给予不同浓度PESV观察模型鼠体内MMP2、MMP9表达的变化,探讨蝎毒阻抑白血病细胞外基质降解与髓外浸润机制。结果显示,给药各组小鼠体内MMP2、MMP9表达水平均低于模型组,说明蝎毒对MMP2、MMP9过度表达具有抑制作用,其抑制效果与蝎毒浓度相关,证实蝎毒能有效地干预白血病细胞对细胞外基质的降解,阻抑髓外浸润的发生。通过观察比较小鼠外周血中白血病细胞状况及小鼠生存状态显示,给药各组小鼠外周血白细胞计数、血涂片及生存状态也均优于模型组。说明蝎毒能够降低动物模型体内白血病细胞的数量,抑制白血病细胞增殖。
有人以全蝎为主药,配以解毒、扶正的中药制成全蝎解毒液(全蝎、蒲公英、败酱草、黄芪、党参),治疗急性早幼粒细胞性白血病患者,结果显示全蝎解毒液能有效治疗急性早幼粒细胞白血病。中国中医研究院使用全蝎复方(全蝎6g,炙蜈蚣6g,僵蚕6g,土鳖虫6g,蜂蜜500ml)治疗29例白血病,缓解者有25-64.1%;食欲不振、临床症状及血象改善者有65-80%。 血栓形成的病理实质与血管受损、血流动力学改变、血凝异常、血小板功能亢进及纤溶活性降低等有关。通过全蝎提取液对家兔实验性动脉血栓的影响研究,发现全蝎能明显延长活化凝血活酶时间(APTT),凝血酶原时间(PT),凝血酶时间(TT)。说明全蝎对内源性及外源性凝血均有抑制作用。进一步研究表明全蝎液浸膏体以间接纤溶为主,在改变血液组分性质方面起抗栓作用。蝎毒纤溶活性肽对血管内皮细胞分泌纤溶因子的影响研究,表明蝎毒纤溶活性肽作用于内皮细胞,使t-PA活性增强,PAI-1活性降低,t-PA/PAI-1比值增大。同时发现全蝎提取液可通过抑制血小板聚集,减少纤维蛋白含量和促进纤溶系统活性等因素抑制血小板形成。
采用薄层色谱法和纸色谱法从蝎毒中得到的抗凝活性成分进行鉴定和分析。结果显示全蝎抗凝活性成分中无生物碱、糖类、甾体和萜类存在,双缩脲反应法显示为蛋白质和多肽物质。以0.3%的茚三酮为显色剂,正丁醇:乙酸:冰醋酸:水(4:1:1:2)为展开剂,并用14种已知氨基酸作为对照品同时展开,首次从供试品中分离得到6个不同组分的斑点,样品与对照品展开时有些氨基酸Rf值非常接近,在相同位置上有相同颜色的斑点,故推测该抗凝活性肽可能由天冬氨酸、赖氨酸、甘氨酸、酪氨酸等14种氨基酸组成。且该活性肽水溶液常压下高温煮沸不易破坏。
不同剂量的蝎毒活性多肽(SVAPS)可不同程度的抑制血小板聚集(P<0.05或P<0.01),SVAPS 剂量越大,凝血酶、ADP所诱发的血小板聚集率越小,即SVAPS抗凝血酶,ADP诱导的血小板聚集作用呈明显量效关系。过蝎毒活性多肽对内皮细胞释放PGI2和NO的影响研究结果显示,蝎毒活性多肽浓度为1.5、10、20mg/L时均明显表现出促进PGI2释放作用。
许多中药材里的宏量和微量元素对药材的药效药性有很大的影响,而全蝎的主要活性成分是蛋白质、氨基酸等物质,其中蛋白质含量最高,无机阳离子的加入,可能与其中的蛋白质发生作用,使凝血时间缩短。 静脉注射蝎毒60mg/kg,能使大鼠血压升高,心肌收缩力增强,显著改善左心室收缩功能,其升压作用与肾上腺素α受体有关,正性肌力作用与肾上腺素β受体关系不大。静脉注射蝎毒0.5mg/kg,能使麻醉兔左心室的内压升高;在灌流液内加入蝎毒,能使离体豚鼠心脏的心肌收缩张力明显增强,同时会引起心率减慢和心律不齐。蝎毒能增加兔乳头肌的收缩力,并引起主动脉条收缩,可能与其激活细胞膜钙离子通道,增加膜对钙离子的通透性有关。
蝎毒和全蝎提取液对离体蛙心收缩和心率具有较强的抑制作用;蝎头部和四肢的提取液对心脏收缩也具有抑制作用;尾部对离体心脏收缩则有兴奋作用。另外蝎毒对血小板聚集功能的影响有助于减少斑块形成,延缓动脉粥样硬化进程。 有人研究了河北产钳蝎蝎毒及抗癫痫肽(AEP)对咖啡因、美解眠、士的宁诱发的三种小鼠惊厥模型的作用,并与安定进行了比较。结果显示,AEP对抗咖啡因性惊厥的作用较强,惊厥发生率、惊厥程度、平均惊厥总持续时间、死亡率等四项指标均显著下降,明显优于安定;使美解眠性惊厥的四项指标亦明显下降,但稍弱于安定;对士的宁性惊厥的作用强度与安定相似。蝎毒的抗惊厥作用较AEP弱,对三种模型的作用强度顺序与AEP相同,与空白对照组比较无显著性差异。
蝎毒的作用机理尚不明确,可能与单胺类神经递质的释放有关,它能减少γ-氨基丁酸(简称GABA)对中间神经元的损伤,并使GABA释放量增加。提高大脑皮层GABA受体的集合活性和降低大脑皮层NMDA受体的结合活性,以使神经元兴奋性有效地降低,从而起到抑制癫痫发作的作用。通过KA癫痫大鼠经蝎毒处置3周后,与实验对照组相比,蝎毒治疗后可防止KA癫痫大鼠脑内前深梨状皮层T区κ阿片受体与NR2B免疫反应反应阳性细胞数下降,对癫痫的敏感性降低。蝎毒还能选择性地增加癫痫敏感大鼠海马强啡肽原mRNA(PDYN mRNA)、胆囊收缩素原mRNA(PCCK mRNA)表达,提示蝎毒能加强生理性抗癫痫作用。癫痫大鼠经BMK蝎毒处置后,腹侧海马门区PDYN mRNA阳性神经元数目明显增加,表明蝎毒能翻转腹侧海马门区PDYN mRNA的表达水平,选择性地增强海马门区DYN能抑制性中间神经元的功能。这很可能是其抗癫痫反复发作的重要细胞分子机制之一。
蝎毒耐热蛋白(,SVHRP)可诱导培养海马神经元NPY阳性反应和NPYmRNA的表达。同时还发现SVHRP对KA诱导的原代海马神经元的兴奋毒性损伤具有明显的保护作用,可能与SVHRP促进NPY合成有关。还能抑制急性分离海马神经元电压依赖性钠电流,改变钠通道的动力学特性,抑制其激活,促进其失活,从而降低神经元兴奋性。BmKIM可以提高钠电流的阈值,通过阻断钠通道而使谷氨酸的释放减少来对癫痫起抑制作用。
蝎毒中的一系列短链肽能特异性地阻断电压门控的钙离子激活的钾电流,而钾离子延迟电流的阻断势必会降低神经元的兴奋性,从而减轻发作。还可以提高KA癫痫大鼠前深梨状皮质T区Bcl-2蛋白的表达。全蝎初提液可以使KA癫痫模型大鼠DGCs、CA1、CA2、CA3椎体细胞核内c-Fos表达明显减少,还可以抑制脑啡肽原(PENK)mRNA表达增加,从而可明显降低海马神经元兴奋性及抗癫痫发作敏感性形成。全蝎还对caspase-8具有一定的抑制作用,同时也使生理性的抗癫痫机制增强。
进一步研究发现蝎毒抑制神经胶质细胞增生的机制主要是通过下调GFAP基因表达的转录因子,从而抑制GFAP的表达,防止胶质化的形成,是其抗癫痫反复发作的重要机制。在马桑内酯致痫的大鼠模型上,通过侧脑室注射蝎毒素,发现癫痫发生率大大降低,且发作程度也有所减轻,其表现是给予蝎毒素的大鼠无任何大发作的行为,并且小发作的平均持续时间也显著短于对照组,脑电图多呈散在单个痫样波,提示蝎毒素对癫痫发作时的神经细胞同步放电,放电的传播有较强的抑制作用。
临床应用
有人利用全蝎、地龙、僵蚕、石菖蒲、郁金等药,共蜜为丸,每丸 3g,白开水送服,用于治疗癫痫病 607 例,总有效率93. 4 %。利用全蝎、天麻、胆南星、石菖蒲等组方制成消痫灵散,按每千克体重0.15-0.3g,以0.2g为常用日服量,分3次温开水送服,7周为1个疗程。结果在110个病例中治愈38例,占34.55%;显效37例,占33.63%;好转27例,占24.55%;无效8例,占7.27%;总有效率达92.73%。还有人利用配伍全蝎的复方制剂平逆镇痫丸,结合西药卡马西平等治疗癫痫病76例,结果发作完全控制者9例,发作频率减少75%以上者35例,发作频率减少51%-75%者20例,发作频率减少26%-50%者10例,发作频率减少在25%以下者2例,总有效率达84.21%。
有人通过根癌农杆菌叶盘法将构建在双元载体上的昆虫特异性蝎神经毒素AaIT基因转化至中国南方杨树N-106中,获得转基因杨树。杀虫实验表明转基因杨树对一龄舞毒蛾(Lymantria dispar)幼虫有明显的抗性。还有人将昆虫特异性蝎神经毒素AaIT的合成基因融合在编码烟草花叶病毒的序列后面,一并插入表达载体pNGY-2,然后将重组表达载体转入烟草NC89中,所获得的转基因烟草具有显著的抗虫害能力。
4. 汽车的制动防抱死装置系统是什么
一、基本概念
1、什么是ABS:ABS是英文防抱死制动系统Antilock Braking System或者Antiskid Braking System的缩写。该系统在汽车制动过程中可自动调节车轮制动力,防止车轮抱死以取得最佳制动效果。
为了使汽车在行驶过程中以适当的减速度降低车速直至停车,保证行驶的安全,汽车上均装有行车制动器。汽车的事故往往与制动距离过长、紧急制动时发生侧滑等情况有关,故汽车的制动性能是汽车安全行驶的重要保障。一辆汽车的制动性能,主要从以下三个方面评价:
① 制动效能:即制动距离与制动减速度
② 制动效能的恒定性:即抗热衰退或抗水衰退的性能
③ 制动时汽车方向的稳定性:即制动时汽车不能跑偏、侧滑及失去转向性能的能力
汽车的制动性能是汽车迅速降低车速直至停车的能力,它是制动性能最基本的评价指标。这个指标即是制动距离和制动减速度。
制动距离是指在一定车速下,汽车从驾驶员踩下制动踏板开始到停车为止所驶过的距离,它与制动踏板力及路面附着条件有关。
制动减速度常指制动过程中的最大减速度,它反映了地面制动力,因此它与制动器制动力(车轮滚动时)及道路-轮胎附着力(车轮抱死拖滑时)有关。
汽车制动效能的恒定性主要是抗热衰退性能。抗热衰退性能是指汽车在高速行驶或在下长坡连续制动时制动效能保持的程度。因为制动过程实际上是把汽车行驶的动能通过制动器吸收转换为热能,而在制动器温度升高后,能否保持在冷状态时的制动效能已成为设计制动器时要考虑的一个重要问题。此外,涉水行驶时制动器还存在水衰退问题,制动器浸水后仍应保持其制动效能。
制动时汽车方向的稳定性是指汽车在制动过程中维持直线行驶或预定的弯道行驶能力。制动时汽车自动向左向右偏驶称为制动跑偏。侧滑是指制动时汽车的某一轴或两轴发生横向移动。失去转向能力是指弯道制动时,汽车不再按原来弯道行驶而沿弯道切线方向驶出和直线行驶制动时转动方向盘汽车仍按直线方向行驶的现象。制动跑偏、侧滑和失去转向能力是造成交通事故的重要原因。
因此,我们通常所说的汽车制动性能好是指其制距离短、制动减速度大、抗热衰退、水衰退性能好,且在制动过程中不发生跑偏、侧滑以及不失去转向能力。
在ABS出现之前,汽车所用的都是开环制动系统,其特点是制动器制动力矩的大小仅与驾驶员的操纵力、制动力的分配调节,以及制动器的尺寸和型式有关。由于没有车轮运动状态的反馈信号,无法测知制动过程中车轮的运动状态,因此也就不能据此调节轮缸的气室制动压力的大小。这样在紧急制动时,不可避免的出现车轮在地面上抱死拖滑的现象。当车轮抱死时,地面的侧向附着性很差,所能提供的侧向附着力很小,在汽车受到只要很小的种种干扰外力作用下就会出现方向失稳问题,容易发生交通事故。在潮湿路面或冰雪路面上制动时,这种失稳现象更经常发生。
人们对汽车制动时方向失稳现象及其产生原因的认识是逐步加深的。在路面车辆诞生初期,汽车前轮上几乎不装制动器,仅只安装在后轮上。一方面的原因是车行驶速度低,但主要原因是为了怕前轮因制动失去转向能力。其间虽然注意到后轮抱死有时会造成汽车绕前轴转动,但总以为要比前轮丧失转向能力要好。随着汽车质量(载荷)和车速的增大,仅靠后轮制动不足以获得足够的制动力,才导致在前轮上安装制动器。但仅仅是作为后轮制动的补充,且不允许前轮先于后轮抱死。后来,人们又认识到应根据静态轴荷的分配比例来分配前后轮的制动力。逐渐又认识到制动时轴荷的动态转移,前轮要增重,后轮要减重。后轮先抱死更容易造成汽车特别是铰接汽车(如半挂拖车机组)的方向失控。从而着手开始研制能限制后轮制动力矩的装置。由此诞生了限压阀、比例阀、惯性阀、感载比例阀等。这些前后制动力分配和调解装置已广泛应用于各种汽车的制动管路中,几乎所有的铰接汽车都装有这类装置。
随着前后轮制动力分配装置技术的发展,为提高路面车辆制动性能的其他技术也在发展。例如汽车的液压制动技术、钳盘式制动技术、双管路制动系统、真空伺服制动装置等技术都得到了应用和推广。
然而这些技术的应用,并不能完全解决车轮制动时的抱死问题。这是因为这些技术通通是开环制动系统,无法感知制动车轮的运动状况,轮缸或气室的压力不能根据需要相应地调节,制动轮得不到相应的控制。制动时的方向失稳仍未得到根本改善。
ABS装置的基本功能就是可感知制动轮每一瞬间的运动状态,并根据其运动状态相应地调节制动器制动力的大小,避免车轮抱死,因而是一个闭环制动系统。它是电子控制技术在汽车上最有突出成就的一项应用。可使得汽车在制动时维持方向稳定性和缩短制动距离,有效提地高了行车的安全性。
2、制动时车轮受力:
汽车在制动过程中,车轮在路面上是边流边滑的过程:车轮未制动时,可以认为车轮是纯滚动状态。当车轮抱死时,车轮在路面上的运动处于纯滑动状态。为了定量描述车轮的运动关态,引入车轮滑移率S这一参数,用来表明车轮滑动成分的多少。滑移率S的定义为
Uw-Rro x Ww
S= ________________x100%
Uw
式中 Uw___车轮中心的速度即汽车车身的速度
Rro ___车轮的动力半径
Ww___车轮的角速度
在纯滚动时,滑移率S=0,在抱死纯拖滑时s=100%,边滚边滑时0<S<100%。所以滑移率的数值可以用来表示车轮运动中滑动或分所占的比例。滑移率S越大,滑动成分越多。
通常,汽车在制动过程中存在着两种阻力:一种阻力是制动时摩擦片与制动鼓(盘)之间产生的摩擦力,这种阻力称为制动系统的阻力。因为它提供了制动力,因此也称为制动系制动力。另一种阻力是轮胎与道路表面之间产生的摩擦阻力,也称为轮胎—道路附着力。
这两种力之间存在着以下关系:制动系制动力小于轮胎—道路附着力,则汽车制动时会保持稳定状态;若制动系制动力大于轮胎—道路附着力,则制动时会出现车轮抱死和滑移。
如果前轮抱死,汽车基本上沿直线向前行驶,汽车处于稳定状态,但汽车失去转向控制能力,这样驾驶员在制动过程中躲避障碍物、行人及弯道上必要的转向操纵等就无法实现;如果后轮抱死,汽车的制动稳定性变差,在很小的侧向干扰力下,汽车就会发生甩尾,甚至调头等危险现象。尤其是在某些恶劣路况(湿滑或冰雪)下,将难以保证行车安全。另外,由于制动时车轮抱死,从而导致轮胎局部摩损,大大降低使用寿命。
ABS通过控制作用于车轮制动分泵上的制动管路压力,使汽车在紧急制动下车轮不会抱死,就能保持较好的方向稳定性。ABS能自动向液压调节器发出控制指令,因而能够更迅速、准确而有效地控制制动。ABS能在制动过程中防止车轮抱死,在正常条件下,驾驶员可以像没有装备ABS那样进行常规操作。但在湿滑路面上或者是紧急制动时,由于驾驶员的常规操作会使车轮抱死,ABS就自动接替常规制动,此时制动管路压力不受踏板力大小影响,而由ABS控制调节制动力。
汽车只有受到与行驶方向相反的外力时,才能受到制动从而速度逐渐降低直至停车。这个外力只能由空气和地面提供,空气阻力相对较小,一般情况下不予考虑,所以实际上外力是由地面提供的,我们称之为地面制动力。地面制动力取决于两摩擦付的摩擦力:制动器制动力和轮胎—道路附着力。制动器制动力仅由制动器结构参数所决定,即取决于制动器的型式、结构尺寸、摩擦付的摩擦系数以及车轮半径,并与制动踏板力,即制动时液压或空气压力成正比。汽车的地面制动力首先取决于制动器制动力,但同时又受地面附着条件的限制,所以只有具有足够的制动器制动力,同时地面又能提供高的轮胎—道路附着力时,才能获得足够的地面制动力。
3、轮胎特性和路面附着性能:
轮胎特性在汽车的制动和转向的过程中起着非常重要的作用,制动力(纵向力)和转向力(侧向力)都必须通过和道路的小小的轮胎接地面来产生,只有当车轮滚动的圆周速度与汽车相对于道路表面的速度之间存在着差异时才会产生。车轮的滚动圆周速度与汽车行驶速度的差异包括强性轮胎的变形和胎面的滑移,只有当滑移率为100%时,制动力才完全由车轮胎面在路面上的滑移来产生。对装备有ABS系统的汽车而言,轮胎的性能是非常关键的。ABS控制系统必须使滑移率限制在稳定区域内以防车轮抱死,大多数防抱死系统采用特定的车轮角速度临界值进行控制,超过个临界值后,该系统便自动减小制动扭矩,以防止车轮抱死。因此轮胎附着力达到最大值时的车轮角减速度和车轮达到抱死状态所需的时间是二个重要的参数。为了防止车轮抱死,防抱控制系统响应时间必须短于车轮抱死时间。
为了保证制动时的方向稳定性,在制动附着系数中必须考虑车轮侧向力,只有当车轮有部份侧向滑移时才会产生侧向力,也即在轮胎接地中心的运动方向与车轮平面角间存在侧偏角,某些工作参数诸如充气压力、外倾角、载荷等都会影响侧向力。
尽管以上讨论的轮胎特性是最基本的,但它们已能清楚地表明轮胎纵向力和侧向力之间的复杂关系,为了保证装备了ABS系统的汽车有最短的制动距离、方向稳定性以及其转向制动时的稳定性,其性能要求必须以所使用的轮胎特性为基础。
通过大量的路面试验和实验室台架测试,到目前为止基本搞清楚了影响纵向附着系数和侧向附着系数诸多因素。这些因素可归纳四大类:路面因素、轮胎因素、汽车因素和制动工况因素。
路面因素:路面基础、路面材料、路面宏观不平度、路面微观粗糙度、路表面的覆盖物(灰尘、油污、水、雪、冰等)路面横向坡度、路面曲率等。当汽车行驶时这些因素随时在改变。
轮胎因素:轮胎的尺寸及其比例、帘布层结构、轮胎的径向、切向、侧向刚度、胎压、胎面花纹及其摩损程度、轮胎类型(四季型、夏季型、冬季型)等。对于给定的轮胎,在制动过程中可以认为这些因素保持不变。
汽车因素:整车质量、悬挂质量、整车质心位置、轴距、前、后轮距、每个车轮的动态负荷、车身绕其质心的转动惯量、各个车轮的转动惯量、转换到驱动轮上的转动惯量、车轮外倾角、悬挂装置的类型和性能、转向系统的类型和性能、制动系统的类型和性能等。在制动过程中,这些参数有的保持不变,如车轮的转动惯量。有些随时间而变,如作用在各车轮上的动载荷。有些参数在一定条件下是变化的,如悬挂质量。有些参数改变甚微,可看作是不变的,如轴距等。
制动工况因素:车速、制动踏板动作速度、车辆行驶路迹、风速及其作用方向、侧向力和制动器的湿度等。所有这些参数在制动全过程中都随时改变。
车速对纵向和侧向峰值附着力有较大的影响。车速增大,峰值附着力变小。在较滑的路面上,车速的影响尤其明显。在湿滑路面上,当车速超过某一数值后,车轮和路面已不能产生纵向附着力和侧向附着力,即出现滑水现象。
随着轮胎气压的降低,纵向附着力增大,当作用在轮胎上的垂直载荷较大时,胎压的效果明显。这是因为载荷大,轮胎径向变形大、轮胎与路面的接触面积增大,因而所提供的纵向附着力增大了。而胎压对侧向附着力的影响取决于作用在车轮上的垂直载荷。当作用在车轮上垂直载荷为30KN时,胎压低时侧向力有所减少,当作用在车轮上的垂直载荷为10KN时,胎压低一些,侧向力反而有所增加,在小侧偏角下,胎压的影响可忽略不计。
当胎面花纹高度为新胎面花纹高度的95%时,所能提供的侧向附着力较小,而当胎面花纹高度摩损后,只有新胎面花纹的30%时,所能提供的侧向力较大。这说明胎面花纹摩损越严重,轮胎的倾向附着能力越强。这是因为胎面胶层有侧向弹性,胎面胶层越厚越软,胎面“骨架”(缓冲层)与地面之间的相对扭曲就越容易,轮胎的侧偏刚性越差。因而在相同的侧偏角下,所能提供的侧向力就越小,与此相反的是,胎面摩损越严重,胎面花纹对路面的抓着能力就越低,纵向附着能力就越小。对于子午线轮胎来说,驱动力和制动力对侧向力的关系是对称的。当轮胎结构为斜交时,驱动力和制动力相对于侧向力不对称。当纵向力为制动力时,和驱动力相比较,在相同的侧偏角下,路面所能提供的侧向附着力较大。
二、ABS的工作原理:
ABS系统根据车轮转动情况,随时调整制动力,来防止车轮抱死。汽车制动时,装在汽车各车轮轴侧的轮速传感器产生交变的电流信号,其频率随着车轮转动的角速度的增加而升高,以此来检测车轮速度的任何瞬间的变化,并不断地向电子控制单元输入这些轮速信号。电子控制单元则不断地监视这些信号,并与预先储存的信息相比较。如果信号的频率急剧下降,表明该车轮即将抱死,电子控制单元则指示执行器降低该车轮制动分泵的制动液压。当传感器的信号表明车轮又正常转动时,电子控制单元又发出指令允许升高车轮制动分泵的制动液压。执行器根据电子控制单元的指令“降低”、 “升高”、“保持”各车轮制动分泵的制动液压,从而以每秒约4~10次的脉冲形式进行制动压力调节,始终将车轮的滑移率控制在最佳滑移率范围内,以尽量发挥制动系制动力而又防止车轮抱死,最大限度地保证了制动时汽车的稳定性,增大了安全感,缩短了制动距离和动时间。
ABS系统除具有以上基本功能外,还有另外两种功能:一是ABS系统只有在车轮抱死或即将抱死时才开始开作,在其他所有工况下,ABS系统只是处于准备状态而并不干涉常规制动(即完全由制动踏板操纵的制动);另一种功能是如果ABS系统出现故障,则制动系统脱开ABS防抱装置而恢复原来的制动系,进行常规制动,同时通过仪表盘上的警示灯提醒驾驶员ABS系统出了故障。
三、ABS的控制过程
1、对ABS基本性能的要求:设计车轮防抱死系统(ABS)首先应该全面了解轮胎—道路的附着特性。从最短的制动距离来说,如果制动时轮胎的滑移率始终保持在附着系数的蜂值范围内,那么此时的制动效果最好。在理想情况下,传感装置应能测出各种可能条件下轮胎一道路接触面的附着系数值。而防抱死制动系统的其余机构则根据检测的信号来调节制动扭矩,使整个制动过程中附着系数始终处于峰值施围内,按照制动扭矩自动控制的调节方式,ABS的控制参数有车轮的角速度、轮胎的滑移率、车轮的圆周速度与车速之差、被控制车轮与其他车轮之间的速度差等。
直接测量轮胎—道路接触面的附着系数或相对滑移率在实际应用中有困难,因为这需要在测量装置中使用五轮仪。因此,实际使用的传感元件是设法测量车轮的角速度,制动时通过所测得的车轮速度与储存的制动开始前的车速进行比较,来估算轮胎的相对滑移率。
通常,ABS应满足的性能要求是:
① 在ABS的控制过程中要保持车辆的转向性能良好;
② 在通常的制动过程中,保持车辆的稳定性和转向能力比缩短制动距离更重要;
③ 要使转向轮所受的反作用力最小(尤其是在左右路面附着系数不一样的路面上);
④ ABS必须充分利用最理想的轮胎—道路附着系数的有效范围;
⑤ ABS必须最快地适应路面的粗糙度(附着系数)的变化;
⑥ 在左右侧路面附着系数不一样的路面上,ABS应能降低偏转力矩;
⑦ ABS必须考虑滑水现象并对此进行最优控制,保持汽车的方向稳定性和直线滑行性能;
⑧ 弯道制动时,ABS必须在保持操纵性的同时,不能损害稳定性,而且要求制动距离最短;
⑨ 若ABS出现故障,ABS应能自己关闭,而常规制动系统必须能正常工作,不致于失去方向稳定性;
⑩ ABS出现故障时应能通过警示灯告知驾驶员;
⑾ ABS的保养与维修技能必须与现存的或可以达到的维修实践相一致。
2、ABS的控制参数:
一般说来,可供选择作为制动防抱死系统自动调节控制参数及其不同的组合有以下几种:
① 车轮的滑移率S;
② 车轮滑移率对时间的一阶导数ds/dt;
③ 车轮的角加(减)速度对时间的一阶导敷dw/dt;
④ dw/dt和S的组合;
⑤ dw/dt和S作为主调节参数,减速度a作为辅助调节参数;
⑥ 车轮--道路的纵向附着系数对滑移率的一阶导数dфx/ds和车轮滑移率S的组合。
对于车轮的滑移率S,只要测得整车速度和车轮角速度即可计算而得。前已述及,车轮的最佳滑移率在各种不同附着系数的路面及各种不同的制动工况下变化很大,变化范围可从10%~50%。因而适应各种制动工况的滑移率的门限值很难确定。因此,仅选用滑移率作为唯一的调节参数是很难胜任的。
把滑移率对时间的一阶导数ds/dt作为调节参数,因它不能保证车轮滑移率始终在最佳值附近变动,因此也不理想。
车轮的角加(减)速度作为唯一的调节参数对非驱动轮是可行的。对于驱动轮来说,若在制动时发动机与传动系统断开也是可行的。然而紧急制动时,有时驾驶员来不及断开离合器就踩下制动踏板(特别对不熟炼者而言),此时驱动轮与发动机、传动系仍连在一起,发动机和传动系的旋转件转换到驱动轮上的转动惯量就很大,车轮减速度的响应就比较迟钝。故把车轮的角加(减)速度选为唯一的调节参数是受局限的。
现在通行的调节参数是车轮的角加(减)速度对时间的一阶导数dw/dt和车轮的滑移率s 的组合。现今实用的ABS系统均采用这两个参数对车轮的运动状态进行联合控制。
然而在这种组合参数中,车轮的角加(减)速度和车轮的最佳滑移率并没有直接的关系,也即与车轮—道路间的峰值附着系数没有直接关系。换言之,车轮的角加(减)速度的大小,不能给出车轮是否处于最佳滑转状态的信息,也即不能保证利用附着系数在其峰值附着系数周围变动,从而不能把制动距离缩到最短。
在维持车辆足够的侧向附着能力的前提下,为了获得最短的制动距离,就需选择车轮—道路间纵向附着系数对车轮滑移率的一阶导数,或地面制动力对滑移率的一阶导数和车轮的滑移率的组合作为调节参数。
5. 医学实验中 小鼠的甩尾法是指什么
甩尾法也叫光热甩尾法或辐射热甩尾法,其基本原理就是将一束光照射到鼠尾上产生集热效应,使鼠尾的局部升温产生疼痛,当超过动物忍耐的痛阈时动物就产生有效的甩尾逃避,以此方法来判断动物痛阈的高低和变化的方法就叫光照甩尾法。
6. 香椿叶是热性吗
楝科植物香椿(Toona sinensis),又名猪椿、红椿、春阳树、椿甜树、春菜树、椿芽树、白椿、香树。是我国著名的药食两用木本植物,其根皮、树皮、芽、叶、果实均可作为中药,始收载于《唐本草》。中医认为,香椿味苦涩、性温,有祛风利湿、止血止痛的功能,椿白皮主治痢疾、肠炎、泌尿道感染、便血、白带、风湿腰腿痛,香椿叶及嫩枝主治痢疾,香椿子主治胃和十二指肠溃疡、慢性胃炎等〔1〕。香椿已有上千年的药用和食用历史,为了使传统的经验疗方得以古为今用并有所发扬光大,将近年来有关香椿化学活性成分及药理作用的研究作一概述。现分析如下。
1 化学成分
香椿药用的主要部分椿叶、椿白皮、香椿子,从传统中医理论上讲均有苦、涩、寒(凉)之药性,入胃、大肠经,有清热燥湿、涩肠、止血、泻、杀虫等功效。由于香椿叶在民间既能食用又能药用,所以一些研究人员对香椿叶的化学成分研究。
国内外学者对香椿化学成分的报道较少。对香椿嫩枝叶和种子进行了系统测试,初步研究表明香椿嫩叶、种子中含有酚类、鞣质、生物碱、皂甙、甾体、萜类、挥发油及其油脂等活性成分。在嫩枝、嫩叶中还含有蒽醌及其甙、黄酮及其甙、内酯、香豆素及其甙,在种子中含有强心甙。种子挥发油含有醛、酮、芳香族、硫醇、多元醇、叔醇等成分。
香椿有独特的香味,丁旭光〔2〕等人对其芽和茎中的挥发性成分进行了研究,他们采用水蒸气蒸馏,气相色谱-质谱联用技术,从同时蒸馏萃取和水蒸汽蒸馏提取的香椿芽挥发油中分别鉴定了42种和36种化学成分,从香椿茎中鉴定了30种化学成分。对照研究表明香椿茎和叶的挥发性成分绝大多数是相同的,仅有少数成分略有不同。它们是二氧杂环己烷,2-乙氧基丁烷,乙二醇单硝酸酯,2,5-二甲基噻吩,樟脑,龙脑,3,4-二甲基葵烷,乙酸龙脑酯,β-丁香烯,α-蛇麻烯,2-乙基-1-葵醇,榄香醇,2,6-二甲基-4-乙基-苯酚,6-甲基-十三烷;Acnphyllene,雪松醇,3,6-二甲基十一烷,合金欢醇,2,7-辛二烯-1-醇-乙酸酯,邻苯二甲酸二甲氧基乙酯等。二十种化合物含量中挥发性成分总量的78.14%,并且它们主要为单萜、倍半萜和倍半萜醇类。
研究发现香椿叶中含有黄酮类化合物〔3~5〕。罗晓东〔6〕等人为了寻找楝科植物中的杀虫及药用活性成分,从香椿叶的乙醇提取物中分离得到6,7,8,2,-四甲氧基-5,6′-二羟基黄酮、5,7-二羟基-8-甲氧基黄酮、 山柰酚、3-羟基-5,6-环氧-7-megastigmen-9-酮、没食子酸乙酯、东莨菪素等六种化合物。其中3-羟基-5,6-环氧-7-megastigmen-9-酮为首次分离得到。
张仲平〔7〕等人用醇提法专门对香椿叶黄酮类成分进行分离,首次得到槲皮素-3-0-鼠李糖甙,槲皮素-3-0-葡萄糖甙及槲皮素三种化合物。并且战旗〔8〕、张仲平〔9〕等人证实了叶中黄酮类物质主要是以甙的形式存在。
人们已经发现香椿中有多种活性成分,并对某些化学成分如黄酮、皂甙进行初步分离,发现香椿嫩枝叶总黄酮的含量为3.37%,比同期银杏叶黄酮类化合物的含量(2.4%~2.8% )要高。
程传格〔10〕等用毛细管色谱-质谱联用法测定了香椿籽油的组成。在鉴定出的成分中有17 种萜烯类化合物,占41.0%,22种脂肪酸占94.14%,不饱和脂肪酸含量很高,占84.16%,其中以亚油酸含量最高,占83.14%,其次是棕榈酸和硬脂酸。
此外,惠秋沙〔11〕等通过对香椿中微量元素的测定分析,探讨香椿治疗糖尿病的机制与微量元素之间的关系。结果表明香椿中Cu、Zn、Fe元素芽中含量最高分别为18.4 mg/kg,59.6 mg/kg,172.3 mg/kg;Ca元素叶中含量最高为12 671.0 mg/kg,Cr元素低于检测限(<3 mg/kg)。
2 药理作用
现代药理学研究表明,香椿的一些成分具有杀菌、抗炎、镇痛、抗癌、抑制血小板聚集、抗氧化、降血糖等作用。
2.1 抗菌作用
香椿煎剂对金黄色葡萄球菌、肺炎球菌、伤寒杆菌、甲型付伤寒杆菌、绿脓杆菌、费氏痢疾杆菌有较强抑制作用。椿皮煎剂对福氏、宋内氏痢疾杆菌和大肠杆菌有抑制作用〔12〕。朱育凤〔13〕等采用琼脂平板稀释法对香椿皮的水提取物和醇提取物进行了体外抗菌试验研究。结果发现香椿皮的水、醇提取物对金黄色葡萄球菌、绿脓杆菌、大肠杆菌均有抑制作用。抗菌作用可能与香椿叶中的黄酮化合物、萜类化合物、蒽醌、鞣质、皂甙等有关。
2.2 抗炎作用
薛玲〔14〕等采用稀乙醇提取、聚酰胺柱分离制得总黄酮,通过初步药效学实验发现其具有化痰、抗炎和增强免疫的作用。抗炎作用可能与香椿叶中的黄酮化合物、萜类化合物等有关。
2.3 镇痛作用
杨玉娇博士在止痛方面也于动物模式中发现,口服香椿叶的水萃取物可以缓解醋酸及热所诱发的疼痛程度,减少小白鼠扭体试验中的扭体次数,及延长热板试验、光辐射热甩尾试验之潜伏时间,而呈现出镇痛效果。镇痛作用可能与香椿叶中的黄酮化合物有关。
2.4 降血糖作用
高雄大学医学院许胜光教授研究结果表明,香椿的嫩叶能降由Alloxan所诱发之糖尿病鼠的血糖,且只降低糖尿病鼠的血糖值,并不会影响正常鼠的血糖。会改善糖尿病鼠胰岛素之分泌,增加脂肪组织之GLUT4(葡萄糖转运装置)蛋白表现等作用。椿叶水萃取液能降低糖尿病病人之血糖值,甚至对一般降血糖药物所未能改善之高血糖症状之病人亦有效,而且对糖尿病所伴随的慢性并发症:四肢麻木、全身酸痛及血压不稳定均有改善。香椿的嫩叶降血糖作用可能与萜类化合物有关。
2.5 抗癌作用
香椿的嫩叶可抑制某些癌细胞生长(肺癌:A549、H226;直肠癌:Col0205;骨癌:U-20S;肝癌:C3A)。张慧秋博士已研究出香椿抑制A549肺癌细胞株的机转,目前已经进行到动物实验,结果发现香椿粗萃取粉有明显抗癌效果。不同的香椿浓度对人类肝癌细胞(HepG2),以MTT及Methyleneblue方法测定其对细胞生长之调节或毒杀作用,发现香椿对HepG2之生长有抑制作用,但以浓度1.0 mg/mL为分界,予更高浓度10.0 mg/mL时似有明显回升现象。其50%抑制生长浓度(IC50)分别为(0.517±0.01) mg/mL(MTT)及(0.53±0.04) mg/mL(Methylene blue)。抗癌作用可能与香椿叶中的皂甙、生物碱等有关。
2.6 降血压作用
洪秀贞副教授经初步的实验结果显示桩叶粗萃取液细分成几个成分中,5-5在低剂量就会降低血管平滑肌细胞A7r5细胞内钙离子的浓度,而5-2会抑制50 mM KCl2所诱发细胞内钙离子浓度的增加,显示香椿叶可能可以用来降低血压。降压作用可能与香椿叶中的蒽醌、鞣质、皂甙等有关。
2.7 抗氧化作用
香椿萃取液进行体外的抗氧化活性分析结果显示香椿萃取液在亚麻油酸乳化系统中具有很好的抗氧化性及清除DPPH自由基、螫合亚铁离子、还原力及清除超氧阴离子的能力。而且,抗氧化能力随着香椿萃取汁液浓度增加而增加。香椿萃取液可减少LDL之过氧化程度,包括减少丙二醛生成量、避免Apoprotein B蛋白裂解、防止胆固醇氧化及抑制LDL electrophoretic movility改变。而且,保护功效随著香椿萃取液的浓度增加而增加。由结果可知,香椿萃取液具有抗氧化能力,可能具有开发防自由基相关疾病之抗氧化剂潜力。抗氧化作用可能与香椿叶中的黄酮化合物等有关。
3 小结
香椿是一种用途较广、来源丰富、成本低廉的药用植物,具有很好的开发利用价值。随着生物物理、生物化学、分子生物学等许多学科以及其它高科技实验技术与手段的发展,期望能找出香椿具有不同治疗效果的有效成分。香椿叶中活性成分主要为黄酮类化合物,另外还有萜类和内酯等。香椿叶中的化合物组分尚待进一步分离研究,而且在活性成分的研究基础上进行药理实验研究尚少有报道。
7. 制动防抱死装置系统
一、基本概念
1、什么是ABS:ABS是英文防抱死制动系统Antilock Braking System或者Antiskid Braking System的缩写。该系统在汽车制动过程中可自动调节车轮制动力,防止车轮抱死以取得最佳制动效果。
为了使汽车在行驶过程中以适当的减速度降低车速直至停车,保证行驶的安全,汽车上均装有行车制动器。汽车的事故往往与制动距离过长、紧急制动时发生侧滑等情况有关,故汽车的制动性能是汽车安全行驶的重要保障。一辆汽车的制动性能,主要从以下三个方面评价:
① 制动效能:即制动距离与制动减速度
② 制动效能的恒定性:即抗热衰退或抗水衰退的性能
③ 制动时汽车方向的稳定性:即制动时汽车不能跑偏、侧滑及失去转向性能的能力
汽车的制动性能是汽车迅速降低车速直至停车的能力,它是制动性能最基本的评价指标。这个指标即是制动距离和制动减速度。
制动距离是指在一定车速下,汽车从驾驶员踩下制动踏板开始到停车为止所驶过的距离,它与制动踏板力及路面附着条件有关。
制动减速度常指制动过程中的最大减速度,它反映了地面制动力,因此它与制动器制动力(车轮滚动时)及道路-轮胎附着力(车轮抱死拖滑时)有关。
汽车制动效能的恒定性主要是抗热衰退性能。抗热衰退性能是指汽车在高速行驶或在下长坡连续制动时制动效能保持的程度。因为制动过程实际上是把汽车行驶的动能通过制动器吸收转换为热能,而在制动器温度升高后,能否保持在冷状态时的制动效能已成为设计制动器时要考虑的一个重要问题。此外,涉水行驶时制动器还存在水衰退问题,制动器浸水后仍应保持其制动效能。
制动时汽车方向的稳定性是指汽车在制动过程中维持直线行驶或预定的弯道行驶能力。制动时汽车自动向左向右偏驶称为制动跑偏。侧滑是指制动时汽车的某一轴或两轴发生横向移动。失去转向能力是指弯道制动时,汽车不再按原来弯道行驶而沿弯道切线方向驶出和直线行驶制动时转动方向盘汽车仍按直线方向行驶的现象。制动跑偏、侧滑和失去转向能力是造成交通事故的重要原因。
因此,我们通常所说的汽车制动性能好是指其制距离短、制动减速度大、抗热衰退、水衰退性能好,且在制动过程中不发生跑偏、侧滑以及不失去转向能力。
在ABS出现之前,汽车所用的都是开环制动系统,其特点是制动器制动力矩的大小仅与驾驶员的操纵力、制动力的分配调节,以及制动器的尺寸和型式有关。由于没有车轮运动状态的反馈信号,无法测知制动过程中车轮的运动状态,因此也就不能据此调节轮缸的气室制动压力的大小。这样在紧急制动时,不可避免的出现车轮在地面上抱死拖滑的现象。当车轮抱死时,地面的侧向附着性很差,所能提供的侧向附着力很小,在汽车受到只要很小的种种干扰外力作用下就会出现方向失稳问题,容易发生交通事故。在潮湿路面或冰雪路面上制动时,这种失稳现象更经常发生。
人们对汽车制动时方向失稳现象及其产生原因的认识是逐步加深的。在路面车辆诞生初期,汽车前轮上几乎不装制动器,仅只安装在后轮上。一方面的原因是车行驶速度低,但主要原因是为了怕前轮因制动失去转向能力。其间虽然注意到后轮抱死有时会造成汽车绕前轴转动,但总以为要比前轮丧失转向能力要好。随着汽车质量(载荷)和车速的增大,仅靠后轮制动不足以获得足够的制动力,才导致在前轮上安装制动器。但仅仅是作为后轮制动的补充,且不允许前轮先于后轮抱死。后来,人们又认识到应根据静态轴荷的分配比例来分配前后轮的制动力。逐渐又认识到制动时轴荷的动态转移,前轮要增重,后轮要减重。后轮先抱死更容易造成汽车特别是铰接汽车(如半挂拖车机组)的方向失控。从而着手开始研制能限制后轮制动力矩的装置。由此诞生了限压阀、比例阀、惯性阀、感载比例阀等。这些前后制动力分配和调解装置已广泛应用于各种汽车的制动管路中,几乎所有的铰接汽车都装有这类装置。
随着前后轮制动力分配装置技术的发展,为提高路面车辆制动性能的其他技术也在发展。例如汽车的液压制动技术、钳盘式制动技术、双管路制动系统、真空伺服制动装置等技术都得到了应用和推广。
然而这些技术的应用,并不能完全解决车轮制动时的抱死问题。这是因为这些技术通通是开环制动系统,无法感知制动车轮的运动状况,轮缸或气室的压力不能根据需要相应地调节,制动轮得不到相应的控制。制动时的方向失稳仍未得到根本改善。
ABS装置的基本功能就是可感知制动轮每一瞬间的运动状态,并根据其运动状态相应地调节制动器制动力的大小,避免车轮抱死,因而是一个闭环制动系统。它是电子控制技术在汽车上最有突出成就的一项应用。可使得汽车在制动时维持方向稳定性和缩短制动距离,有效提地高了行车的安全性。
2、制动时车轮受力:
汽车在制动过程中,车轮在路面上是边流边滑的过程:车轮未制动时,可以认为车轮是纯滚动状态。当车轮抱死时,车轮在路面上的运动处于纯滑动状态。为了定量描述车轮的运动关态,引入车轮滑移率S这一参数,用来表明车轮滑动成分的多少。滑移率S的定义为
Uw-Rro x Ww
S= ________________x100%
Uw
式中 Uw___车轮中心的速度即汽车车身的速度
Rro ___车轮的动力半径
Ww___车轮的角速度
在纯滚动时,滑移率S=0,在抱死纯拖滑时s=100%,边滚边滑时0<S<100%。所以滑移率的数值可以用来表示车轮运动中滑动或分所占的比例。滑移率S越大,滑动成分越多。
通常,汽车在制动过程中存在着两种阻力:一种阻力是制动时摩擦片与制动鼓(盘)之间产生的摩擦力,这种阻力称为制动系统的阻力。因为它提供了制动力,因此也称为制动系制动力。另一种阻力是轮胎与道路表面之间产生的摩擦阻力,也称为轮胎—道路附着力。
这两种力之间存在着以下关系:制动系制动力小于轮胎—道路附着力,则汽车制动时会保持稳定状态;若制动系制动力大于轮胎—道路附着力,则制动时会出现车轮抱死和滑移。
如果前轮抱死,汽车基本上沿直线向前行驶,汽车处于稳定状态,但汽车失去转向控制能力,这样驾驶员在制动过程中躲避障碍物、行人及弯道上必要的转向操纵等就无法实现;如果后轮抱死,汽车的制动稳定性变差,在很小的侧向干扰力下,汽车就会发生甩尾,甚至调头等危险现象。尤其是在某些恶劣路况(湿滑或冰雪)下,将难以保证行车安全。另外,由于制动时车轮抱死,从而导致轮胎局部摩损,大大降低使用寿命。
ABS通过控制作用于车轮制动分泵上的制动管路压力,使汽车在紧急制动下车轮不会抱死,就能保持较好的方向稳定性。ABS能自动向液压调节器发出控制指令,因而能够更迅速、准确而有效地控制制动。ABS能在制动过程中防止车轮抱死,在正常条件下,驾驶员可以像没有装备ABS那样进行常规操作。但在湿滑路面上或者是紧急制动时,由于驾驶员的常规操作会使车轮抱死,ABS就自动接替常规制动,此时制动管路压力不受踏板力大小影响,而由ABS控制调节制动力。
汽车只有受到与行驶方向相反的外力时,才能受到制动从而速度逐渐降低直至停车。这个外力只能由空气和地面提供,空气阻力相对较小,一般情况下不予考虑,所以实际上外力是由地面提供的,我们称之为地面制动力。地面制动力取决于两摩擦付的摩擦力:制动器制动力和轮胎—道路附着力。制动器制动力仅由制动器结构参数所决定,即取决于制动器的型式、结构尺寸、摩擦付的摩擦系数以及车轮半径,并与制动踏板力,即制动时液压或空气压力成正比。汽车的地面制动力首先取决于制动器制动力,但同时又受地面附着条件的限制,所以只有具有足够的制动器制动力,同时地面又能提供高的轮胎—道路附着力时,才能获得足够的地面制动力。
3、轮胎特性和路面附着性能:
轮胎特性在汽车的制动和转向的过程中起着非常重要的作用,制动力(纵向力)和转向力(侧向力)都必须通过和道路的小小的轮胎接地面来产生,只有当车轮滚动的圆周速度与汽车相对于道路表面的速度之间存在着差异时才会产生。车轮的滚动圆周速度与汽车行驶速度的差异包括强性轮胎的变形和胎面的滑移,只有当滑移率为100%时,制动力才完全由车轮胎面在路面上的滑移来产生。对装备有ABS系统的汽车而言,轮胎的性能是非常关键的。ABS控制系统必须使滑移率限制在稳定区域内以防车轮抱死,大多数防抱死系统采用特定的车轮角速度临界值进行控制,超过个临界值后,该系统便自动减小制动扭矩,以防止车轮抱死。因此轮胎附着力达到最大值时的车轮角减速度和车轮达到抱死状态所需的时间是二个重要的参数。为了防止车轮抱死,防抱控制系统响应时间必须短于车轮抱死时间。
为了保证制动时的方向稳定性,在制动附着系数中必须考虑车轮侧向力,只有当车轮有部份侧向滑移时才会产生侧向力,也即在轮胎接地中心的运动方向与车轮平面角间存在侧偏角,某些工作参数诸如充气压力、外倾角、载荷等都会影响侧向力。
尽管以上讨论的轮胎特性是最基本的,但它们已能清楚地表明轮胎纵向力和侧向力之间的复杂关系,为了保证装备了ABS系统的汽车有最短的制动距离、方向稳定性以及其转向制动时的稳定性,其性能要求必须以所使用的轮胎特性为基础。
通过大量的路面试验和实验室台架测试,到目前为止基本搞清楚了影响纵向附着系数和侧向附着系数诸多因素。这些因素可归纳四大类:路面因素、轮胎因素、汽车因素和制动工况因素。
路面因素:路面基础、路面材料、路面宏观不平度、路面微观粗糙度、路表面的覆盖物(灰尘、油污、水、雪、冰等)路面横向坡度、路面曲率等。当汽车行驶时这些因素随时在改变。
轮胎因素:轮胎的尺寸及其比例、帘布层结构、轮胎的径向、切向、侧向刚度、胎压、胎面花纹及其摩损程度、轮胎类型(四季型、夏季型、冬季型)等。对于给定的轮胎,在制动过程中可以认为这些因素保持不变。
汽车因素:整车质量、悬挂质量、整车质心位置、轴距、前、后轮距、每个车轮的动态负荷、车身绕其质心的转动惯量、各个车轮的转动惯量、转换到驱动轮上的转动惯量、车轮外倾角、悬挂装置的类型和性能、转向系统的类型和性能、制动系统的类型和性能等。在制动过程中,这些参数有的保持不变,如车轮的转动惯量。有些随时间而变,如作用在各车轮上的动载荷。有些参数在一定条件下是变化的,如悬挂质量。有些参数改变甚微,可看作是不变的,如轴距等。
制动工况因素:车速、制动踏板动作速度、车辆行驶路迹、风速及其作用方向、侧向力和制动器的湿度等。所有这些参数在制动全过程中都随时改变。
车速对纵向和侧向峰值附着力有较大的影响。车速增大,峰值附着力变小。在较滑的路面上,车速的影响尤其明显。在湿滑路面上,当车速超过某一数值后,车轮和路面已不能产生纵向附着力和侧向附着力,即出现滑水现象。
随着轮胎气压的降低,纵向附着力增大,当作用在轮胎上的垂直载荷较大时,胎压的效果明显。这是因为载荷大,轮胎径向变形大、轮胎与路面的接触面积增大,因而所提供的纵向附着力增大了。而胎压对侧向附着力的影响取决于作用在车轮上的垂直载荷。当作用在车轮上垂直载荷为30KN时,胎压低时侧向力有所减少,当作用在车轮上的垂直载荷为10KN时,胎压低一些,侧向力反而有所增加,在小侧偏角下,胎压的影响可忽略不计。
当胎面花纹高度为新胎面花纹高度的95%时,所能提供的侧向附着力较小,而当胎面花纹高度摩损后,只有新胎面花纹的30%时,所能提供的侧向力较大。这说明胎面花纹摩损越严重,轮胎的倾向附着能力越强。这是因为胎面胶层有侧向弹性,胎面胶层越厚越软,胎面“骨架”(缓冲层)与地面之间的相对扭曲就越容易,轮胎的侧偏刚性越差。因而在相同的侧偏角下,所能提供的侧向力就越小,与此相反的是,胎面摩损越严重,胎面花纹对路面的抓着能力就越低,纵向附着能力就越小。对于子午线轮胎来说,驱动力和制动力对侧向力的关系是对称的。当轮胎结构为斜交时,驱动力和制动力相对于侧向力不对称。当纵向力为制动力时,和驱动力相比较,在相同的侧偏角下,路面所能提供的侧向附着力较大。
二、ABS的工作原理:
ABS系统根据车轮转动情况,随时调整制动力,来防止车轮抱死。汽车制动时,装在汽车各车轮轴侧的轮速传感器产生交变的电流信号,其频率随着车轮转动的角速度的增加而升高,以此来检测车轮速度的任何瞬间的变化,并不断地向电子控制单元输入这些轮速信号。电子控制单元则不断地监视这些信号,并与预先储存的信息相比较。如果信号的频率急剧下降,表明该车轮即将抱死,电子控制单元则指示执行器降低该车轮制动分泵的制动液压。当传感器的信号表明车轮又正常转动时,电子控制单元又发出指令允许升高车轮制动分泵的制动液压。执行器根据电子控制单元的指令“降低”、 “升高”、“保持”各车轮制动分泵的制动液压,从而以每秒约4~10次的脉冲形式进行制动压力调节,始终将车轮的滑移率控制在最佳滑移率范围内,以尽量发挥制动系制动力而又防止车轮抱死,最大限度地保证了制动时汽车的稳定性,增大了安全感,缩短了制动距离和动时间。
ABS系统除具有以上基本功能外,还有另外两种功能:一是ABS系统只有在车轮抱死或即将抱死时才开始开作,在其他所有工况下,ABS系统只是处于准备状态而并不干涉常规制动(即完全由制动踏板操纵的制动);另一种功能是如果ABS系统出现故障,则制动系统脱开ABS防抱装置而恢复原来的制动系,进行常规制动,同时通过仪表盘上的警示灯提醒驾驶员ABS系统出了故障。
三、ABS的控制过程
1、对ABS基本性能的要求:设计车轮防抱死系统(ABS)首先应该全面了解轮胎—道路的附着特性。从最短的制动距离来说,如果制动时轮胎的滑移率始终保持在附着系数的蜂值范围内,那么此时的制动效果最好。在理想情况下,传感装置应能测出各种可能条件下轮胎一道路接触面的附着系数值。而防抱死制动系统的其余机构则根据检测的信号来调节制动扭矩,使整个制动过程中附着系数始终处于峰值施围内,按照制动扭矩自动控制的调节方式,ABS的控制参数有车轮的角速度、轮胎的滑移率、车轮的圆周速度与车速之差、被控制车轮与其他车轮之间的速度差等。
直接测量轮胎—道路接触面的附着系数或相对滑移率在实际应用中有困难,因为这需要在测量装置中使用五轮仪。因此,实际使用的传感元件是设法测量车轮的角速度,制动时通过所测得的车轮速度与储存的制动开始前的车速进行比较,来估算轮胎的相对滑移率。
通常,ABS应满足的性能要求是:
① 在ABS的控制过程中要保持车辆的转向性能良好;
② 在通常的制动过程中,保持车辆的稳定性和转向能力比缩短制动距离更重要;
③ 要使转向轮所受的反作用力最小(尤其是在左右路面附着系数不一样的路面上);
④ ABS必须充分利用最理想的轮胎—道路附着系数的有效范围;
⑤ ABS必须最快地适应路面的粗糙度(附着系数)的变化;
⑥ 在左右侧路面附着系数不一样的路面上,ABS应能降低偏转力矩;
⑦ ABS必须考虑滑水现象并对此进行最优控制,保持汽车的方向稳定性和直线滑行性能;
⑧ 弯道制动时,ABS必须在保持操纵性的同时,不能损害稳定性,而且要求制动距离最短;
⑨ 若ABS出现故障,ABS应能自己关闭,而常规制动系统必须能正常工作,不致于失去方向稳定性;
⑩ ABS出现故障时应能通过警示灯告知驾驶员;
⑾ ABS的保养与维修技能必须与现存的或可以达到的维修实践相一致。
2、ABS的控制参数:
一般说来,可供选择作为制动防抱死系统自动调节控制参数及其不同的组合有以下几种:
① 车轮的滑移率S;
② 车轮滑移率对时间的一阶导数ds/dt;
③ 车轮的角加(减)速度对时间的一阶导敷dw/dt;
④ dw/dt和S的组合;
⑤ dw/dt和S作为主调节参数,减速度a作为辅助调节参数;
⑥ 车轮--道路的纵向附着系数对滑移率的一阶导数dфx/ds和车轮滑移率S的组合。
对于车轮的滑移率S,只要测得整车速度和车轮角速度即可计算而得。前已述及,车轮的最佳滑移率在各种不同附着系数的路面及各种不同的制动工况下变化很大,变化范围可从10%~50%。因而适应各种制动工况的滑移率的门限值很难确定。因此,仅选用滑移率作为唯一的调节参数是很难胜任的。
把滑移率对时间的一阶导数ds/dt作为调节参数,因它不能保证车轮滑移率始终在最佳值附近变动,因此也不理想。
车轮的角加(减)速度作为唯一的调节参数对非驱动轮是可行的。对于驱动轮来说,若在制动时发动机与传动系统断开也是可行的。然而紧急制动时,有时驾驶员来不及断开离合器就踩下制动踏板(特别对不熟炼者而言),此时驱动轮与发动机、传动系仍连在一起,发动机和传动系的旋转件转换到驱动轮上的转动惯量就很大,车轮减速度的响应就比较迟钝。故把车轮的角加(减)速度选为唯一的调节参数是受局限的。
现在通行的调节参数是车轮的角加(减)速度对时间的一阶导数dw/dt和车轮的滑移率s 的组合。现今实用的ABS系统均采用这两个参数对车轮的运动状态进行联合控制。
然而在这种组合参数中,车轮的角加(减)速度和车轮的最佳滑移率并没有直接的关系,也即与车轮—道路间的峰值附着系数没有直接关系。换言之,车轮的角加(减)速度的大小,不能给出车轮是否处于最佳滑转状态的信息,也即不能保证利用附着系数在其峰值附着系数周围变动,从而不能把制动距离缩到最短。
在维持车辆足够的侧向附着能力的前提下,为了获得最短的制动距离,就需选择车轮—道路间纵向附着系数对车轮滑移率的一阶导数,或地面制动力对滑移率的一阶导数和车轮的滑移率的组合作为调节参数。