导航:首页 > 装置知识 > 水位测量装置设计与制作课程设计

水位测量装置设计与制作课程设计

发布时间:2022-04-26 06:58:35

① 如何进行水位测量

常用的有水尺和水位计。水尺是传统的有效的直接观测设备。实测时,水尺上的读数加水尺零点高程即得水位。水位计是利用浮子、压力和声波等能提供水面涨落变化信息的原理制成的仪器。水位计能直接绘出水位变化过程线。水位计记录的水位过程线要利用同时观测的其他项目的记录,加以检核。

水尺、水位计设置在河道顺直、断面比较规则、水流稳定、无分流斜流和无乱石阻碍的地点;一般避开有碍观测工作的码头、船坞和有大量工业废水和城市污水排入的地点,使测得的水位和同时观测的其他项目的资料具有代表性和准确性;为使水位与流量关系稳定,一般避开变动回水的影响和上下游筑坝、引水等的影响。

监控中心: 主要硬件:服务器、客户端、移动数据专线或GPRS数据传输模块DATA-6123。 主要软件:操作系统软件、数据库软件、水位监测系统软件、防火墙软件。

通信网络:INTERNET公网 + 中国移动公司GPRS网络。

终端设备:微功耗测控终端DATA-6216,市电供电、太阳能供电、电池供电可选。

测量设备:水位计或水位变送器。

(1)水位测量装置设计与制作课程设计扩展阅读:

观测时间和测次

水位观测的时间和次数的安排,要满足测得的资料能反映出一日内水位的变化过程,要满足水文情报预报的需要。平水时每日观测1~2次。有洪水、结冰、流凌(流冰)、冰凌堆积、冰坝和冰雪融水补给河流等现象时,增加观测次数,以取得水位变化过程的完整资料。

水位资料与人类生活和生产建设关系密切。水利工程的规划、设计、施工和管理运用,都需水位资料;其他工程建设如航道、桥梁、船坞、港口、给水、排水等也要应用水位资料。

在防汛抗旱中,水位是水文情报和水文预报的依据。水位资料是建立水位流量关系推算流量变化过程、水面比降等必需的根据。在泥沙测验和水温、冰情、水质等观测中,水位是掌握水流变化的重要标志。

② 模电课程设计 水温测量仪

第二章 水温测量仪的设计

2.1总体结构框图设计
制作水温测量仪,首先利用温度传感器获取被测量对象的温度,将温度转换为电压表示。然而上述表示的为绝对温度与电压的转换关系,因此还需将绝对温度与电压的关系转换为摄氏度与电压的关系,这样就完成电压与摄氏度之间的直接转换关系。之后将电压放大,即可直接用电压表读出被测对象的温度值。此外将放大后的电压接至一电压比较器,比较器输出端接报警设备,如指示灯。在设置比较电压(即比较温度)后,由比较器输出端的电压决定指示灯的状态,进而起到报警的作用。基本原理如图 2.1.1所示:

图 2.1.1基本原理图

2.2温度检测电路设计
图2.2.1 集成温度传感器AD590

2.2.1 AD590简介:
AD590是AD公司利用PN结正向电流与温度的关系制成的电流输出型两端温度传感器,如图 2.2.1所示。这种器件在被测温度一定时,相当于一个恒流源。该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的 特性。即使电源在5~15V之间变化,其电流只是在1μA以下作微小变化。其主要参数如表2.2.1所示:
工作电压 4~30V 反向电压 -20V
工作温度 -55~+150℃ 焊接温度(10秒) 300℃
保存温度 -65~+175℃ 灵敏度 1μA/K
正向电压 +44V

表 2.2.1 AD590参数表

2.2.2 AD590的应用
AD590输出阻抗达10MΩ,转换当量为1μA/K。温度—电压转换电路如图 2.2.2所示:

图 2.2.2 温度—电压转换电路

温度—电压转换分析:如图 2.2.2所示,当将AD590置于水中时,根据水温多少将提供恒流,方向如图所示。由于在Uo输出端接一电压跟随器从而增大输入阻抗,电流几乎全部流经电阻R。
由AD590转换当量可知:
U01= UR=1μA/K×R=R×10-6/K (2 .2. 1)
在实际应用中可取R=10KΩ,则:
U01=10mV/K (2.2.2)
这样可以实现温度—电压的转换,取的所需电压。

2.3 K—℃变换
2.3.1 K—℃变换减法电路
实现温度—电压转换后,不能直接测量,仍需将绝对温度转换为摄氏度,即实现K—℃变换。绝对温度(T)与摄氏度(t)之间的关系为:
T=t+273k (2.3.1)
由式 (2.2.2)与式 2.3.1可知要实现K—℃变换,必有:
Uo2=10mV/℃―2.73V (2.3.2)
该变换可用一个求和式加法器实现,如图1.3.1所示:

图 2.3.1 求和式加法器
求和式加法器分析:在理想运放的情况下,利用虚短与虚断。有如下关系:

-UR/R2+U01/R1=U02/Rf1 (2.3.2)

设R2=R1=Rf1(2.3.3)

解式(2.3.2与式(2.3.3 )得:
(1.3.5)
U02= (U01-UR) (2.3.4)

2.3.2 电压的放大

放大器
设计一个反相比例放大器,使其输出u03满足100mV/℃。用数字电压表可实现温度显示。

图2.3.2

放大器的关系式:

U03/R4=U02/R3 ;
由R4/R3=10得

U03=10U02

2.4 比较器
2.4.1 电压比较器原理:
由电压比较器组成,如图3所示。UREF为报警时温度设定电压,Rf2用于改善比较器的迟滞特性,决定了系统的精度。

由上式可知温度与电压之间的关系:
U=0.1V/ ℃
将放大后的电压接直流电压表,即可直接读的温度值,如:将AD590放入20℃的水中,可读得电压表的值为2V。
图2.4.1(a)所示为一最简单的电压比较器,UR为参考电压,加在运放的同相的输入端,输入电压ui加在反相的输入端。

(a) (b)
图 2.4.1 电压比较器原理原理图
图2.4.1 (b)所示为其传输特性。当Ui<UR时,运放输出高电平,稳压管Dz反向稳压工作。输出端电位被其箝位在稳压管的稳定电压UZ,即Uo=UZ。当ui>UR时,运放输出低电平,DZ正向导通,输出电压等于稳压管的正向压降UD,即 Uo=-UD。因此,以UR为界,当输入电压ui变化时,输出端反映出两种状态,高电位和低电位。
2.4.2 运算放大器比较器
以上介绍的是最简单的电压比较器原理。比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。图2.4.2 由运算放大器组成的差分放大器电路,输入电压Va经分压器R2、R3分压后接在同相端,Vb通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与Va、Vb及4个电阻的关系式为:
Vout=(1+RFR1 )( R3R2+R3 )Va- RFR1 Vb (2.4.1)
若R1=R2,R3=RF,则:
Vout= RFR1 (Va-Vb), (2.4.2)
RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短 路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。增益成为无穷大,其电路图就形成图 2.4.3 的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。
因此为了实现报警功能,可在输出电压端接一个电压比较器,利用电压的大小关系起到报警作用。

2.4.3图

2.4.3 比较器实例

在本实例中采用图2.4.4比较器。其中电阻参数取:R3=R4=10KΩ,Rf2=1000KΩ,在图 2.4.4所示VCC3为报警时的温度设定电压。R3,R4用于稳定输入电压,决定了系统的精度。而 Rf2用于报警设备的输入电阻,用于控制输入电流的大小。

图2.4.4 水温测试仪电压比较器电路

2.5报警设备
LED发光二极管:
报警设备可用一个发光二极管来充当,发光二极管LED,它是英文light emitting diode(发光二极管)的缩写。发光二极管发热量小,耗电少。
发光二极管有很多优势:
1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。
2. 效能:消耗能量较同光效的白炽灯减少80%
3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境
4. 稳定性:10万小时,光衰为初始的50%
5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级
6. 对环境污染:无有害金属汞
报警分析:
当加与U2端的电压大于设定温度Uref时,U3有了正向输出,二极管LED导通,发光,报警完成。

水温测量仪运作过程总析
将上述器件加以组合得到图2.6.1所示:
水温测量过程及报警分析:将AD590放入水中,将会产生相应大小的电流,电流经过Ro,在Ro两端产生电压,进而由一个运放组成的电压跟随器输出。然而经过绝对温度与电压的转换后还需要变换为摄氏度与电压的关系。于是在电压跟随器后接一个求和加法器以达目的,即加上一个-2.73V的电压。可以利用稳压管和运放电路来提供所需要的-2.73V电压。
之后可将电压跟随器的输出电压与上式所求得的电压接至求和加法器的两端。在加法器(放大器)作用之后,我们获得电压与温度的直接关系。在U03端接一电压表,即可读的温度值。比如水的温度为12℃,则电压表的示数为1.2V。
完成了电压的读取,还需进行电压比较以达到报警的目的。在1.5节中已经讨论了比较器的原理。设计所要求的报警温度为50℃,即比较电压为5V。所以应该在比较器比较端VCC3接5V的恒压源。
当输出电压U03<5V时,U04<0。此时二极管截止。当输出电压>5V时,U04>0。此时二极管导通, LED发光。报警过程完成。在实际应用中,我们取VCC1=12V。

第三章 水温测量仪的仿真与制作

3.1 仿真软件简介
EWB是一种电子电路计算机仿真软件,它被称为电子设计工作平台或虚拟电子实验室,英文全称为Electronics Workbench。EWB是加拿大Interactive Image Technologies公司于1988年开发的,自发布以来,已经有35个国家、10种语言的人在使用。EWB以SPICE3F5为软件核心,增强了其在数字及模拟混合信号方面的仿真功能。SPICE3F5是SPICE的最新版本,SPICE自1972年使用以来,已经成为模拟集成电路设计的标准软件。EWB建立在SPICE基础上,它具有以下突出的特点:
(1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取;
(2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。
(3)EWB软件带有丰富的电路元件库,提供多种电路分析方法。
(4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。
(5)EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。

3.2 仿真电路的建立
我们用EWB建立电路模型,由于没有AD590,我们可以利用一个恒流源代替AD590提供电流,比拟温度的采样。被减电压2.73V我用了一个2.73V的电池来代替。电路模型如图3.1.1,图3.1.2所示:

3.3仿真效果分析
设置好电路以后,我们开始仿真。由于我们用了一个恒流源代替了AD590,即用电流源比作电压的获得。
1,取电流源电流值为200uA,即绝对温度200K,转换为摄氏度为-73℃。电压表读值为-7.3。可见与理论值相同,此时温度比50度小。比较器输出为负值。二极管不导通。图中二极管未发光(双箭头所示)。
2,取电流源电流值为333uA,即绝对温度333K,转换为摄氏度为60℃.电压表为6V。与理论相同,由于温度比50度大,电压U2>VCC3.比较器输出正值,由于理想运放的缘故。图中电压表读出值为19.8V是一个不确定正值。二极管在U3的作用下导通,发光(双箭头).
由此可见理论值与实际值符合得很好。温度能够测得。

③ 单片机液位计课程设计怎么做

1.借助机械式弄浮利用杠杆原理端接滑变阻器测量电阻或者电压值知道前液位高度
2.利用超声测距买超声波传器测量液体表面传器间距离测量利用单片机测量超声发间接收反射波间间差利用间乘声波速率除二实际液面高度

④ 题目32 简易水位测量仪设计 利用几个电阻设计制作一个简易水位自动测量仪,用单片机控制LED显示水位的高度

可以用电阻桥的方式进行测量
并将电阻桥的输出接入单片机的AD输入
通过测量不同水位的水阻抗,来判断水的水平面
用电阻桥有个好处是,精度高,测量稳定,当然价格便宜

⑤ 水位监测装置有哪些

水位传感器是指能将被测点水位参量实时地转变为相应电量信号的仪器。其工作原理是:容器内的水位传感器,将感受到的水位信号传送到控制器,控制器内的计算机将实测的水位信号与设定信号进行比较,得出偏差,然后根据偏差的性质,向给水电动阀发出"开"和"关"的指令,保证容器达到设定水位。进水程序完成后,温控部份的计算机向供给热媒的电动阀发出"开"的指令,于是系统开始对容器内的水进行加热。到设定温度时。控制器才发出关阀的命令、切断热源,系统进入保温状态。程序编制过程中,确保系统在没有达到安全水位的情况下,控制热源的电动调节阀不开阀,从而避免了热量的损失与事故的发生。

中文名
水位传感器
外文名
Water level sensor
性质
科学
类别
物理
材质
不锈钢
快速
导航
应用

原理

耐高温问题
简介
传感器就是一种能够感受水温水位,并且将感受到的水温水位转变成变化的电信号的仪器。在太阳能热水器的发展史上,水温水位传感器一直起着举足轻重的作用,热水器的智能化、人性化都与水温水位传感器密不可分,水温水位测控仪更是离不开水温水位传感器,水温水位传感器工作稳定是对整个热水器智能控制的保障。水温水位传感器的从无到有,从简单到复杂,使用寿命的由短到长,都与太阳能专业人士的努力是分不开的[1] 。
应用
广泛用于水厂、炼油厂、化工厂、玻璃厂、污水处理厂、高楼供水系统、水库、河道、海洋等对供水池、配水池、水处理池、水井、水罐、水箱、油井、油罐、油池及对各种液体静态、动态液位的测量和控制。
举例说明投入式水位传感器在水位监测系统中的应用:

水位监测系统拓扑图

投入式水位传感器DATA-51系列
原理
容器内的水位传感器,将感受到的水位信号传送到控制器,控制器内的计算机将实测的水位信号与设定信号进行比较,得出偏差,然后根据偏差的性质,向给水电动阀发出"开"和"关"的指令,保证容器达到设定水位。进水程序完成后,温控部份的计算机向供给热媒的电动阀发出"开"的指令,于是系统开始对容器内的水进行加热。到设定温度时。控制器才发出关阀的命令、切断热源,系统进入保温状态。程序编制过程中,确保系统在没有达到安全水位的情况下,控制热源的电动调节阀不开阀,从而避免了热量的损失与事故的发生[2] 。
耐高温问题
传感器要长期工作在热水器水箱之中,因为真空管的得热量大,传给热水器水箱很多热量,使水箱温度能长时间达到100度左右,短时间能达到130度,甚至150度,这就对传感器带来了耐高温问题,从太阳能界用的第一个水温水位传感器一直到近期,传感器的材料在耐高温方面一直存在缺陷,在长期的空晒过程中、在长期的水煮过程中、在长期的汽蒸过程中,不管是电子器件还是其他的传感器材料都很容易老化、损坏。 
突破这一难题,必须使进入水箱的传感器部分能够耐高温,在科学快速发展的背景下,我国已经研制除了一种能够绝缘的、耐高温的抗高温聚丙烯材料,它能够在150度的环境中正常使用,短时间能耐170度高温,导电的电极部分使用优质不锈钢材料SUS316L,既能满足耐高温,又能满足耐腐蚀的要求;而不耐高温的电路部分,可以选取远离高温水箱的结构[3] 。
参考资料
[1] 冯保清, 姜海波, 沈言琍,等. 水位传感器在灌区的比选与应用[J]. 中国农村水利水电, 2005(7):104-105.
[2] 马福昌, 元江博, 马珺. 感应式数字水位传感器智能变送器设计[J]. 电子设计工程, 2011, 19(7):128-130.
[3] 安全, 范瑞琪. 常用水位传感器的比较和选择[J]. 水利信息化, 2014(3):52-54.

⑥ 水箱液位检测装置显示HH

显示“-HH-",表示现场抄的液位信百号超出了仪表内部设定的最大量程度。就是超量程了。用万用表的测量一知下液位传感器的电流就知道了。

⑦ 单片机课程设计:基于51单片机的水位监测系统,汇编语言代码

水温可以用如18b20金属探头型的来检测。
至于水位的,有很多种方案,如光电对管的,压力传感器的,电容的……
很多啦,这个没什么难度。

⑧ 水塔水位测量用什么传感器最好

有一种投入式传感器;
1:它可以直接放入水中,沉到底;它的电缆是导气电缆,不用任何其它附件。
2:按水位高低,选择传感器的量程;水大约是11米压力1kg.
3:它的接线和普通传感器相同。
希望能对你有点帮助。

补充一点吧:
这个方法做课程设计实际是很好了,是研究生设计吗?如果是研究生的设计,就有些太简单了。
这种传感器在国内使用的还不是太多,原因是国内的水塔一般只用两个浮球开关。投入式传感器又精确,安放简单。价格又低。使用寿命长。如果做的完善可能可以成为产品的。

⑨ 求教:如何进行锅炉水位保护实验!

1 引言

火力发电厂机组可靠的系统保护是机组安全运行的必要保证。锅炉汽包满水和缺水事故是火力发电厂的重大恶性事故之一。满水将使锅炉蒸汽严重带水,使蒸汽温度急剧下降,蒸汽管道发生水冲击,甚至损害汽轮机机组。锅炉汽包缺水事故将不能维持锅炉的正常水循环,使蒸汽温度急剧上升,水冷壁过热,轻者造成机组被迫停运,严重时可造成锅炉设备的严重损坏。锅炉汽包水位保护系统是防止锅炉满水和缺水的必要和有效的措施,是锅炉启动及正常运行的必要条件。但目前锅炉水位保护系统存在较大的问题,最主要原因是锅炉汽包水位的测量不准确和保护的可靠性不够。

2 问题分析

目前现有机组的锅炉水位保护基本没有完全可靠投入,大多数投入的只是简单的事故放水,即使投入了停机、停炉保护也不够科学、不可靠。因此水位保护的不正常投入,严重威胁机组的安全运行。

2.1 水位测量存在的问题

现有锅炉汽包水位保护的水位测量大多都采用“电接点”的方式,此方式的水位测量原理与锅炉的水面计的测量原理是相同的,即“连通器”的原理,如图1所示。

图1 连通器原理图

根据“连通器”的原理,汽包内的压强与测量筒内的压强是相等的,但由于汽包内的温度(330℃)大于测量筒内的温度(250℃),所以汽包内的饱和水的比重小于测量筒内的过冷水的比重,因此,测量筒(包括水面计)的水位指示值h1将小于实际汽包内的水位h随着测量筒(包括水面计)温度的升高,指示值h1将逼近汽包内的实际水位h,只有到测量筒(包括水面计)的温度与汽包内的温度相等时,指示值h1才等于实际水位h。但实际两者的温度是不能相等的,所以指示值h1与实际水位h总会存在偏差,而且此偏差随测量筒及以下管段温度的变化而变化。

2.2 单室热套式平衡容器存在的问题

为了让单室热套式平衡容器正压侧ρa和汽包中水的比重相接近,前人设计了单室热套式平衡容器。

通过计算得出:

l=(l- ho)×(ρs-ρse )/(ρw -ρwe)+ho=(l- ho)α+ho …… (1)

式中:

l——l管段叫补偿管

ρs——蒸汽密度

ρse——额定压力下的蒸汽密度

ρw——水密度

ρwe——额定压力下的水密度

α=(ρs-ρse )/(ρw -ρwe)

这里要指出,使输出压差不变,只有在压力补偿范围之内近似不变。这种平衡容器,通过应用的结论是:

(1) 只有在零水位时,对压力变化引起的误差才能较好的消除,但不能完全消除。误差在±20mm水柱和±30mm水柱之间。

(2) 压力补偿范围做不到全程补偿。

(3) 环境温度的变化使ρa的变化所造成的误差无法消除。

2.3 水位保护系统存在的问题

既然锅炉水位测量不准,那就更谈不上什么保护了。另外,电接点测量筒电极的漏泄和电极与测量筒接合面的漏泄在机组运行的过程中是经常发生的,一旦发生漏泄将直接造成保护的误动。电极的腐蚀和测量筒内水质的变化也会造成保护的误动或者拒动。

在传统的锅炉汽包水位保护回路里,采用水位“高三值”和“高二值”“与”的方式实现保护功能,或与其它指示表串联,这些都违反了现行的规程。

3 问题对策

按照国家电力公司有关的文件精神及《防止电力生产重大事故的二十五项重点要求》部分的有关要求,根据电力系统各电厂机组的实际情况,经过对锅炉汽包水位测量和保护系统实现方法的研究,确立了以下技术方案。

3.1 锅炉汽包水位的测量

根据《防止电力生产重大事故的二十五项重点要求》中的相关规定和国电发[2001]795号文件精神,“关于印发《国家电力公司电站锅炉汽包水位测量系统配置、安装和使用的若干规定(试行)》的通知”文件要求,系统采用了单室平衡容器测量的方式,为了不受外界条件的影响,进行了压力和温度补偿,使该系统具有良好的水位测量准确性。

差压式水位表是利用比较水柱高度差值的原理来测量汽包水位的。测量时,使用差压计将汽包水位对应的水柱所产生的压强与作为参比的水柱所产生的压强进行比较,根据测得的差压值转换为汽包的水位。参比水柱由平衡容器中高度恒定的水柱形成,比较的基准点是水位表水侧取样孔的中心线,由于参比水柱的高度是保持不变的,测得的压差就可以直接转换为汽包水位。参比水柱的高度就是平衡容器内的水平面到水位表水侧取样孔的中心线,在平衡容器安装完成后,参比水柱的高度就是一个定值h,而用来测量差压的差压变送器的最大量程就应该等于参比水柱高度所对应的压强,见图2所示。

图2 差压式水位测量示意图

平衡容器也称凝结容器,容器侧面水平引出一个管口接到汽包上的汽侧取样孔,容器底部垂直引出一个管口接到差压变送器的正压侧。进入平衡容器的饱和蒸汽不断凝结成水,多余的凝结水自取样管流回汽包使容器内的水位保持恒定。为了避免汽包水位变化时,平衡容器内水位变化影响测量水位的准确性,容器内的水面积原则上越大越好。由于现代化差压变送器测量元件的位移很小,不会引起容器内水位的明显变化,因此一般情况下平衡容器内的容积为300-800ml以内就能完全保证汽包水位测量的准确性。

由图2,差压式水位表差压和汽包水位之间的关系如下式所示:

△p×l03=h*ρa-(a-h)*ρs-[h-(a-h)]*ρw

=h(ρa-ρw)+(a-h)(ρw-ρs)…… (2)

式中:

h——汽水侧取样孔的距离,mm

a——汽侧取样孔与汽包正常水位的距离,mm

h——由于汽包压力和环境温度变化而产生的汽包水位的真实值与汽包中心线之间的差值,mm

△p——对应汽包水位的差压值,mm水柱

ρs——饱和蒸汽的密度,kg/m3

ρw——饱和水的密度,kg/m3

ρa——参比水柱在平均水温时的密度,kg/m3

上式中,h和a都是常数;ρs和ρw是汽压的函数,在特定汽压下均为定值;ρa除了受汽压的影响外,还和平衡容器的散热条件与环境温度有关,当汽压和环境温度不变时,其值也为定值。这时,差压值是汽包水位的函数。

图3 水位修正回路

饱和蒸汽进入平衡容器后不断凝结成水,多余的水通过取样管流回到汽包内。容器内表层的水温必然接近饱和温度,平衡容器及其下部管道由于受到环境的冷却,因此随着高度的下降,参比水柱的温度会递减地下降到接近环境温度。参比水柱的平均温度会高于环境温度,但远低于饱和温度。本方案用较先进的方法测量参比水柱的平均温度,同时根据压力、温度的变化对正压侧进行补偿计算,对汽包水位的测量进行自动修正。

由于汽水密度都是随压力改变的,因此在锅炉启动过程中或变压运行过程中,同一汽包水位所产生的压差是不同的。这里利用正常水位线、汽包几何中心线以及汽水侧的取样点位置等计算出压差值。然后利用压力修正,具体修正原理如下:

根据(2)式,得:

a-h=△p×103-h(ρa-ρw)/(ρw-ρs)

=[△p-h(ρa-ρw)/ 103]×103/(ρw-ρs)…… (3)

令fl(x)=(ρa-ρw)/103 …… (4)

f2(x)=103/(ρw-ρs)…… (5)

代入(3)式,得:

a-h=[△p-h·fl(x)] ×f2(x)

h=a-[△p-h·f1(x)]×f2(x)…… (6)

根据式(3),可以采用图3的修正回路,修正汽包水位测量时受汽压影响造成的误差。

修正回路中两个函数发生器f1(x)和f2(x)的参数,可以根据水和水蒸汽性质参数手册进行计算。由于正压侧采用单室平衡容器测量,同时进行压力、温度补偿,在启、停炉各种工况下均能满足测量的要求,从而最大、最有效的提高了水位测量的准确性。

3.2 水位测量及保护功能的实现

随着计算机技术的不断发展,硬件设备的可靠性不断提高,应用高可靠性、具有较强计算能力的控制系统,使锅炉汽包水位测量及保护功能实现成为可能。因此,借鉴其他电厂应用的成功经验,采用可编程控制器(plc),取三路锅炉汽包水位信号,分别进行温度和压力补偿,并经过“三取中”、“二取平均”和“一取一”等方式来实现此功能是可行的。

plc具有较强的计算能力和逻辑控制能力,有“浮点运算”功能,完全可以完成锅炉汽包水位测量的补偿计算,经编程可得到补偿后的水位;通过严密的逻辑设计,可靠完成锅炉汽包水位保护。

4 系统选型

系统以simatic s7-300 plc硬件为基础,实现锅炉汽包水位保护功能。系统采用信号处理数字化,控制逻辑数字化的全数字化结构,具有高速处理能力及保护系统的可靠性。可有效地解决锅炉汽包水位保护的误动及拒动问题。该系统具备在线检测、设备硬件故障检测等功能。

硬件系统的优越性:simatic s7-300克服了系统间的许多障碍:计算机领域和dcs/plc之间的障碍,控制和监视之间的障碍,集中式和分布式自动化结构之间的障碍。该系统的应用,将会得到一个真正灵活、集成化系统所拥有的全部优点。

高程度的模块化和可扩展性,使系统达到最优,以适应所有的工艺流程,如有需要,今后还可以扩充。标准simatic元件使用保证了系统的长期可靠性。标准技术的应用和系统的开放性使之可与任意数量的第三方系统任意连接。

系统采用一台simatic操作员面板作为plc的上位机,控制和监视锅炉汽包水位保护系统。系统可与dcs系统通讯,或经过硬接线将需要传递的信号如:安全门动作接点、补偿后的水位信号、保护的投入信号等送到plc或dcs。具体方案见图4所示。

图4 锅炉汽包水位保护系统示意图

4.1 水位保护系统的功能

simatic操作员面板做为人机界面可以实现对各个输入信号和保护信号状况的监视和报警,主机和模板的故障监测报警。同时该系统对汽包水位从启炉到额定负荷的全过程进行温度、压力补偿,从而得到准确的汽包水位指示值,并对锅炉汽包水位进行全程保护。具体功能如下:

(1) 锅炉汽包水位高、低保护采用了独立的“三取中值”的逻辑判断方式,当有一点因某种原因须退出运行时,该系统能够自动转为“二取平均值”的逻辑判断方式,当某两点因某种原因退出运行时,该系统能够自动转为“一取一”的逻辑方式运行,当三路信号都发生故障时,水位置“零”,保护禁动。以上状态均在“水位补偿画面”进行显示。

(2) 当某一路的水位、温度、压力信号发生故障时,都进行报警,并切除此路信号。

(3) 显示安全门、事故放水门的动作指令,水位高低值的报警信号。

(4) 对安全门动作判断,安全门动作信号可用安全门动作回路的接点给出,也可采用汽包压力信号的微分给出。安全门动作后采用动作恢复的时间来投入保护。

(5) 常规保护功能。

4.2 工程的注意事项

(1) 水位变送器的选择。必须是高精度的智能变送器,其量程h应大于汽侧取样点与水侧取样点之间的距离加上二倍的取样管长的1/100。

(2) 综合平衡各类水位仪表的配置,利用现有的取样点位置进行冷凝罐安装。尽量保证每个水位测量装置都具有独立的取样孔。进行变送器的安装。必要时可取消保护用电接点水位表。

(3) 水位测量装置安装时,应保证汽包“零”水位线与参比水柱的1/2处在同一水平线上,并保证三个参比水柱的1/2处也在同一水平线上(采用水准仪精确确定各水位测量装置的安装位置,不应以锅炉平台等物作为参比标准),如图5所示。

图5 平衡容器现场安装示意图

(4) 安装水位测量装置取样阀门时,应使阀门阀杆处于水平位置。

(5) 差压式水位测量装置的平衡容器为单室平衡容器,即直径约为100mm的球体或球头圆柱体(容积为300-800ml),到现场后单室平衡容器必须进行金属试验和探伤。

(6) 安装汽水侧取样管时,应保证管道的倾斜度不小于100∶1,对于汽侧取样管应使取样孔侧低,对于水侧取样管应使取样孔侧高。

(7) 汽水侧取样管、取样阀门应良好保温,平衡容器不得保温。容器下部形成参比水柱的管道在绕完测温电阻后进行保温。引进差压变送器的两根管道应平行敷设。

4.3 如何判断保护指示的准确性

在前文中已经说明了就地水位计与实际水位之间存在的误差,那么误差究竟有多大,我们可结合图1通过以下计算得出:

锅炉在正常工况下,汽包压力为15mpa,水位计温度为260℃,指示为0时h1为209mm,查得ρw=0.0016579m3/kg ,ρa =0.0012553 m3/kg,h×ρw= h1×ρa,h=392.63mm

实际水位与水位计的差值应为 h-h1=102.63mm。

通过公式h×ρw=h1×ρa就可以计算出不同压力下,h1为290mm,水位计不同温度时与汽包实际水位的差值。如附表所示。

通过计算可以知道就地水位计与实际水位的差值,再与保护指示值相比较,就可以判断出保护仪表的准确性。

5 结束语

实践证明,应用基于plc的这套系统能够比较准确的测量汽包水位(误差在±20mm),并具有系统保护功能,改善了现有汽包水位难控制的等问题,完全符合工程要求,有效地提高了控制和管理水平。

⑩ 自动化专业课程设计

我们学校的是车辆工程属于机自专业,车辆的专业课:汽车构造,汽车设计,内燃机学,汽车电子技术,汽车检测与维修等等机自专业又分车辆、起重、机电、铲运等

阅读全文

与水位测量装置设计与制作课程设计相关的资料

热点内容
全自动氮吹装置自动升起样品盘 浏览:456
断桥铝窗户五金件什么牌子好 浏览:822
gps工具箱导入电脑版 浏览:422
中国有哪些机械技术是借鉴日本 浏览:436
家用天然气阀门在哪里 浏览:94
仪器能量是什么 浏览:274
暖气总管阀门多少钱 浏览:969
机械表双向上铉如何分辨 浏览:604
机械止口的作用是什么意思 浏览:393
汽车排气阀门连 浏览:977
蒸馏装置中石棉网作用 浏览:994
管道长度包含管件和阀门长度吗 浏览:352
不锈钢铸造厂怎么样 浏览:449
如图所示两个人利用机械装置 浏览:705
花式喷水池装置控制程序设计 浏览:394
朗逸仪表盘怎么不够亮 浏览:143
太阳能上水阀门漏水怎么修 浏览:61
天然气阀门正确开关法 浏览:756
中心传动刮泥机传动装置 浏览:913
温江的有哪些设备厂 浏览:17