① 澄清池运行及其注意事项有哪些
澄清池运行过程中,应注意以下几点:
1、出水清澈透明时,为最佳运行情况,注意保持稳定运行;
2、发现出水变浑时,应增加加药量;
3、出水颜色成灰色,说明加药量过多,需减少加药量。
沉淀池与澄清池的区别:
1、沉淀池与澄清池指的都是给水工艺的四部分,因为澄清池在给水工艺中更常见(也就是自来水厂和中水厂)。
2、广义上来讲澄清池也算沉淀池中的一种,但它又不同于沉淀池。因为沉淀池一般只包括颗粒物在水中由于重力大于浮力而下沉,进而脱离来水的过程。
3、而澄清实际上就相当于“混凝”+“沉淀”两个部分(其中还有过滤的成分在)。因为在澄清池中一般需要加入药剂,生成矾花(这是混凝的过程),然后通过机械或水力搅拌使矾花悬浮,起到一定过滤作用,之后会再将固液通过沉淀的原理分离,出水的就相对澄清了。
② 海水淡化得方法、原理、常用得选择是什么拜托各位了 3Q
海水淡化方法 现代意义上的海水淡化则是在第二次世界大战以后才发展起来的。战后由于国际资本大力开发中东地区石油,使这一地区经济迅速发展,人口快速增加,这个原本干旱的地区对淡水资源的需求与日俱增。而中东地区独特的地理位置和气候条件,加之其丰富的能源资源,又使得海水淡化成为该地区解决淡水资源短缺问题的现实选择,并对海水淡化装置提出了大型化的要求。 在这样的背景下,20世纪60年代初,多级闪蒸海水淡化技术应运而生,现代海水淡化产业也由此步入了快速发展的时代。 海水淡化技术的大规模应用始于干旱的中东地区,但并不局限于该地区。由于世界上70%以上的人口都居住在离海洋120公里以内的区域,因而海水淡化技术近20多年迅速在中东以外的许多国家和地区得到应用。最新资料表明,到2003年止,世界上已建成和已签约建设的海水和苦咸水淡化厂,其生产能力达到日产淡水3600万吨。目前海水淡化已遍及全世界125个国家和地区,淡化水大约养活世界5%的人口。海水淡化,事实上已经成为世界许多国家解决缺水问题,普遍采用的一种战略选择,其有效性和可靠性已经得到越来越广泛的认同。 冷冻法 冷冻法,即冷冻海水使之结冰,在液态淡水变成固态冰的同时盐被分离出去。冷冻法与蒸馏法都有难以克服的弊端,其中蒸馏法会消耗大量的能源并在仪器里产生大量的锅垢,而所得到的淡水却并不多;而冷冻法同样要消耗许多能源,但得到的淡水味道却不佳,难以使用。真空冷冻海水淡化法工艺包括脱气、预冷、蒸发结晶、冰晶洗涤、蒸汽冷凝等步骤,海水淡化水产品可达到国家饮用水标准,是一种较理想的海水淡化法。 冷冻海水淡化法原理 海水三相点是使海水汽、液、固三相共存并达到平衡的一个特殊点。若压力或温度偏离该三相点,平衡被破坏,三相会自动趋于一相或两相。真空冷冻法海水淡化正是利用海水的三相点原理,以水自身为制冷剂,使海水同时蒸发与结冰,冰晶再经分离、洗涤而得到淡化水的一种低成本的淡化方法。与蒸馏法、膜海水淡化法相比,冷冻海水淡化法能耗低,腐蚀、结垢轻,预处理简单,设备投资小,并可处理高含盐量的海水,是一种较理想的海水淡化法。 海水淡化法工艺之温度和压力 它们是影响海水蒸发与结冰速率的主要因素。 海水淡化法工艺之冰—盐水是一固液系统 普通的分离方法均可使冰—盐水得到分离,但分离方法不同,得到的冰晶含盐量也不同。实验结果表明减压过滤方法得到的冰晶含盐量比常压过滤方法得到的冰晶含盐量低得多。 海水淡化法工艺之蒸汽冷凝 在蒸发结晶器内,除海水析出冰晶以外,还将产生大量的蒸汽,这些蒸汽必须及时移走,才能使海水不断蒸发与结冰。 编辑本段反渗透法 通常又称超过滤法,是1953年才开始采用的一种膜分离淡化法。该法是利用只允许溶剂透过、不允许溶质透过的半透膜,将海水与淡水分隔开的。在通常情况下,淡水通过半透膜扩散到海水一侧,从而使海水一侧的液面逐渐升高,直至一定的高度才停止,这个过程为渗透。此时,海水一侧高出的水柱静压称为渗透压。如果对海水一侧施加一大于海水渗透压的外压,那么海水中的纯水将反渗透到淡水中。反渗透法的最大优点是节能。它的能耗仅为电渗析法的1/2,蒸馏法的1/40。因此,从1974年起,美日等发达国家先后把发展重心转向反渗透法。 反渗透海水淡化技术发展很快,工程造价和运行成本持续降低,主要发展趋势为降低反渗透膜的操作压力,提高反渗透系统回收率,廉价高效预处理技术,增强系统抗污染能力等。 编辑本段太阳能法 人类早期利用太阳能进行海水淡化,主要是利用太阳能进行蒸馏,所以早期的太阳能海水淡化装置一般都称为太阳能蒸馏器。馏系统被动式太阳能蒸馏系统的例子就是盘式太阳能蒸馏器,人们对它的应用有了近150年的历史。由于它结构简单、取材方便,至今仍被广泛采用。目前对盘式太阳能蒸馏器的研究主要集中于材料的选取、各种热性能的改善以及将它与各类太阳能集热器配合使用上。与传统动力源和热源相比,太阳能具有安全、环保等优点,将太阳能采集与脱盐工艺两个系统结合是一种可持续发展的海水淡化技术。太阳能海水淡化技术由于不消耗常规能源、无污染、所得淡水纯度高等优点而逐渐受到人们重视。太阳能蒸馏法就是采用简单的太阳能蒸馏器。该蒸馏器由一个水槽组成,水槽内有一个黑色多孔的毡心浮洞,槽顶上盖有一块透明、边缘封闭的玻璃覆盖层。太阳光穿过透明的覆盖层投射到黑色绝热的槽底,转换为热能。因此,塑料芯中的水面温度总是高于透明覆盖层底的温度,水从毡芯蒸发,蒸汽扩散到覆盖层上冷却为液体,排入不透明的蒸馏槽中. 2010年6月,杭州水处理技术研究开发中心在舟山市岱山县大鱼山岛建成一套5m/d光伏太阳能海水淡化示范工程。重点解决示范工程选址、太阳能采光、海水取水、设备布置、防风设计以及安装调试等问题。 示范工程光伏太阳能系统由太阳能电池组、太阳能充放电控制器、直流/交流逆变器、蓄电池(组)及配电系统组成,其发电总功率5.4kW;反渗透系统产水流量0.8~1.2m/d,主要由海水取水装置、水力循环澄清池、多介质过滤器、保安过滤器、反渗透膜处理系统、能量回收装置、多级离心泵以及加药装置等组成。 考虑到大鱼山岛无常规电网的特点,光伏太阳能海水淡化装置采用光伏太阳能与柴油机互补供电,丰雨期可以使用光伏太阳能的电能通过逆变器将直流电能转化为与电网同频率、同相位的正弦波电流,供给当地负荷供电;干旱季节可使用本地柴油机发电供给海水淡化设备,增加淡水供水量。 编辑本段低温多效 低温多效蒸馏淡化技术的概念低温多效海水淡化技术是指盐水的最高蒸发温度低于70℃的淡化技术,其特征是将一系列的水平管喷淋降膜蒸发器串联起来,用一定量的蒸汽输入通过多次的蒸发和冷凝,后面一效的蒸发温度均低于前面一效,从而得到多倍于蒸汽量的蒸馏水的淡化过程。 多效蒸发是让加热后的海水在多个串联的蒸发器中蒸发,前一个蒸发器蒸发出来的蒸汽作为下一蒸发器的热源,并冷凝成为淡水。其中低温多效蒸馏是蒸馏法中最节能的方法之一。低温多效蒸馏技术由于节能的因素,近年发展迅速,装置的规模日益扩大,成本日益降低,主要发展趋势为提高装置单机造水能力,采用廉价材料降低工程造价,提高操作温度,提高传热效率等。一种低温多效蒸馏法海水淡化设备,包括供汽系统、布水系统、蒸发器、淡水箱及浓水箱,供汽系统的生蒸汽入口置于中间效蒸发器上。工作方法为:(1)布水系统对海水进行喷淋;(2)输入生蒸汽到中间效蒸发器的蒸发管内部;(3)蒸汽在蒸发管内冷凝传出热量,蒸发管外吸收热量产生蒸发;(4)新蒸汽输送至其两侧的蒸发管内.管外吸收热量、产生蒸发;(6)各效蒸发器重复蒸发和冷凝过程;(7)蒸馏水进入淡水箱;(8)浓盐水进入浓水箱。 编辑本段多级闪蒸 所谓闪蒸,是指一定温度的海水在压力突然降低的条件下,部分海水急骤蒸发的现象。多级闪蒸海水淡化是将经过加热的海水,依次在多个压力逐渐降低的闪蒸室中进行蒸发,将蒸汽冷凝而得到淡水。目前全球海水淡化装置仍以多级闪蒸方法产量最大,技术最成熟,运行安全性高弹性大,主要与火电站联合建设,适合于大型和超大型淡化装置,主要在海湾国家采用。多级闪蒸技术成熟、运行可靠,主要发展趋势为提高装置单机造水能力,降低单位电力消耗,提高传热效率等。 编辑本段电渗析法 该法的技术关键是新型离子交换膜的研制。离子交换膜是0.5-1.0mm厚度的功能性膜片,按其选择透过性区分为正离子交换膜(阳膜)与负离子交换膜(阴膜)。电渗析法是将具有选择透过性的阳膜与阴膜交替排列,组成多个相互独立的隔室海水被淡化,而相邻隔室海水浓缩,淡水与浓缩水得以分离。电渗析法不仅可以淡化海水,也可以作为水质处理的手段,为污水再利用作出贡献。此外,这种方法也越来越多地应用于化工、医药、食品等行业的浓缩、分离与提纯。 编辑本段压汽蒸馏 压汽蒸馏海水淡化技术,是海水预热后,进入蒸发器并在蒸发器内部分蒸发。所产生的二次蒸汽经压缩机压缩提高压力后引入到蒸发器的加热侧。蒸汽冷凝后作为产品水引出,如此实现热能的循环利用。 编辑本段露点蒸发法 露点蒸发淡化技术是一种新的苦咸水和海水淡化方法。它基于载气增湿和去湿的原理,同时回收冷凝去湿的热量,传热效率受混合气侧的传热控制。露点蒸发淡化技术是以空气为载体,通过用海水或苦咸水对其增湿和去湿来制得淡水,并通过热传递将去湿过程与增湿过程耦合,使冷凝潜热直接传递到蒸发室,为蒸发盐水提供汽化潜热,以提高过程的热效率。建立了有效传热面积分别为9.6 m~2和2.75 m~2的两台增湿/去湿耦合的露点蒸发淡化设备。建立了相应的实验装置和计算机数据采集系统。分别成功地完成了露点蒸发淡化基本流程与参数相关性实验以及强化传热/传质淡化实验。 编辑本段水电联产 水电联产主要是指海水淡化水和电力联产联供。由于海水淡化成本在很大程度上取决于消耗电力和蒸汽的成本,水电联产可以利用电厂的蒸汽和电力为海水淡化装置提供动力,从而实现能源高效利用和降低海水淡化成本。国外大部分海水淡化厂都是和发电厂建在一起的,这是当前大型海水淡化工程的主要建设模式。 编辑本段热膜联产 热膜联产主要是采用热法和膜法海水淡化相联合的方式(即MED-RO或MSF-RO方式),满足不同用水需求,降低海水淡化成本。目前,世界上最大的热膜联产海水淡化厂是阿联酋富查伊拉海水淡化厂,日产海水淡化水量为45.4万立方米,其中,MSF日产水28.4万立方米,RO日产水17万立方米。其优点是:投资成本低,可共用海水取水口。RO和MED/MSF装置淡化产品水可以按一定比例混合满足各种各样的需求。 此外,以上方法的其他组合也日益受到重视。在实际选用中,究竟哪种方法最好,也不是绝对的,要根据规模大小、能源费用、海水水质、气候条件以及技术与安全性等实际条件而定。 实际上,一个大型的海水淡化项目往往是一个非常复杂的系统工程。就主要工艺过程来说,包括海水预处理、淡化(脱盐)、淡化水后处理等。其中预处理是指在海水进入起淡化功能的装置之前对其所作的必要处理,如杀除海生物,降低浊度、除掉悬浮物(对反渗透法),或脱气(对蒸馏法),添加必要的药剂等;脱盐则是通过上列的某一种方法除掉海水中的盐分,是整个淡化系统的核心部分,这一过程除要求高效脱盐外,往往需要解决设备的防腐与防垢问题,有些工艺中还要求有相应的能量回收措施;后处理则是对不同淡化方法的产品水针对不同的用户要求所进行的水质调控和贮运等处理。海水淡化过程无论采用哪种淡化方法,都存在着能量的优化利用与回收,设备防垢和防腐,以及浓盐水的正确排放等问题。 海水淡化技术的发展与工业应用,已有半个世纪的历史,在此期间形成了以多级闪蒸、反渗透和多效蒸发为主要代表的工业技术。专家普遍认为,今后三、四十年在工业应用上,仍将是这三项技术“唱主角”,但反渗透的比重将越来越大。从地区上来讲,中东海湾国家仍将以多级闪蒸为首选,因为它具有大型化和超大型化(单台设备产水量目前已高达日产淡水4~5万吨)、适应于污染重的海湾水以及预处理费用低的优势;然而在中东以外地区将以反渗透或膜法为首选,因为膜法的能耗和成本都具有优势,以北美地区为例,近期的发展已经表明,在淡化和水处理方面都将以膜法为主。
③ 水力循环加速澄清池的工作流程是什么样的呢
水力循环澄清池 circulation clarifier,在水射器的作用下,将池中的活性泥渣吸入和原水充分混合,从而加强了水中固体颗粒间的接触和吸附作用,形成良好的絮凝,加速了沉降速度使水得到澄清。
加了混凝剂的原水从进水管道进入喷嘴,以高速喷入喉管,在喉管的喇叭口周围形成真空,吸入大约3倍于原水的泥渣量,经过泥渣与原水的迅速混合,进入渐扩管形的第一反应室,以及第二反应室中进行混凝处理。喉管可以上、下移动以调节喷嘴和喉管的间距,使等于喷嘴直径的1~2倍,并借此控制回流的泥渣量。水流从第二反应室进入分离室,由于断面积的突然扩大,流速降低,泥渣就沉下来,其中一部分泥渣进入泥渣浓缩斗定期予以排出,而大部分泥渣被吸入喉管进行回流,清水上升从集水槽流出。
1、增设孔径为32mm的斜管以提高分离区的上升流速,提高了沉淀区的沉淀效率(沉淀区上升流速达到2.7~3.5mm/s)。
2、取消喉管和喷嘴,只在絮凝筒内水平安装两支喷嘴,使泥渣回流。喷嘴流速为3m/s,水头损失约为0.7m,因此能耗明显降低,并采用了较小的泥渣回流比(回流比为2倍)。
3、增加絮凝时间,扩大第一和第二絮凝室的容积,将絮凝时间增加到260s(按循环回流量计),从而提高了絮凝效果。
4、在第二絮凝室外壁下部设置向池中心倾斜的裙板,倾角为40度,以利于泥渣回流 。
水力循环澄清池项目可行性研究报告 政府立项、申请土地、银行贷款、招商引资、投资合作等。
④ 反冲洗过滤器水力循环澄清池和机械搅拌澄清池有何区别
首先沉淀池只是完成水与絮凝剂的混合及反应;而澄清池不仅能够完成水与絮内凝剂的混合、反应,而容且还能完成絮凝剂与水的分离。其次机械加速澄清池是利用机械搅拌作用来完成混合、泥渣循环和接触絮凝过程的。其效果比一般的絮凝沉淀池要好的多!
⑤ 水力循环澄清池运行时需要注意哪些方面
1、宜用于浊度长期低于2000NTU的原水,单池生产能力不宜大于7500m3/d。
2、泥渣回流量可为进水量的2~4倍,原水浊度高时取下限。
3、清水区的上升流速宜采用0.7~1.0mm/s,当原水为低温低浊时,上升流速应适当降低;清水区高度宜为2~3m,超高宜为0.3m。
4、第二絮凝室有效高度,宜采用3~4m。
5、喷嘴直径与喉管直径之比可为1:3~1:4,喷嘴流速可为6~9m/s,喷嘴水头损失可为2~5m,喉管流速可为2.0~3.0m/s。
6、第一絮凝室出口流速宜采用50~80mm/s;第二絮凝室进口流速宜采用40~50mm/s。
7、水在池中的总停留时间可采用1.0~1.5h,第一絮凝室为15~30s,第二絮凝室为80~100s。
8、斜壁与水平面的夹角不应小于450。
9、为适应原水水质变化,应有专用设施调节喷嘴与喉管进口的间距。
⑥ 水力循环澄清池的参数设计
1、增设孔径为32mm的斜管以提高分离区的上升流速,提高了沉淀区的沉淀效率(沉淀区上升流速达到2.7~3.5mm/s)。2、取消喉管和喷嘴,只在絮凝筒内水平安装两支喷嘴,使泥渣回流。喷嘴流速为3m/s,水头损失约为0.7m,因此能耗明显降低,并采用了较小的泥渣回流比(回流比为2倍)。3、增加絮凝时间,扩大第一和第二絮凝室的容积,将絮凝时间增加到260s(按循环回流量计),从而提高了絮凝效果。4、在第二絮凝室外壁下部设置向池中心倾斜的裙板,倾角为40度,以利于泥渣回流 。
⑦ 过滤器怎么做滤液澄清度试验
图详见参考资料
FIRST!
DynaSand 活性砂过滤器在市政中水回用中的应用
DynaSand 活性砂过滤器在市政中水回用中的应用
1. 王东 2.马景辉 3.张红丽 4.丛林
(1. 北京沃特林克环境工程有限公司, 北京 100028; 2. 国家工业水处理工程技术研究中心, 天津 300131;3.中国人民大学环境学院, 北京 100872; 4.瑞典 Nordic Water 公司, 北京 100006)
〔摘要〕采用 DynaSand 活性砂过滤器对城市污水处理厂二沉池出水进行深度处理中试试验, 运行结果表明该装
置用于市政中水回用是可行的, 其出水水质稳定, 各项指标优于《城市杂用水质标准》2002 年征求意见稿的要求。并对絮凝剂的选择和过滤器的过滤效果做了简要分析。
〔 关键词〕 过滤器; 连续过滤; 中水回用
〔 中图分类号〕 X703.1 〔 文献标识码〕 A 〔 文章编号〕 1005- 829X(2006)09- 0059- 03
DynaSand 活性砂过滤器是由瑞典 Waterlink AB公司发明的一种先进的, 基于逆流原理的连续过滤设备。DynaSand 活性砂过滤器至今已经有 25 a 的历史, 目前在全世界已经有 40 000多家用户, 在中国的应用实例已有二十多台。
活性砂过滤器不同于一般的传统过滤器, 它是一种微絮凝过滤器, 集混凝、澄清、过滤为一体, 无需单设混凝、澄清池, 从而大大降低了一次性投资成本, 减少了占地面积。活性砂过滤器外形为圆柱型罐, 由进水管、滤液排放堰板、洗砂水排放管、布水器和放空管等组成( 见图 1)。进水通过位于设备底部的入流分配管进入处理系统, 经砂床过滤后由顶部出口溢流出水。过滤时砂床截留的杂质被空气提升泵输送到滤罐顶部的洗砂器, 通过机械摩擦作用和
紊流作用使污染物从滤砂表面分离出来, 杂质经洗砂水出口排出, 净砂利用自重返回砂床。
它不需停机反冲洗; 采用单级滤料, 无需级配,因而克服了普通砂过滤器水力分布不均和产生初滤液的问题; 内部没有可移动部件, 减少了设备的维护和维修成本。同时该过滤器无需配备反冲洗水泵及用于停机切换的电动、气动阀门和反冲洗水罐。
图 1 活性砂过滤器结构示意
1 试验装置与方法
1.1 工艺流程
本中试试验采用的工艺流程如图 2。
试验用水采用北小河污水处理厂二沉池出水, 经加药后进入过滤器。过滤后出水达到《城市杂用水水质标准》, 进入清水池回用。
图 2工艺流程
1.2 试验装置
DynaSand 活性砂过滤器基于逆流原理, 待处理的原水经进水管, 通过位于过滤器底部的布水器进入过滤器。水流由下向上逆流通过滤床, 经过滤后的过滤液在过滤器顶部聚集, 经溢流口流出。过滤器底部被污染的滤料通过空气提升泵被提升到过滤器顶部的洗砂器, 通过紊流作用使污染物从活性砂中分离出来, 杂质通过清洗水出口排出, 净砂利用自重返回砂床从而实现连续过滤。
DynaSand 活性砂过滤克服了传统快速滤池反冲洗的“水力筛分”和“初滤液”问题。与超滤膜过滤比较, 活性砂过滤器一次性投资费用低, 不需定期更换滤膜, 控制和使用成本低。此外活性砂过滤器的连续操作方式意味着反洗泵、自动反洗阀、反洗控制系统等附属设备均可取消从而降低一次性投资成本,同时也意味着活动部件少, 维护、保养费用更低。
1.3 试验方法和活性砂过滤器的主要运行参数
DynaSand 活性砂过滤器安装在北小河污水处理厂内。试验用水为二沉池出水, 24h 连续进水, 连续出水。原水投加絮凝剂, 经管道混合器混合后进入活性砂过滤罐。设备的运行参数: 处理水量为 6m3/h, 滤速8.5 m/h, 空气提砂泵压力为 160 kPa, 空气流量 1 ̄2m3/h, 清洗水流量为总进水流量的 1% ̄3%。滤料为石英砂,粒径1.2 ̄2.0mm。北小河二沉池出水水质见表1。
试验过程中, 定期采集水样并分析其 CODCr、BOD5、总磷、浊度、SS 等指标。各指标测试方法采用国家标准方法。
1.4 药剂
药剂采用聚合氯化铝(PAC) 粉末和质量分数为35%的聚合氯化铁(PFC)溶液。使用时将 PAC配制成质量分数为 10%的溶液。本试验中, 仅对悬浮物 SS 进行了絮凝剂对比试验, PAC、PFC 的投加量均为 30mg/L;其余指标试验都采用 PAC, 投加量为 30mg/L。
2 试验结果分析
试验出水水质指标采用《城市杂用水水质标准》(2002 年征求意见稿), 试验出水水质见表 2。
2.1 CODCr 的去除
在城市生活污水中, CODCr 主要以悬浮状态的颗粒有机物质和胶体状大分子有机物质为主。活性砂过滤器对粒径在 1 μm 以上的有机物有较好的截留作用, 故对 COD 有较好的去除效果。
进水 CODCr 的范围为 29.0 ̄57.5 mg/L, 平均值为 43.20 mg/L。出水 CODCr 的范围为 14.86  ̄ 49.62mg/L, 平均值为 28.43 mg/L, CODCr 去除率的范围为10.79%  ̄ 62.57%, 平均去除率为 35.36%, 见图3和图 4。
2.2 悬浮物的去除
进水 SS 的范围为 9.0  ̄ 84.5 mg/L, 平均值为37.28mg/L, 出水 SS 的范围为 1.6 ̄55.5 mg/L, 平均值为 16.88mg/L。SS 去除率为 25.54% ̄92.73%。使用聚合氯化铝时 SS 的平均去除率为 45.97%。 投加聚合氯化铁时 SS 的平均去除率为 75.15%。可见聚合氯化铁去除 SS 的效果要好于聚合氯化铝, 见图 5 和图 6。
2.3 磷的去除
进水总磷的范围为 0.80 ~8.39 mg/L, 平均值为3.76 mg/L。出水总磷范围为 0.01~7.58 mg/L。总磷去除率的范围为 14.29%~65.44%, 见图 7。
2.4 NH4+ - N 的去除
本试验装置对氨氮的去除仅依靠活性砂床作为微生物载体, 通过滤料表面形成的微生物活性层去除, 作用比较有限。
进水 NH4+ -N 的范围为 16.80 ~39.56 mg/L, 出+水 NH4+ -N的范围为 15.68 ~38.72 mg/L。NH4+-N的平均去除率为 9.43%。试验结果见图 8。
图 8 进出水的氨氮以及氨氮去除率的变化曲线
2.5 浊度的去除
二沉池出水中的浊度主要源于水中的悬浮颗粒和胶体物质。故浊度指标与悬浮物指标的关系较为紧密, 在一定程度上可以相互映证。通过在活性砂过滤器中的混凝、沉淀和过滤作用可以去除全部大于活性砂过滤精度的物质, 取得较好的除浊效果。进水的浊度范围为 2.10 ̄12.84NTU, 平均值为 7.43NTU。出水的范围为 0.40 ̄2.41 NTU, 平均值为 1.11 NTU。去除率的平均值为 82.55%。出水的浊度指标较为稳定。
试验结果见图 9。
图 9 进出水的浊度以及浊度的去除率变化曲线
3 结论
中试试验结果表明: DynaSand 活性砂过滤器对污水厂二沉池出水有较好的处理效果。该过滤器对进水水质要求宽松, 过滤效果好, 出水水质稳定, 一次性投资低, 且维护和运行费用低。
SECOND
1 结构及工作原理
众所周知:在过滤介质表面上进行的过滤,在初期,新鲜的过滤介质使得过滤效率较高,悬浮液的粗颗粒首先在过滤介质表层架桥形成滤饼层,而较小颗粒随滤液流走(一般过滤介质本身不能起到精密过滤的作用),此时的滤液并不澄清(含有许多微小颗粒) 随着过滤时间增长滤讲层的增厚,微小的颗粒在滤饼层中被捕捉,滤液的澄清度不断提高,过滤阻力不断增加(过滤过程中可认为过滤介质阻力是一常数,但滤饼层阻力随滤饼厚度增加而增加 )。过滤时间增长到一定
程度,微小的颗粒及胶状物堵塞过滤介质过滤液体的流道,造成过滤介质的过滤速率下降,直至出现流道被完全堵塞。
袋式过滤器(如图1所示)由过滤器的外壳、滤袋【如图2所示)两个主要部件组成,过滤过程是在过滤介质表面上进行的 过滤时对滤袋的清洗采用了非常方便的反吹逆洗工艺,是一种较新颖的压滤装置 它的工作原理是:滤浆(悬浮液)用泵打入压力容器内,通过滤袋进行过滤。过滤时(如图3所示)由于滤袋直径比笼架大,压滤时滤袋紧贴笼架。截获的固相颗粒牯附在滤袋表面上形成滤饼,通过滤袋过滤后的滤液排出壳体。当粘附在滤袋表面滤饼层达到操作中的最佳厚度时停止过滤,排出残液,利用压缩空气反吹滤袋卸渣。反吹时滤袋膨胀恢复到原来的直径,滤袋外壁的滤饼龟裂成互不相连的小块,反吹风使滤袋不断振动,小块滤饼不断下落,脱落碍干净且迅速。卸下滤饼后,再用洗涤水反冼滤袋,从而使滤袋得到再生。袋式过滤器应用这种反吹逆洗技术,可使滤袋经常地保持着清洁状态,始终处在较佳的状态下过滤。因而袋式过滤器特别适应于含有较多微小的颗粒以及胶状物的难过滤悬浮液的分离。
2.实验装置及实验结果
实验装置是一台以滤袋为过滤介质的单管过滤器,过滤介质由12根直径6 mm.长1 200 mm的1cr]8Ni9Ti圆钢与环形拉筋焊接组成的鼠笼式支架,在其上套上2 0#涤纶布制造的滤袋而成(实际过滤面积为0.38 m )。实验用滤浆取自锅炉水膜除尘器循环排污水池,其固体粒径分析和固液比十见表l和表2 在整个实验过程中滤浆保持为恒压。实验结果见图4和图5。
根据图中曲线分折,滤浆中含有微小的固体颗粒,过滤初期滤液呈现浑浊t含固体颗粒量较高),但滤袋的表面形成一定厚度的滤饼后,即显澄清 图中曲线表明,在启动滤浆泵10mitt后,滤液的固液比趋于稳定值,即0 35 mg/m1左右,滤液中固相颗粒均在3 173以下。滤浆中固相浓度高,滤饼的厚度增加的快+滤液中固液比趋于稳定值也越快。过滤速率与过滤压力有关,压力增大,过滤速率增大 当推动力一定时,过滤速率随着过滤时间的增长而逐渐降低并随着滤1砬中固坡比的增大而降低,这反映了过滤介质表面形成的固体颗粒层厚度的变化。
3 结束语
袋式过滤器具备以下优点:
A、过滤元件竖直装在壳体内,结构十分紧离,单位容积内的过滤面积大
B、滤袋过滤阻力小,过滤速度高,再生快,价格便宜;
C、结构简单,操作维修方便,重量轻,装卸方便,反吹卸渣较干净;
D、过滤效果好,特别适应于分离含有较多微小的颗粒以及胶状物的难过滤悬浮液。
http://china.toocle.com/forum/threads-369441.64858.1.html
⑧ 水力循环加速澄清池是如何启动运行的
对于正常运行的澄清池,每隔1〜2h应测定一次原水与出水浑浊度和PH值,以便及时调整药剂投加量并决定是否加碱或加氯助凝。第一絮凝室和第二絮凝室和泥渣沉降比应每隔1〜2h测定一次,掌握泥渣沉降比与原水水质、凝聚剂投加量、泥渣回流 量与排泥时间之间的变化关系和规律。一般说来,如果原水浑浊度高,沉降比要控制小些。正确的排泥,对澄清设备的正常运行是至关重要的。因此,在澄清池运行中应注意及时排泥,使池内泥渣保持平衡;但排泥历时又不能过长,因为泥渣过多或过少都会影响出水水质。如果澄清池要提高运行负荷,则应在增加水量前20〜30min内增大投药量至正常投药量的1倍左右,并通过排泥使泥渣层高度适当降低,然后再逐渐增加进水量。对停止运行时间较长的澄清池,重新运行时,应先开启池底放空阀,少量排除池底压实的泥渣,使底部泥渣松动,然后再进水,并适当增加凝聚剂投加量,待出水水质稳定后再逐渐恢复到正常投加量,大约1〜2h内可恢复正常运行。
⑨ 水力循环澄清池的介绍
水力循环澄清池 circulation clarifier,在水射器的作用下,将池中的活性泥渣吸入和原水充分混合,从而加强了水中固体颗粒间的接触和吸附作用,形成良好的絮凝,加速了沉降速度使水得到澄清。