『壹』 风能发电的目的和意义
目的
(1)发电
(2)风能发电是开发新能源、改善环境的重要组成部分
意义
(1)充分利用风能资源,减少常规能源的消耗,符合国家能源改革的方向。而且风能又是可再生能源(即在同一地点相距6~8倍风轮高度的距离后风能又达到原值)。取之不尽,用之不竭。
(2)风力发电场对比同规模使用燃煤电厂其向大气排放的污染物为零,实现固体、气体零排放。对保护大气环境有积极作用。
(3)风力发电场比燃煤电厂可节省大量淡水资源,减少水环境污染。特别是对缺少淡水资源的沿海及干旱地区更重要。
(4)在沿海及旅游区风力机群也是一道风景线,可在一定程度上反映经济、文化、环境相融洽的程度。
(5)通过实物教育,可增强公众开发自然资源、保护环境的意识。
(6)建设风力电场对发展沿海经济有重大意义。如建海产冷库、开展海水淡化、进行电量季节调峰等都起到关键作用。
『贰』 风力发电控制系统的基本功能
(1)数据采集(DAS)功能:包括采集电网、气象、机组参数,实现控制、报警、记录、曲线功能等;
(2)机组控制功能:包括自动启动机组、并网控制、转速控制、功率控制、无功补偿控制、自动对风控制、解缆控制、自动脱网、安全停机控制等;
(3)远程监控系统功能:包括机组参数、相关设备状态的监控,历史和实时曲线功能,机组运行状况的累计监测等。
1、数据采集(DAS)功能
机组运行过程中进行监测的相关参数包括:
(1)电网参数,包括电网三相电压、三相电流、电网频率、功率因数等。电压故障检测:电网电压闪变、过电压、低电压、电压跌落、相序故障、三相不对称等。
(2)气象参数,包括风速、风向、环境温度等。
(3)机组状态参数检测,包括:风轮转速、发电机转速、发电机线圈温度、发电机前后轴承温度、齿轮箱油温度、齿轮箱前后轴承温度、液压系统油温、油压、油位、机舱振动、电缆纽转、机舱温度等。
风电场远程监控中心的上位机和塔座触摸屏站均可实现机组的状态监视,实现相关参数的显示、记录、曲线、报警等功能。
2、机组启停、发电控制
(1)主控系统检测电网参数、气象参数、机组运行参数,当条件满足时,启动偏航系统执行自动解缆、对风控制,释放机组的刹车盘,调节桨距角度,风车开始自由转动,进入待机状态。
(2)当外部气象系统监测的风速大于某一定值时,主控系统启动变流器系统开始进行转子励磁,待发电机定子输出电能与电网同频、同相、同幅时,合闸出口断路器实现并网发电。
(3)风力机组功率、转速调节
根据风力机特性,当机组处于最佳叶尖速比λ运行时,风机机组将捕获得最大的能量,虽理论上机组转速可在任意转速下运行,但受实际机组转速限制、系统功率限制,不得不将该阶段分为以下几个运行区域:即变速运行区域、恒速运行区域和恒功率运行区。额定功率内的运行状态包括:变速运行区(最佳的λ)和恒速运行区。
当风机并网后,转速小于极限转速、功率低于额定功率时,根据当前实际风速,调节风轮的转速,使机组工作在捕获最大风能的状态。
由于风速仪测量点的风速与作用于桨叶的风速存在一定误差,所以转距观测器来预测风力机组的机械传动转距,在通过发电机转速和转距的对应关系推出转速。ω为发电机转速期望值。Tm为转距的观测值。Kopt为最佳转速时的比例常数。
当风速增加使发电机转速达上限后,主控制器需维持转速恒定,风力机组发出的电功率,随风速的增加而增加,此时机组偏离了风力机的最佳λ曲线运行。
当风速继续增加,使转速、功率都达到上限后,进入恒功率运行区运行,此状态下主控通过变流器,维持机组的功率恒定,主控制器一方面通过桨距系统的调节减少风力攻角,减少叶片对风能的捕获;另一方面通过变流器降低发电机转速节,使风力机组偏离最佳λ曲线运行,维持发电机的输出功率稳定。
『叁』 举一例说明风力发电系统
技术原理
该技术采用空气洞力学原理,针对垂直轴旋转的风洞模拟,叶片选用了飞机翼形形状,在风轮旋转时,它不会受到因变形而改变效率等;它用垂直直线4-5个叶片组成,由4角形或5角形形状的轮毂固定、连接叶片的连杆组成的风轮,由风轮带动稀土永磁发电机发电送往控制器进行控制,输配负载所用的电能。
该技术原理根据空气片条理论,实际计算可选取垂直风机旋转轴的切面进行计算模型,按叶片实际尺寸,每个叶片的旋转轴心距离为N米;用CFD技术进行模拟气动系数计算,计算原理采用离散数字方法求解翼形断面的气动力,用网格方法对雷诺数流动涡量分布比较形成高雷诺数下对Navier-Stokes方程进行数字模拟计算的原理结果。
采用稀土永磁材料发电的原理,配套与空气洞力学原理的风轮,采用直驱式结构进行旋转发电。
把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。 风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。
风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵)
风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)
由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。
铁塔是支承风轮、尾舵和发电机的构架。它一般修建得比较高,为的是获得较大的和较均匀的风力,又要有足够的强度。铁塔高度视地面障碍物对风速影响的情况,以及风轮的直径大小而定,一般在6-20米范围内。
发电机的作用,是把由风轮得到的恒定转速,通过升速传递给发电机构均匀运转,因而把机械能转变为电能。
『肆』 风力发电的好处
风能是最清结、无污染的可再生能源之一。据专家们的测估,全球可利用的风能资源为200亿千瓦,约是可利用水力资源的10倍。如果利用1%的风能能量,可产生世界现有发电总量8%~9%的电量。据有关部门预测,我国可利用风能资源约为16亿千瓦,其中有很好利用价值的约为2 53亿千瓦。
风力发电有横轴型风力发电机和垂直轴型风力发电机两种。风力发电装置一般由风轮、传动系统、发电机、储能设备、控制保护系统和塔架等组成。它最适宜的风速范围是6~8米/秒,当然需要有较充足和稳定的风源。通常按团米/秒最大风速设计叶片转速,如果风速超过工作范围时,为了保护发电机应能自动减速,当风速达到台风般的速度时,叶片则自动停止运转。当风力机在运行中由于各种原因而甩负荷时,也会由于风叶超速而自动减速。由于采用了叶顺浆机构或阻力装置,或是由安装在传动轴上的紧急制动闸等方式来实现自动保护,风力发电机的单机容量越来越大,技术水平越来越高,成本越来越低。
世界上风能利用较好、发展较快、技术比较先进的是美国。美国风力发电机容量占世界风力发电容量的一半左右。在美国加州南部和北部己分别建设了若干个大型风力发电场,拥有风力发电设备2万台,装机容量约60万千瓦,年发电量20亿千瓦·小时。丹麦、德国、英国、荷兰等国家风力发电,发展也很迅速。到1994年底全世界风力发电装机容量就达到约300万千瓦,年发电量50亿千瓦·小时。风力发电正朝着重量轻、效率高、可靠性高及大型化方向发展。
我国利用风力发电是从50年代开始的,到80年代初,微型风力发电技术趋于成熟和稳定。到1994年底我国在内蒙、新疆及沿海等地推广小型风力发电机,并已建成13万座。近年来,我国对风力发电也很重视,已选定在广东、海南、福建、山东、内蒙、新疆等风力资源丰富的地区大力发展风电。目前,正在制定长远的风力发电规划,国家新能源政策的重点也是大力发展和加快开发利用风力发电
『伍』 风力发电机。
定义或者概念:风力发电机是将风能转换为机械功,机械功带动转子旋转,最终输出交流电的电力设备。风力发电机一般有风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。
风力发电机的工作原理比较简单,风轮在风力的作用下旋转,它把风的动能转变为风轮轴的机械能,发电机在风轮轴的带动下旋转发电。广义地说,风能也是太阳能,所以也可以说风力发电机,是一种以太阳为热源,以大气为工作介质的热能利用发电机。
风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风力发电机技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。[1]
风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。
风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。
风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。
『陆』 风力发电是什么原理
把风能转变为电能是风能利用中最基本的一种方式。风力发电机一般有风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。风力发电机的工作原理比较简单,风轮在风力的作用下旋转,它把风的动能转变为风轮轴的机械能。发电机在风轮轴的带动下旋转发电。
风轮是集风装置,它的作用是把流动空气具有的动能转变为风轮旋转的机械能。一般风力发电机的风轮由2个或3个叶片构成。在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。
风力发电机中调向器的功能是使风力发电机的风轮随时都迎着风向,从而能最大限度地获取风能。一般风力发电机几乎全部是利用尾翼来控制风轮的迎风方向的。尾翼的材料通常采用镀锌薄钢板。
限速安全机构是用来保证风力发电机运行安全的。限速安全机构的设置可以使风力发电机风轮的转速在一定的风速范围内保持基本不变。
塔架是风力发电机的支撑机构,稍大的风力发电机塔架一般采用由角钢或圆钢组成的桁架结构。风力机的输出功率与风速的大小有关。由于自然界的风速是极不稳定的,风力发电机的输出功率也极不稳定。风力发电机发出的电能一般是不能直接用在电器上的,先要储存起来。目前风力发电机用的蓄电池多为铅酸蓄电池。
参考资料:
http://www.86ne.com/Wind/200706/Wind_75882.html
可以查询!
『柒』 风力发电系统的作用
这两个没有直接关系,不过水手要视察的海洋区域正好建有风力发电机的话,他们至少可以通过观察风力发电机的偏航方向也就是机头对着的方向来判断风向,因为风力发电机的机头要求和风向是一致的,也就是要对风。再就是可以根据旋转速度快慢大致能判断风速,但是这个就只能是个大概的估计了。
『捌』 风力发电
无刷双馈发电机,其定子有两套绕组,一个称为功率绕组,直接接电网;另一个称为控制绕组,通过双向变频器接电网。其转子为笼型或磁阻式结构,无需电刷和滑环,转子的极数应为定子两个绕组极对数之和。无刷双馈发电机的转子与风车连接,风车的转速可随风速而变化。当发电机转速变化时,可通过变频器改变定子控制绕组频率,使发电机功率绕组输出频率保持不便。尽管这种变速恒频控制方案是在定子电路实现的,但流过定子绕组的功率仅为无刷双馈发电机总功率的一小部分。这种采用无刷双馈发电机的控制方案除了可实现变速恒频控制,降低变频器的容量外,还可实现有功、无功功率的灵活控制,对电网而言可起到无功补偿的作用,同时发电机本身没有滑环和电刷,既降低了电机的成本,又提高了系统运行的可靠性。另外,无刷发电机可以在不同的风速下运行,其转速可随风速变化做相应的调制,使风力机的运行处于最佳工况,提高机组效率。缺点是定子需要两台电机,增加了系统的复杂性和成本,实现还是比较困难。
下面说一下永磁同步发电。现在一般是说直驱永磁同步发点。传统风力发电机组的电磁机械系统通常包含三个主要部分:风力机、增速箱和发电机。由于传统风力发电机转速范围限制,风力机和发电机之间必须用增速齿轮箱来连接。然而,增速齿轮箱一方面具有增加机组的重量、产生噪音、需要定期维护以及增加损耗等缺点,同时也降低了风能的利用效率。新型的直驱式风力发电系统采用低速永磁同步发电机,通过功率变换电路直接并入电网,大大提高系统效率。工作原理如下:风以一定的速度和攻角作用在风力机的桨叶上,使风力机产生旋转力矩从而转动,将风能转变成机械能,风力机带动与其同轴相连的永磁同步发电机转动,将机械能转变为电能,发出随风速幅值和频率都变化的交流电。发电机发出的交流电是不能直接并上电网的,需要经过变流装置将变压变频的交流电转化为与电网相位、频率一致的交流电,然后通过变压器接入电网。直驱永磁风力发点的缺点是:直驱式风电系统中变流器为机组的全功率,限于当前电力电子器件水平,实现大容量化难度很大。但是随着电力电子技术的提高,将会在兆瓦级风力发电系统上得到广泛应用。