❶ 传动方式有哪几种
传动分为机械传动、流体传动和电力传动3大类。
1、机械传动是利用机件回直接实现传动,其中齿轮传动和答链传动属于啮合传动;摩擦轮传动和带传动属于摩擦传动。
2、流体传动是以液体或气体为工作介质的传动,又可分为依靠液体静压力作用的液压传动、依靠液体动力作用的液力传动、依靠气体压力作用的气压传动。
3、电力传动是利用电动机将电能变为机械能,以驱动机器工作部分的传动。各类传动的特点见表。
(1)传动装置的传动函数扩展阅读:
机械传动重要性:
工作机一般都要靠原动机供给一定形式的能量,但是,把原动机和工作机直接连接起来的情况很少,往往需要在二者之间加入传递动力或改变运动状态的传动装置:
(1)工作机所需要的速度一般与原动机的最优速度不相符合。
(2)很多工作机都需要根据生产要求进行速度调整,但是依靠原动机的速度来达到这一目的是不经济的,也不可能。
(3)在有些情况下,需要用一台原动机带动若干个工作速度不同的工作机。
(4)为了安全及维护方便,或因机器的外廓尺寸受到限制等原因,不能将原动机和工作机直接连接在一起。
❷ 传动装置都有哪些分类
传动装置是指把动力源的运动和动力传递给执行机构的装置,介于动力源和执行机构之间,可以改变运动速度,运动方式和力或转矩的大小。
任何一部完整的机器都由动力部分、传动装置和工作机构组成,能量从动力部分经过传动装置传递到工作机构。根据工作介质的不同,传动装置可分为四大类:机械传动、电力传动、气体传动和液体传动。
(1)机械传动
机械传动是通过齿轮、皮带、链条、钢丝绳、轴和轴承等机械零件传递能量的。它具有传动准确可靠、制造简单、设计及工艺都比较成熟、受负荷及温度变化的影响小等优点,但与其他传动形式比较,有结构复杂笨重、远距离操纵困难、安装位置自由度小等缺点。
(2)电力传动
电力传动在有交流电源的场合得到了广泛的应用,但交流电动机若实现无级调速需要有变频调速设备,而直流电动机需要直流电源,其无级调速需要有可控硅调速设备,因而应用范围受到限制。电力传动在大功率及低速大转矩的场合普及使用尚有一段距离。在工程机械的应用上,由于电源限制,结构笨重,无法进行频繁的启动、制动、换向等原因,很少单独采用电力传动。
(3)气体传动
气体传动是以压缩空气为工作介质的,通过调节供气量,很容易实现无级调速,而且结构简单、操作方便、高压空气流动过程中压力损失少,同时空气从大气中取得,无供应困难,排气及漏气全部回到大气中去,无污染环境的弊病,对环境的适应性强。气体传动的致命弱点是由于空气的可压缩性致使无法获得稳定的运动,因此,一般只用于那些对运动均匀性无关紧要的地方,如气锤、风镐等。此外为了减少空气的泄漏及安全原因,气体传动系统的工作压力一般不超过0.7~0.8MPa,因而气动元件结构尺寸大,不宜用于大功率传动。在工程机械上气动元件多用于操纵系统,如制动器、离合器的操纵等。
(4)液体传动
以液体为工作介质,传递能量和进行控制的叫液体传动,它包括液力传动、液黏传动和液压传动。
1)液力传动
它实际上是一组离心泵一涡轮机系统,发动机带动离心泵旋转,离心泵从液槽吸入液体并带动液体旋转,最后将液体以一定的速度排入导管。这样,离心泵便把发动机的机械能变成了液体的动能。从泵排出的高速液体经导管喷到涡轮机的叶片上,使涡轮转动,从而变成涡轮轴的机械能。这种只利用液体动能的传动叫液力传动。现代液力传动装置可以看成是由上述离心泵一涡轮机组演化而来。
液力传动多在工程机械中作为机械传动的一个环节,组成液力机械传动而被广泛应用着,它具有自动无级变速的特点,无论机械遇到怎样大的阻力都不会使发动机熄火,但由于液力机械传动的效率比较低,一般不作为一个独立完整的传动系统被应用。
2)液黏传动
它是以黏性液体为工作介质,依靠主、从动摩擦片间液体的黏性来传递动力并调节转速与力矩的一种传动方式。液黏传动分为两大类,一类是运行中油膜厚度不变的液黏传动,如硅油风扇离合器;另一类是运行中油膜厚度可变的液黏传动,如液黏调速离合器、液黏制动器、液黏测功器、液黏联轴器、液黏调速装置等。
3)液压传动
它是利用密闭工作容积内液体压力能的传动。液压千斤顶就是一个简单的液压传动的实例。
液压千斤顶的小油缸l、大油缸2、油箱6以及它们之间的连接通道构成一个密闭的容器,里面充满着液压油。在开关5关闭的情况下,当提起手柄时,小油缸1的柱塞上移使其工作容积增大形成部分真空,油箱6里的油便在大气压作用下通过滤网7和单向阀3进入小油缸;压下手柄时,小油缸的柱塞下移,挤压其下腔的油液,这部分压力油便顶开单向阀4进入大油缸2,推动大柱塞从而顶起重物。再提起手柄时,大油缸内的压力油将力图倒流入小油缸,此时单向阀4自动关闭,使油不致倒流,这就保证了重物不致自动落下;压下手柄时,单向阀3自动关闭,使液压油不致倒流入油箱,而只能进入大油缸顶起重物。这样,当手柄被反复提起和压下时,小油缸不断交替进行着吸油和排油过程,压力油不断进入大油缸,将重物一点点地顶起。当需放下重物时,打开开关5,大油缸的柱塞便在重物作用下下移,将大油缸中的油液挤回油箱6。可见,液压千斤顶工作需有两个条件:一是处于密闭容器内的液体由于大小油缸工作容积的变化而能够流动,二是这些液体具有压力。能流动并具有一定压力的液体具有压力能。液压千斤顶就是利用油液的压力能将手柄上的力和位移转变为顶起重物的力和位移。
❸ 各种传动装置(带传动,齿轮传动,链传动等)的特点及组合应用分析
带传动:基本都用在电机和被驱动设备之间,线速度5-25米/秒,低速时丢版转多最好不用,精确定比例权传动
时不用,用齿形带。轴间距离过短包角不够,过长产生震动。
齿轮传动:分开式和有机箱两种,开式只适于低速,模数要往大了选一些。有机箱的,速度范围很宽。和皮
带比噪声大。适用绝大多数场合。硬齿面比软齿面整体积小些,加工难些。
链传动:传动距离较齿轮远,一般用于低速长距离传动,比齿轮齿形带都便宜。润滑好的时候(油池),不
大于15米/秒的场合也适用,比如拔丝机中。
❹ 什么是传动装置
传动装置
(1)皮带传动:分为平皮带传动,三角皮带传动。 (2)链条传动。 (3)齿轮传动:分为圆柱齿轮传动,斜齿轮传动,齿条传动,蜗轮传动。
❺ 传动装置的结构
传动抄装置:是将原动机的运袭动和动力传给工作机构的中间装置。.
对于前置后驱的汽车来说,发动机发出的转矩依次经过离合器、变速箱、万向节、传动轴、主减速器、差速器、半轴传给后车轮,所以后轮又称为驱动轮。驱动轮得到转矩便给地面一个向后的作用力,并因此而使地面对驱动轮产生一个向前的反作用力,这个反作用力就是汽车的驱动力。汽车的前轮与传动系一般没有动力上的直接联系,因此称为从动轮。
传动系统的组成和布置形式是随发动机的类型、安装位置,以及汽车用途的不同而变化的。例如,越野车多采用四轮驱动,则在它的传动系中就增加了分动器等总成。而对于前置前驱的车辆,它的传动系中就没有传动轴等装置。
❻ 传动方式有几种
为实现无级变速,按传动方式可采用液体传动、电力传动和机械传动三种方式。
1、液体传动
液体传动分为两类:一类是液压式,主要是由泵和马达组成或者由阀和泵组成的变速传动装置,适用于中小功率传动。另一类为液力式,采用液力耦合器或液力矩进行变速传动,适用于大功率(几百至几千千瓦)。液体传动的主要特点是:调速范围大,可吸收冲击和防止过载,传动效率较高,寿命长,易于实现自动化:制造精度要求高,价格较贵,输出特性为恒转矩,滑动率较大,运转时容易发生漏油。
2、电力传动
电力传动基本上分为三类:
一类是电磁滑动式,它是在异步电动机中安装一电磁滑差离合器,通过改变其励磁电流来调速,这属于一种较为落后的调速方式。其特点结构简单,成本低,操作维护方便:滑动最大,效率低,发热严重,不适合长期负载运转,故一般只用于小功率传动。
二类是直流电动机式,通过改变磁通或改变电枢电压实现调速。其特点是调速范围大,精度也较高,但设备复杂,成本高,维护困难,一般用于中等功率范围(几十至几百千瓦),现已逐步被交流电动机式替代。三类是交流电动机式,通过变极、调压和变频进行调速。实际应用最多者为变频调速,即采用一变幅器获得变幅电源,然后驱动电动机变速。其特点是调速性能好、范围大、效率较高,可自动控制,体积小,适用功率范围宽:机械特性在降速段位恒转矩,低速时效率低且运转不够平稳,价格较高,维修需专业人员。近年来,变频器作为一种先进、优良的变速装置迅速发展,对机械无级变速器产生了一定的冲击。
3、机械传动
机械传动的特点主要是:转速稳定,滑动率小,工作可靠,具有恒功率机械特性,传动效率较高,而且结构简单,维修方便,价格相对便宜;但零部件加工及润滑要求较高,承载能力较低,抗过载及耐冲击性较差,故一般适合于中、小功率传动。
❼ 传动系统的组成
传动系统一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。传动系主要由离合器系统、变速器系统、万向传动装置、主减速器系统、差速器系统、半轴系统等6个部件组成。
传动系统可以将发动机传出的动力,发送给车辆的驱动车轮,使其形成动力,使车辆能够在道路上用一定的速度驾驶。
传动系统的作用
(1)减速增扭:发动机输出的动力具有转速高、扭矩小的特点,不能满足车辆行驶的基本需求。使用传动系统的主减速器,可以达到减速增扭的目的,即发送给驱动轮的功率低于发动机输出的功率,扭矩较大。
(2)变速变扭矩:发动机的最佳工作转速范围很小,但车辆的行驶速度和摆脱它的阻力在很大范围内变化。有了传动系统的传动,就有可能在发动机工作范围变化不大的情况下,满足车辆行驶速度变化较大,摆脱各种行驶阻力的需要。
(3)倒车:发动机不能倒车,但车辆除了向前运动还需要倒车。如果变速箱设置了倒档,车辆可以倒车。
❽ 调控传动装置的组成及作用
传动系统组成及功用:
(1)离合器
保证换挡平顺,必要时中断动力传动。
(2)变速器
变速、变矩、变向,中断动力传动。
(3)万向传动装置
实现有夹角和相对位置经常发生变化的两轴之间的动力传动。
(4)主减速器
将动力传给差速器,并实现降速增矩、改变传动方向。
(5)差速器
将动力传给半轴,并允许左右半轴以不同的转速旋转。
(6)半轴
将差速器的动力传给驱动车轮。
❾ 如何选择空气压缩机控制系统
任何空压机控制系统的目的都是最高效地匹配压缩空气的需求和供应。虽然老式的电动气动控制正在被基于微处理器的控制和能优化的系统以及控制参数的升级软件所替代,但任何类型的控制都属于定速控制或变速控制。 定速压缩机控制 顾名思义,这种方法是让压缩机转速恒定,具体速度由驱动电机转速和传动装置的传动比率函数决定,传动装置可以是齿轮或三角皮带。而输气量控制则基于调制控制或提升阀控制。 调制控制 这种形式的控制根据压缩机的排气压力来调整压缩机的进气阀。当控制器检侧到排气压力升高时,它便开始关闭进气阀。虽然这种控制有效,但效率是最低的。原因是压缩机的效率跟压比成反比,压比即排气压力与进气压力的比值。关闭的进气阀在压缩机的进口处产生一真空,而排气压力相对不变,这相当于提高了压比。 补救措施是限定调制控制的调整范围在大约40%以内,一旦愉出下降到60%以下时就自动把控制方案转化为负载/无负载控制(见图1)。可借的是,这种控制不能运用于多台机器上。 变排量控制 控制有效转子长度可以改变压缩机排量。主要是通过在主机上加锥阀或螺旋阀,控制内部旁通来实现。虽然这种控制的效率比调制控制要好,但螺旋阀控制在5俄到60%容量以上才有效,而且这种控制的调试复杂困难。 卸/负载控制 这种控制简单有效,利用在压缩机排气处的压力开关,在达到上限(断开)压力时完全关闭进气阀,在达到下限(接入)压力时完全打开进气阀。与调制控制的区别在于这种控制下的压缩机实行内部卸载。压比的下降导致无用功消耗的下降。这种类型的控制能利用定序器(主)控制器来轻易连接多台压缩机设备。另一方面,空气系统需要安装一个大小合适的空气存储箱。 开/停控制 这是最有效的控制方案。压缩机要么满载运行要么停运,取决于压力开关处的信号。可借的是,超过10hP以上的电动机要是按照这种控制的要求常常起动和关闭的话就会引起过热。这种控制常用于安装储存器的小型活塞压缩机.这种压缩机的压差相对较大,可达15Psig到25Psig. 变速控制先进经济的技术给压缩机应用带来变频驱动技术。原理看似简单,即根据系统摇求精确地控制压缩机/电动机的转速。如果设计得当,变频控制是最先进最节能的微调压缩机控制。然而以下的一些问题必韶给于解决。 空压机主机要设计成在整个转速范围内都有较高的效率。主机效率是转子齿顶线速度的函数,在过低或过高转速时可能大幅度下降(见图2)。 变速驱动控制器作为电源和驱动电动机之间的领外联接,必需要足够高效。驱动系统和电动机电缆必需不受电力扭曲和电磁辐射的影响,以免计算机或其它敏感的电子设备收到电磁千扰。 驱动电动机处理高速情况必须像处理低速情况那样高效,高速情况下轴承设计和冷却问题可能会比较麻烦。 智能控制器在空气压力、电动机和压缩机进气阀之间建立了高效可靠的联系。一个设计良好的装置可以把压缩机排气压力准确控制在1psi以内,尽管需气量波动范围很大。 变速控制适合调整多台压缩机的运行,它允许定序器/控制器在并联压缩机中高效运行。根据需求一部分压缩机满载运行,其余的压缩机在一旁待机。变速控制可以有效的弥补需气量的波动性(见图3)。 然而即便是最高效的控制也不能弥补不当的系统设计。给空气系统做一个全面的系统检查,让控制系统有机会实现效率的提高。
❿ 如何算传动装置的总效率
总效率=带传动×(轴承×轴承×齿轮,第一根轴)×(轴承^2×齿轮^2,第二根轴)×(轴承×轴承×齿轮,第三根轴)×带式输送机,省略了全部“效率”