㈠ 大学物理演示实验的目录
1 力、热学
1.1 力学
1.1.1 向心力
1.1.2 弹性碰撞
1.1.3 圆锥爬坡
1.1.4 科里奥利力
1.1.5 傅科摆
1.1.6 质心运动
1.1.7 转动定律
1.1.8 角速度合成
1.1.9 直升飞机的角动量守恒
1.1.10 角动量守恒转台
1.1.11 常平架回转仪
1.1.12 进动演示仪
1.1.13 混沌摆
1.2 空气动力学
1.2.1 气体流速与压强演示仪
1.2.2 飞机升力
1.2.3 伯努利悬浮球
1.2.4 气体涡旋演示仪
1.3 振动与波
1.3.1 旋转乔量演示仪
1.3.2 简谐振动合成仪
1.3.3 机械共振
1.3.4 音叉
1.4.5 拍频摆
1.4.6 驻波共振
1.4.7 纵驻波
1.4.8 昆特管
1.4.9 鱼洗
1.4.10 水波干涉
1.4.11 傅立叶振动合成仪
1.4.12 声波波形演示仪
1.4.13 声聚焦
1.4.14 超声雾化
1.4 热学
1.4.1 分子运动
1.4.2 伽尔顿板
1.4.3 模拟电冰箱实验装置
1.4.4 投影式相临界点状态演示仪
2 光学
2.1 几何光学
2.1.1 分光计
2.1.2 三棱镜
2.1.3 尼克尔棱镜模型
2.1.4 方解石与双折射
2.1.5 窥视无穷
2.1.6 人造火焰
2.1.7 光栅变换图
2.1.8 激光反射运动合成仪
2.1.9 反射式运动合成仪
2.1.10 海市蜃景演示仪
2.1.11 光学幻影演示仪
2.1.12 光学分形演示仪
2.1.13 普氏摆
2.1.14 光瞳实验演示仪
2.2 波动光学
2.2.1 动态多缝衍射强度实时显示仪
2.2.2 旋转式小孔衍射仪
2.2.3 散射光干涉演示仪
2.2.4 激光光纤干涉演示仪
2.2.5 台式皂膜
2.2.6 帘式皂膜
2.2.7 光栅视镜系统
2.2.8 光学仪器分辨率
2.2.9 反射白光全息图
2.2.10 透射白光全患合成图
2.3 偏振光学
2.3.1 自然光、偏振光模型
2.3.2 偏振光状态演示仪
2.3.3 旋光色散演示仪
2.3.4 偏振光干涉、应力演示仪
2.4 光学综合
2.4.1 热辐射机
2.4.2 氦氖激光器
2.4.3 看得见的激光
2.4.4 绿激光器
2.4.5 激光光学演示仪
2.4.6 红外接收演示仪
2.4.7 梦幻时钟
2.4.8 梦幻球
2.4.9 激光多普勒试验仪
2.4.10 超声光栅演示仪
2.4.11 电光调制演示仪
2.4.12 法拉第磁旋光演示仪
2.4.13 光纤和互感通讯演示仪
2.4.14 3D立体影像演示仪
2.4.15 光纤陀螺演示仪
2.4.16 夫兰克一赫兹演示仪
3 电学
3.1 静电学
3.1.1 维氏起电机
3.1.2 高压电源
3.1.3 指针验电器
3.1.4 静电摆球
3.1.5 静电除尘
3.1.6 静电跳球
3.1.7 静电植绒
3.1.8 雅格布天梯
3.1.9 低气压下辉光放电
3.1.10 辉光球、辉光盘
3.1.11 电子束偏转
3.1.12 库仑扭秤
3.2 导体与电介质
3.2.1 静电感应盘
3.2.2 卡文迪许球
3.2.3 导体静电荷接曲率分布
3.2.4 尖端放电
3.2.5 电风轮、电风转筒
3.2.6 避雷针
3.2.7 静电屏蔽
3.2.8 高压带电作业
3.2.9 电介质极化
3.2.10 电介质对电容影响
3.2.11 PGM数字小电容测试仪
3.2.12 绝缘体转换为导体
3.3 电学综合
3.3.1 手触式电池
3.3.2 压电效应
3.3.3 基尔霍夫定律
3.3.4 RLC电路串并联谐振
……
4 磁学
参考文献
㈡ 如图所示演示实验装置,一根张紧的水平绳上挂着五个单摆,其中A、E摆长相同,先使A摆摆动,其余各摆也摆
A摆摆动,其余各摆也摆动起来,它们均做受迫振动,则它们的振动频率均等于A摆的摆动频率,而由于A、E摆长相同,所以这两个摆的固有频率相同,则E摆出现共振现象,振幅最大,A正确. 故选:A |
㈢ 核磁共振实验数据处理怎么求bm
核磁共振是重要的物理现象。核磁共振技术在物理、化学、生物、医学和临床诊断、计量科学、石油分析与勘探等许多领域得到重要应用。
自旋角动量P不为零的原子核具有相应的磁距μ,而且
其中 称为原子核的旋磁比,是表征原子核的重要物理量之一。当存在外磁场B时,核磁矩和外磁场的相互作用使磁能级发生塞曼分裂,相邻能级的能量差为 ,其中h=h/2π,h为普朗克常数。如果在与B垂直的平面内加一个频率为ν的射频场,当
时,就发生共振现象。通常称y/2π为原子核的回旋频率,一些核素的回旋频率数值见附录。
核磁共振实验是理科高等学校近代物理实验课程中的必做实验之一;如今,许多理科院校的非物理类专业和许多工科、医学院校的基础物理实验课程也安排了核磁共振实验或演示实验。
利用本装置和用户自备的通用示波器可以用扫场的方式观察核磁共振现象并测量共振频率,适合于高等学校近代物理实验基础实验教学使用。
二、实验仪器
永久磁铁(含扫场线圈)、可调变阻器、探头两个(样品分别为 、 和 )、数字频率计、示波器。
三、实验原理
(一)核磁共振的稳态吸收
核磁共振是重要的物理现象,核磁共振实验技术在物理、化学、生物、临床诊断、计量科学和石油分析勘探等许多领域得到重要应用。1945年发现核磁共振现象的美国科学家Purcell和Bloch1952年获诺贝尔物理学奖。在改进核磁共振技术方面作出重要贡献的瑞士科学家Ernst1991年获得诺贝尔化学奖。
大家知道,氢原子中电子的能量不能连续变化,只能取分立的数值,在微观世界中物理量只能取分立数值的现象很普通,本实验涉及到的原子核自旋角动量也不能连续变化,只能取分立值 ,其中I称为自旋量子数,只能取0,1,2,3,…等整数值或1/2,3/2,5/2,…等半整数值,公式中的 =h/2π,而h为普朗克常数,对不同的核素,I分别有不同的确定数值,本实验涉及质子和氟核F19的自旋量子数I都等于1/2,类似地原子核的自旋角动量在空间某一方向,例如z方向的分量也不能连续变化,只能取分立的数值Pz=m 。其中量子数m只能取I,I-1,…,-I+I,-I等2I+1个数值。
自旋角动量不为零的原子核具有与之相联系的核自旋磁矩,其大小为
(1)
其中e为质子的电荷,M为质子的质量,g是一个由原子核结构决定的因子,对不同种类的原子核g的数值不同,g称为原子核的g因子,值得注意的是g可能是正数,也可能是负数,因此,核磁矩的方向可能与核自旋动量方向相同,也可能相反。
由于核自旋角动量在任意给定z方向只能取(2I+1)个分立的数值,因此核磁矩在z方向也只能取(2I+1)个分立的数值。
( 2 )
原子核的磁矩通常用μN=eh/2M作为单位,μN称为核磁子,采用μN作为核磁矩的单位后,μZ可记住μZ =gmμN,与角动量本身的大小为 相对应,核磁矩本身的大小为 g μN,除了用g因子表征核的磁性质外,通常引入另一个可以由实验测量的物理量γ,γ定义原子核的磁矩与自旋角动量之比:
( 3 )
利用γ我们可写成μ=γp,相应地有μz=γpz 。
当不存在磁场时,每一个原子核的能量相同,所有原子处在同一能级,但是,当施加一个外磁场B后,情况发生变化,为了方便起见,通常把B的方向规定为z方向,由于外磁场B与磁矩的相互作用能为
E=-μ·B=-μzB=-γpzB=-γm B (4)
因此量子m取值不同的核磁矩的能量也就不同,从而原来简并的同一能级分裂为(2I+1)个子能级,由于在外磁场中各个子能级的能量与量子数间隔△E=γ B全是一样的,而且,对于质子而言,I=1/2,因此,m只能取m=1/2和m=-1/2两个数值,施加磁场前后的能级分别如图1中的(a)和(b)所示
当施加外磁场B以后,原子核在不同能级上的分布服从玻尔兹曼分布,显然处在下能级的粒子数要比上能级的多, 其数量由△E大小、系统的温度和系统总粒子数决定,这时,若在与B垂直的方向上再施加上一个高频电磁场, 通常为射频场,当射频场的频率满足hν=△E时会引起原子核在上下能级之间跃迁, 但由于一开始处在下能级的核比在上能级的核要多,因此净效果是上跃迁的比下跃迁的多,从而使系统的总能量增加,这相当于系统从射频场中吸收了能量。
,
,
(a) B=0 (b)B 0
图1
我们把hv=△E时引起的上述跃迁称为共振跃迁,简称为共振。显然共振要求hv=△E,从而要求射频场频率满足共振条件:
E=-μ·B=-μzB=-γpzB=-γm B (5)
如果用圆频率 =2πν表示,共振条件可写成:
ω=γB ( 6 )
如果频率的单位用Hz,磁场的单位用T(特斯拉,1特斯拉=10000高斯),对裸露的质子而言经过测量得到 /2π=42.577469 MHz/T;但是对于原子或分子中处于不同的基团的质子,由于不同质子所处的化学环境不同,受到周围电子屏蔽的情况不同, 的数值将略有差别,这种差别称为化学位移,对于温度为25摄式度球形容器中水样品的质子, =42.576375 MHz/T,本实验可采用这个数值作为很好的近似值,通过测量质子在磁场B中的共振频率 可实现对磁场的校准,即
(7)
反之,若B已经校准,通过测量未知原子核的共振频率v便可求出待测原子核 值(通常用 值表征)或g因子;
(8)
(9)
其中 =7.6225914 MHz/T
通过上述讨论,要发生共振必须满足v= ·B,为了观察到共振现象通常有两种方法;一种是固定B,连续改变射场的频率,这种方法称为扫频方法;另一种方法,也就是本实验采用的方法,即固定射场的频率,连续改变磁场的大小,这种方法称为扫场方法,如果磁场的变化不是太快,而是缓慢通过与频率v对应的磁场时,用一定的方法可以检测到系统对射场的吸收信号,如图2(a)所示,称为吸收曲线,这种曲线具有洛伦兹型曲线的特征,但是,如果扫场变化太快,得到的将是如图2(b)所示的带有尾波的衰减振荡曲线,然而,扫场变化的快慢是相对具体样品而言的,例如,本实验采用的扫场的磁场,其吸收信号将如图2(a )所示,而对液态的水样品而言却是变化太快的磁场,其吸收信号将如图2(b)所示,而且磁场越均匀,尾波中振荡的次数越多。
(a) (b)
图2
(二)核磁共振法测量驰豫时间
在共振吸收过程中,低能级的粒子跃迁到高能级,使高、低能级的粒子数分布趋于均等,这时共振吸收信号消失,粒子系统处于饱和状态。但由于物质内部机制存在着恢复平衡状态的逆过程,在适当的实验条件下仍可观测到稳定的共振吸收信号。所谓驰豫过程,就是表征系统由非平衡状态趋向平衡状态的过程,该过程所经历的时间称为驰豫时间。热平衡时,由于每个粒子的磁矩都绕外场 进动,系统的总磁矩 与外场 的方向相同, 的大小可由不同能级上粒子磁矩的大小按玻尔兹曼分布求和得到。假设通过某种途径使系统偏离热平衡态。宏观上表现为系统总磁矩 在实验室坐标系的三个方向上的分量为Mx My Mz 。这时自旋系统恢复到热平衡态。一是通过与晶格交换能量使由上、下能级粒子数分布根据下式
所确定的自旋体系的温度Ts最终与晶格的温度 相等。粒子恢复到玻尔兹曼分布。Mz最终等于 , 即
此过程称为自旋——晶格驰豫。上式中,T1反映了系统纵向磁矩Mz趋向热平衡值时速度的快慢,称为纵向驰豫时间。在自旋系统中,还存在另一种自旋——自旋驰豫过程,称为自旋——自旋相互作用。它不改变自旋粒子体系各能级上粒子数。即不改变自旋系统的总能量。但使系统总磁矩在x、y 方向上的分量Mx 和My逐渐趋向于热平衡值。它遵从下式,
式中T2称为横向驰豫时间。实际上,在核磁共振中,上述的共振吸收与驰豫过程是同时进行。通过共振吸收,粒子数偏离平衡态分布。另一方面又通过驰豫回到热平衡态。当这两个过程达到动态平衡时,出现稳定的吸收信号,称为稳态核磁共振吸收谱。
四、实验内容与步骤
(一)仪器介绍
实验装置的方框图如图3所示:它由永久磁铁、扫场线圈,边限振荡器(包括探头)、数字频率计、示波器等组成。
永久磁铁:对永久磁铁的要求是有极强的磁场、足够大的均匀区和均匀性好,本实验所用的磁铁中心磁场B0≥0.5T,在磁场中心(5mm)3范围内,均匀性优于10-5。
(二)扫场线圈:用来产生一个幅度大小在零点几高斯到十几高斯的可调交变磁场用于观察共振信号,扫场线圈的电流由可调变阻器的输出后提供,扫场的幅度可通过可调变阻器调节
(三)探头,射频场的产生与共振信号的探测
本实验提供两个探头,其中样品为 、 和
图3
(二)校准永久磁铁中心的磁场Bo
把样品为水(掺有HF)的探头下端的样品盒插入到磁铁中心,并使电路盒水平放置在磁铁上方的机座上,左右移动电路盒使它大致处于机座的中间位置,将电路盒背面的“频率测试”和“共振信号”分别与频率计和示波器连接,把示波器的扫描速度旋钮放在5ms/格位置,纵向放大旋钮放在0.1V/格或0.2V/格位置,打开频率计,示波器和边限振荡器的电源开关,这时频率计应有读数,接通可调变阻器电流到中间位置,缓慢调节边限振荡器的频率旋钮,改变振荡频率(由小到大或由大到小)同时监视示波器,搜索共振信号。
(三)估测HF样品中H核的驰豫时间T2。
估测方法如下:示波器改用X-Y输入方法,把底座前方标有“扫场输出”的信号(它与扫场线圈两端电压成正比)输入到X端,“共振信号”信号输入到Y端。把频率调节在氟的共振频率适当增大扫场幅度,从示波器上观察到的将是重叠而又相互错开了两个共振峰(可利用相移调节旋钮改变两个峰的位置)。利用示波器上的网格估测其中一个共振峰的半宽度B与扫场变化范围2 的比值K(即K=ΔB/2 )。然后固定扫场的幅度不变,把示波器改回正常的接法,用与基本要求1.中相同方法,测出共振发生在扫场的峰顶与谷底时的共振频率 和 求出这时扫场的变化范围2 ,进而求出氟核共振峰的半宽度ΔB,然后利用公式
F
或
估算出固态聚四氟乙烯中氟核的驰豫时间T2,上面式中 为氟核的回旋频率(参见附录)。
五、数据表格及数据处理
1.由 计算磁场强度 。
根据公式
其中: 为三峰等间隔时的扫场频率
需要测量三种溶液中H的共振频率。
2.计算驰豫时间 (只测H)
根据公式
其中: , 为三峰等间隔时的扫场频率, 为两峰合一刚消失时的扫场频率;
;
为三峰等间隔半高宽
在计算中注意:
, , ,
所以单位换算: ,
六、注意事项
1.不要随便搬动桌面上仪器的摆放位置,特别是不准移动永久磁场的位置,不准动上面的任何螺丝。
2.接通电源前应把输出电流和电压调到0档,经老师检查后开启电源。
3.实验过程中所有按键旋钮要“轻按慢旋”,没有搞清功能前都不准使用仪器。
4. 边限电流调节会对频率产生影响。因此,在调节边限电流后,再调节频率进行补偿,使每一次测量频率保持一致。
5.样品必需安置再磁场的均匀区内。如果样品安置在均匀区域内,信号会十分明显。所以,样品在磁场中的位置十分重要,必须认真仔细观测信号随样品位置上下、左右的变化,力求取得最佳效果。
七、教学后记
1.本实验由于教材中没有相关内容,因此实验前要求学生在实验室参看学习资料进行预习,并要求学生思考什么使核磁共振和驰豫。
2.在讲解中结合目前核磁共振在医学上和石油勘探等方面的应用,引起学生们的兴趣。
3.讲解中结合示波器显示的吸收信号指出本实验需要测量数据。
4.要求学生在频率调节应参考提供的 频率仔细寻找,缓慢旋转,速度过快,核磁共振信号会瞬间消失。
5.学生计算出磁场后应与仪器给定永久磁铁磁场相比较,并进行误差分析。
㈣ 这是一个物理实验装置,求名称
动量守恒小球
1.碰撞是指物体间相互作用时间极短(近似为0),而相互作用力很大的现象。
在碰撞过程中,系统内物体相互作用的内力一般远大于外力,故碰撞中的动量守恒,按碰撞前后物体的动量是否在一条直线区分,有正碰和斜碰。中学物理一般只研究正碰。
2.按碰撞过程中动能的损失情况区分,碰撞可分为二种:
a.完全弹性碰撞:碰撞前后系统的总动能不变,对两个物体组成的系统的正碰情况满足:
m1v1+m2v2=m1v1′+m2v2′
1/2m1v1^2+1/2m2v2^2=1/2m1v1′^2+1/2m2v2′^2(动能守恒)
两式联立可得:
v1′=[(m1-m2) v1+2m2v2]/( m1+m2)
v2′=[(m2-m1) v2+2m1v1]/( m1+m2)
·若m1>>m2,即第一个物体的质量比第二个物体大得多
这时m1-m2≈m1,m1+m2≈m1.则有v1'=v1 v2'=2v1
即碰撞后1球速度不变,2球以2倍于1球速度前进,如保龄球撞乒乓球。
·若m1<<m2,即第一个物体的质量比第二个物体的质量小得多
这时m1-m2≈-m2, 2m1/(m1+m2)≈0.则有v1'=-v1 v2'=0
即碰撞后1球原速率反弹,2球不动。如乒乓球撞保龄球。
b.完全非弹性碰撞,该碰撞中动能的损失最大,对两个物体组成的系统满足:
m1v1+m2v2=(m1+m2)v
此情况两球相撞后黏在一起了。
c.非弹性碰撞,碰撞后动能有一定的损失,(转化为内能)损失比介于前二者之间。
动量守恒定律的本质
系统内力只改变系统内各物体的运动状态,不能改变整个系统的运动状态,只有外力才能改变整个系统的运动状态,所以,系统不受或所受外力为0时,系统总动量保持不变。
9令在光滑水平面上有两球A和B,它们质量分别为M1和M2,速度分别为V1和V2(假设V1大于V2),
且碰撞之后两球速度分别为Va和Vb。则在碰撞过程中,两球受到的力均为F,且碰撞时间为Δt,令V1方向为正方向,可知:
-F·Δt=M1·Va-M1·V1 ①
F·Δt=M2·Vb-M2·V2 ②
所以 ①+ ②得:
M1·Va+M2·Vb-(M1·V1+M2·V2)=0
即:
M1·Va+M2·Vb=M1·V1+M2·V2
且有系统初动量为P0=M1·V1+M2·V2,末动量为P1=M1·Va+M2·Vb
所以动量守恒得证:
P0=P1
参考文献:http://ke..com/view/78793.htm?fr=aladdin
㈤ 高中物理演示实验有哪些
第一册:绪言:P1瓦碎蛋全声音将酒杯震碎带电鸟笼里的鸟安然无恙P4超导磁悬浮第一章力P5用悬挂法求薄板的重心P6显示微小形变的装置P12共点力的合成P17习题(7)两人共提一筒水第二章直线运动P20模拟打点计时器P36牛顿管(毛钱管)实验P38测定反应时间第三章牛顿运动定律P46伽利略理想实验P50-51加速度和力加速度和质量的关系实验P55牛顿第三定律P62观察失重现象第四章物体的平衡P71三个互成角度的共点力的平衡第五章曲线运动P82曲线运动的方向P83运动的合成和分解P86平抛物体的运动P89用尺测量玩具手枪子弹射出时的速度P93向心力演示器P95感受向心力P99离心运动的应用和防止第六章万有引力定律P106卡文迪许扭秤第七章机械能P123动能动能定理P129小球在摆动中机械能守恒第二册第八章动量P5鸡蛋会不会破P7缓冲装置的模拟P8动量守恒P13反冲运动第九章机械振动P21弹簧振子的振动P30单摆的振动图象P31单摆的周期跟哪些因素有关P37受迫振动P38共振P38声音的共鸣第十章机械波P47波的形成P54波的衍射P55波的叠加P56波的干涉P62多普勒效应第十一章分子热运动能量守恒P72扩散现象P73布朗运动P76图11-8做一做P78压缩气体做功,气体内能增加P78气体对外做功,内能减少P110气体压强的微观意义P112气体的压强、体积、温度间的关系第十三章电场P117静电感应P118库仑定律P120库仑扭秤P124电场线P126静电屏蔽P133尖端放电与避雷针P135电容器的电容P136常用电容器P137电容式传感器P141静电除尘原理第十四章恒定电流P153电阻定律P160路端电压随电流而改变第十五章磁场P169电流和磁极电流和电流间的相互作用P172验证环形电流的磁场方向P174安培力P177电流表的工作原理P177电子束在磁场中的偏转P179带电粒子在匀强磁场中做圆周运动P181质谱仪P183回旋加速器
㈥ 跪求大学物理演示实验报告——光学
这是以前我们写的 你看看可不可以
用透射光栅测定光波波长
08物理 杨贵宏
云南省红河学院物理系 云南 蒙自 661100
摘 要:这篇文章讲述了怎样利用透射光栅测量光波波长,以及测量时的细节,测量前的实验准备。
关键词:光栅,主极大,次极大,分光计,单色光,复色光
引言:
我们的生活离不开阳光,通常我们认为阳光是一种单色光[1](单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。
广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意[2]。
分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。
分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。
分光计基本结构示意图
表1 分光计各调节装置的名称和作用
代号 名称 作用
1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度
2 狭缝装置
3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。
4 平行光管 产生平行光
5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。
6 夹持待测物簧片 夹持载物台上的光学元件
7 载物台调节螺丝(3只) 调节载物台台面水平
8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动
9 望远镜 观测经光学元件作用后的光线
10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置
11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)
12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰
13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度
14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动
15 望远镜支架
16 游标盘 盘上对称设置两游标
17 游标 分成30小格,每一小格对应角度 1’
18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动
19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数
20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字
21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动
22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动
23 分光计电源插座
24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上
25 平行光管支架
26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动
27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动
28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动
29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角
实验原理:
图1中给出几条不同缝数缝间干涉因子的曲线.为了便于比较,纵坐标缩小了 它们有以下特点:
(1)主极强峰值的大小、位置和数目
当 ( )时, , ,但它们的比值 ,这些地方是缝间干涉因子的主极大(多缝衍射图样中出现一些新的强度极大和极小,其中那些较强的亮线叫主极大,较弱的亮线叫次极大)。 意味着衍射角满足下列条件:
(1)
(1)式说明,凡是在衍射角满足(1)式的方向上出现一个主极大,主极大的强度是单缝在该方向强度的 倍。主极强的位置与缝数N无关。主极强的最大级别|k|<d/λ。
(2)零点的位置、主极强的半角宽度和次极强的数目
当Nβ等于π的整数倍但β不是π整数倍时,sinNβ=0,sinβ≠0,这里是缝间干涉因子的零点。零点在下列位置:
sinθ=(k+m/N)λ/d (2) 其中k=0,±1,±2,…;m=1,…,N-1.
所以每个主极强之间有N-1条暗线(零点),相邻暗线间有一个次极强,故共有N-2个次极强。
半角宽度公式为: △θ=λ/Nd•cosθk。 (3)
主极强的半角宽度△θ与Nd成反比,Nd越大,△θ越小,这意味着主极强的锐度越大。反映在幕上,就是主极强亮纹越细。
上面我们只分析了缝间干涉因子的特征,实际的强度分布还要乘上单缝衍射击因子.在图1中所示 缝间干涉因子上乘以图1所示的单缝衍射因子,就得到图2[(a),(b),(c)]中所示的强度分布.从这里可以看出,乘上单缝衍射因子后得到的实际强度分布中各级说极强的大小不同,特别是刚好遇到单缝衍射因子零点的那几级主极强消失了,这现象叫做缺级.
在给定了缝的间隔d之后,主极强的位置就定下来了,这时单缝衍射因子并不改变主极强的位置和半角宽度,只改变各级主极强的强度.或者说,单缝衍射因子手作用公在影响强度在各级主极强间的分配.
如图3所示,设S为位于透镜L1物方焦面上的细长狭缝光源,G为光栅,光栅上相邻狭缝两对应之间的距离d 称为光栅常量,自L1射出的平行光垂直地照射在光栅G上。透镜L2将与光栅法线成θ角的衍射光会聚于其像方焦面上的Pθ点,由(1)式的光栅分光原理得
(3)
上式称为光栅方程.式中θ是衍射角,λ是光波波长,k是光谱级数(k=0、±1、±2…)。衍射亮条纹实际上是光源加狭缝的衍射像,是一条锐细的亮线。当k=0时,在θ=0的方向上,各种波长的亮线重叠在一起,形成明亮的零级像。对于k的其它数值,不同波长的亮线出现在不同的方向上形成光谱,此时各波长的亮线称为光谱线。而与k 的正、负两组值相对应的两组光谱,则对称地分布在零级像的两侧。因此,若光栅常量d为已知。当测定出某谱线的衍射角θ和光谱级k,则可由(1)式求出该谱线的波长λ;反之,如果波长λ是已知的。则可求出光栅常量d 。
实验进行步骤:
1.实验时分光计调节,
(1)粗调。
A,旋转目镜手轮,尽量使叉丝和绿十字清晰。
B,调节载物台,使下方的三只螺钉的外伸部分等高,使载物台平面大致与主轴垂直(目测)。
C,调整望远镜光轴俯仰调节螺钉,使望远镜光轴尽量调成水平(目测)。
粗调应达到的要求:在载物台上放一个三棱镜。当三棱镜的一个光学面与望远镜光轴接近垂直时,应可以看到反射回来的十字像,十字像一般与分划板上的交点并不重合,至此粗调完成。
(2)细调。
A,使分光计望远镜适应平行光(对无穷远调焦),望远镜、准直管主轴均垂直于仪器主轴,准直管发出平行光。
B,使望远镜对准准直管,从望远镜中观察被照亮的准直管狭缝的像,使其和叉丝的竖直线重合,固定望远镜。参照图3放置光栅,点亮目镜叉丝照明灯(移开或关闭夹缝照明灯),左右转动载物平台,看到反射的“绿十字”,调节b2或b3使“绿十字”和目镜中的调整叉丝重合。这时光栅面已垂直于入射光。
用汞灯照亮准直管的狭缝,转动望远镜观察光谱,如果左右两侧的光谱线相对于目镜中叉丝的水平线高低不等时(如图3),说明光栅的衍射面和观察面不一致,这时可调节平台上的螺钉b1使它们一致。最终使 光栅面衍射面应调节到和观测面度盘平面一致。
2. 测光栅常量d:只要测出第k可级光谱中的波长λ已知的谱线的衍射角 ,就可以根据(3)式求出d值。
(1).调节分光计按(1)步骤
(2).调节光栅位置
(3).用汞灯照亮准直管,转动望远镜到光栅的一侧,使叉丝的竖直线对准已知波长的第k级谱线的中心,记录二游标值。
(4). 将望远镜转向光栅的另一侧,使叉丝的竖直线对准已知波长的第k级谱线的中心,记录二游标值。
(5).重复第4、5步两次,得到3组数据。
3.光谱级数k由自己确定,由于光栅常量d已测出,因此只要未知波长的第k级谱线的衍射角 ,就可以求出其波长值 。
以知波长可以用汞灯光谱中的绿线( nm),也可以用钠灯光谱中二黄线 )之一。
3. 测量未知波长
(1). 用汞灯照亮准直管,转动望远镜到光栅的一侧,使叉丝的竖直线对准已知波长的第k级谱线的中心,记录二游标值。
(2).转动望远镜到光栅的一侧,使叉丝的竖直线对准以知波长的第k级谱线的中心,记录两游标值;将望远镜转向光栅的另一侧,同上测量,同一游标的两次读熟之差是衍射角 的两倍。
(3).重复第1、2步两次,得到3组数据。
实验数据:见实验数据记录表
实验数据记录表
表二 测光栅常量d实验数据
测量次序( )
1
2
3
表三 测量未知波长实验数据
测量次序( )
1
2
3
实验结果:
1.测量光栅常量
根据 ,由表二得到 的平均值
= (1)
由光栅原理 ,
因此有
又因为在此实验中 ,绿光的波线 nm,衍射角的平均值 ,因此得d的平均值
(nm) (2)
2.测量蓝紫光的波长
根据 ,由表三得到 的平均值
= (3)
由于 ,得到
又因为在此实验中 ,光栅常量 nm,衍射角的平均值 ,因此得 的平均值
(nm) (4)
参考文献:
[1],赵凯华.新概念物理教程——光学.高等教育出版社,2004
[2],进清理, 黄晓虹主编. 基础物理实验.浙江大学出版社2006
[3],杨述武主编,王定兴编. 普通物理实验(光学部分).高等教育出版社,1993
㈦ 各位,谁知道小学科学实验室都需要哪些器材
小学科学是一门集自然科学和社会科学为一体的综合学科,学科本身与科技创新教育有着密切的联系。近年来,教育部也不断发文强调“每个学生都应学好科学”。下面介绍一下小学科学实验室都需要哪些设备器材:
一、能量转换系列
温差发电演示仪、太阳能电池利用探究、瞬间制冰器、风力发电实验器、水果发电实验器(水果电子钟)、可行驶的太阳能小车、热能发动机演示仪、太阳灶、烛火发电、瓦特蒸汽机、水轮机、土壤浇花器、激光发光管。
二、光学系列
透镜折射实验器、光三原色合成演示仪、直线传播的光
(光直线传播演示器)、实物成虚像实验器、莫尔条纹波纹片实验器、光的彩色偏振实验器、接力式潜望镜、放大观察仪、光的热辐射仪—光压风车、彩灯长廊演示器、热辐射对比温度计、学生三原色合成探究仪、穿墙而过实验器、多像镜(一个变多个)、X光机、无线电报机、光通讯实验系统、魔术套件。
小学科学教室的无人机
九、综合类科学系列
龙卷风演示仪、龙卷风模拟演示器、记忆合金实验器、真假沸腾实验器、液体分层模型,以及科学探究画(整套教室),包括实验室简介、光学错觉探究画、新型能源利用与转换、世界科学之谜等内容。
以上是为您介绍的最新的小学科学实验室设备清单,各学校可根据自己的特色选配相应仪器设备,帮助提升小学科学实验教学的趣味性和实用性。借助小学科学实验室设备的力量,真正做到开辟科学实践土壤,点亮学生的科学梦想。