A. 如何應用電力拖動自動控制系統實現綠色可持續發展
1、電力系統自動化技術概述 電力系統由發電、輸電、變電、配電及用電等環節組成。通常將發電機、變壓器、開關、及輸電線路等設備稱作電力系統的一次設備,為了保證電力一次設備安全、穩定、可靠運行和電力生產以比較經濟的方式運行,就需要對一次設備進行在線測控、保護、調度控制等,電力系統中將這些測控裝置,保護裝置,有關通信設備,各級電網調度控制中心的計算機系統,(火)電廠、(水核能、風能)電站及變電站的計算機監控系統等統稱為電力系統的二次設備,其涵蓋了電力系統自動化的主要技術內容。 1.1 電網調度自動化 1.2 變電站自動化 1.3 發電廠分散測控系統 2、當前電力系統自動化依賴IT技術向前發展的重要熱點技術 當前電力系統自動化依賴於電子技術、計算機技術繼續向前發展的主要熱點有: 2.1 電力一次設備智能化 常規電力一次設備和二次設備安裝地點一般相隔幾十至幾百米距離,互相間用強信號電力電纜和大電流控制電纜連接,而電力一次設備智能化是指一次設備結構設計時考慮將常規二次設備的部分或全部功能就地實現,省卻大量電力信號電纜和控制電纜,通常簡述為一次設備自帶測量和保護功能。如常見的「智能化開關」、「智能化開關櫃」、「智能化箱式變電站」等。電力一次設備智能化主要問題是電子部件經常受到現場大電流開斷而引起的高強度電磁場干擾,關鍵技術是電磁兼容、電子部件的供電電源以及與外部通信介面協議標准等技術問題。 2.2 電力一次設備在線狀態檢測 對電力系統一次設備如發電機、汽輪機、變壓器、斷路器、開關等設備的重要運行參數進行長期連續的在線監測,不僅可以監視設備實時運行狀態,而且還能分析各種重要參數的變化趨勢,判斷有無存在故障的先兆,從而延長設備的維修保養周期,提高設備的利用率,為電力設備由定期檢修向狀態檢修過度提供保 障。近年來電力部門投入了很大力量與大學、科研單位合作或引進技術,開展在線狀態檢測技術研究和實踐並取得了一些進展,但由於技術難度大,專業性強,檢測環境條件惡劣,要開發出滿意的產品還需一定時日。 2.3 光電式電力互感器 電力互感器是輸電線路中不可缺少的重要設備,其作用是按一定比例關系將輸電線路上的高電壓和大電流數值降到可以用儀表直接測量的標准數值,以便用儀表直接測量。其缺點是隨電壓等級的升高絕緣難度越大,設備體積和質量也越大;信號動態范圍小,導致電流互感器會出現飽和現象,或發生信號畸變;互感器的輸出信號不能直接與微機化計量及保護設備介面。因此不少發達國家已經成功研究出新型光電式和電子式互感器,國際電工協會已發布了電子式電壓、電流互感器的標准。國內也有大專院校和科研單位正在加緊研發並取得了可喜成果。目前主要問題是材料隨溫度系數的影響而使穩定性不夠理想。另一關鍵技術是,光電互感器輸出的信號比電磁式互感器輸出的信號要小得多,一般是毫安級水平,不能像電磁式互感器那樣可以通過較長的電纜線送給測控和保護裝置,需要在就地轉換為數字信號後通過光纖介面送出,模數轉換、光電轉換等電子電路部分在結構上需要與互感器進行一體化設計。在這里,電磁兼容、 絕緣、耐環境條件、電子電路的供電電源同樣是技術難點之一。 2.4 適應光電互感器技術的新型繼電保護及測控裝置 電力系統採用光電互感器技術後,與之相關的二次設備,如測控設備,繼電保等裝置的結構與內部功能將發生很大的變化。首先省去了裝置內部的隔離互感器、)*+轉換電路及部分信號處理電路,從而提高了裝置的響應速度。但需要解決的重要關鍵技術是為滿足數值計算需要對相關的來自不同互感器的數據如 何實現同步采樣,其次是高效快速的數據交換通信協議的設計。 2.5 特高壓電網中的二次設備開發 「十五」後期,針對經濟和社會發展對電力的需求,電網企業在科技進步方面的步伐明顯加快。在代表當今世界輸變電技術最高水平的特高壓領域,國家電網公司的晉東南,南陽,荊門特高壓試驗示範工程可行性研究已於-月下旬通過評審,有望年底開工建設,這項試驗示範工程的特高壓輸電電壓為1000KV。 另外我國南方電網公司也准備建設一條800KV的雲廣特高壓直流輸電線路。 為特高壓輸電線路配套的一次和二次設備需要重新研發或從國外引進。開發特高壓輸電二次設備的主要技術關鍵點是特高壓電網的穩定控制技術和現場設備電磁兼容、抗干擾能力、絕緣等特殊問題的解決。 這么大的問題 去查幾篇綜述吧
B. 電力拖動系統的主要組成部分是什麼
主要組成部分:電動機及其自動控制裝置組成。
電動機:
電動機(Motor)是把電能轉換成機械能的一種設備。它是利用通電線圈(也就是定子繞組)產生旋轉磁場並作用於轉子(如鼠籠式閉合鋁框)形成磁電動力旋轉扭矩。
自動控制裝置:
自動控制裝置通過對電動機起動、制動的控制,對電動機轉速調節的控制,對電動機轉矩的控制以及對某些物理參量按一定規律變化的控制等,可實現對機械設備的自動化控制。
使用電力拖動的作用:
採用電力拖動不但可以把人們從繁重的體力勞動中解放出來,還可以把人們從繁雜的信息處理事務中解脫出來,並能改善機械設備的控制性能,提高產品質量和勞動生產率。
電力拖動系統作用:由於電子元器件的高速發展,大功率高反壓場效應三極體IGBT的問世,使得變頻變壓調速系統更加成熟。電梯拖動系統被採用已成為現實。變頻變壓調速系統用在電梯上有體積小、節能等優點,在調速性能方面可以與直流拖動系統媲美,目前採用變頻變壓調速的電梯其速度可達6m/s。
電力拖動系統發展:自20年代以來,可調速直流電力拖動較多採用的是直流發電機-電動機系統,並以電機擴大機、磁放大器作為其控制元件。電力電子器件發明後,以電子元件控制、由可控整流器供電的直流電力拖動系統逐漸取代了直流發電機-電動機系統,並發展到採用數字電路控制的電力拖動系統。這種電力拖動系統具有精密調速和動態響應快等性能。這種以弱電控制強電的技術是現代電力拖動的重要特徵和趨勢。
C. 電力拖動自動控制系統 和 電力電子技術 是一樣(類似)的課程嗎
電力拖動與電力電子技術相同點:教科書內的自動控制系統電路圖,是一樣的。
電力拖動與電力電子技術不同點:教科書內的自動控制電路圖例題有所區別。
《電力拖動》根據全國高等學校電氣工程與自動化系列教材編審委員會制定的普通高等教育電氣工程與自動化類「十一五」規劃教材的要求,在本書第3版的基礎上進行修訂,成為第4版,並人選普通高等教育「十一五」國家級規劃教材。
本書第3版2003年出版,第3版主要體現了三方面的技術進步:全控型電力電子器件取代半控型器件,變換技術由相位控制轉變成脈寬調制;模擬電子控制已基本上讓位於數字電子控制;交流可調拖動系統逐步取代直流拖動系統已經成為不爭的事實,而且交流拖動控制技術本身也有不小的進展。第4版在繼承與發揚第3版特色的基礎上,將計算機模擬與輔助設計逐步融入運動控制系統的性能分析與設計中。
第4版共3篇,第1篇直流調速系統,第2篇交流調速系統,第3篇伺服系統。編寫的思路繼承了前三版的特色,理論和實際相結合,應用自動控制理論解決運動控制系統的分析和設計問題,以轉矩和磁鏈(或磁通)控制規律為主線,由簡入繁、由低及高地循序深入,論述系統的靜、動態性能。為了適應技術的發展,補充和添加了部分新內容,以供選用。
本書可作為高等學校電氣工程與自動化、電氣工程及其自動化專業和自動化專業的教材,也可供有關工程師和技術人員參考。
《電力電子技術》分為電力電子器件製造技術和變流技術(整流,逆變,斬波,變頻,變相等)兩個分支。
現已成為現代電氣工程與自動化專業不可缺少的一門專業基礎課,在培養該專業人才中佔有重要地位。
電力電子學(Power Electronics)這一名稱是在上世紀60年代出現的。1974年,美國的W.Newell用一個倒三角形(如圖)對電力電子學進行了描述,認為它是由電力學、電子學和控制理論三個學科交叉而形成的。這一觀點被全世界普遍接受。「電力電子學」和「電力電子技術」是分別從學術和工程技術2個不同的角度來稱呼的。
一般認為,電力電子技術的誕生是以1957年美國通用電氣公司研製出的第一個晶閘管為標志的,電力電子技術的概念和基礎就是由於晶閘管和晶閘管變流技術的發展而確立的。此前就已經有用於電力變換的電子技術,所以晶閘管出現前的時期可稱為電力電子技術的史前或黎明時期。70年代後期以門極可關斷晶閘管(GTO),電力雙極型晶體管(BJT),電力場效應管(Power-MOSFET)為代表的全控型器件全速發展(全控型器件的特點是通過對門極既柵極或基極的控制既可以使其開通又可以使其關斷)。使電力電子技術的面貌煥然一新進入了新的發展階段。80年代後期,以絕緣柵極雙極型晶體管(IGBT 可看作MOSFET和BJT的復合)為代表的復合型器件集驅動功率小,開關速度快,通態壓降小,載流能力大於一身,性能優越使之成為現代電力電子技術的主導器件。為了使電力電子裝置的結構緊湊,體積減小,常常把若干個電力電子器件及必要的輔助器件做成模塊的形式,後來又把驅動,控制,保護電路和功率器件集成在一起,構成功率集成電路(PIC)。目前PIC的功率都還較小但這代表了電力電子技術發展的一個重要方向。
利用電力電子器件實現工業規模電能變換的技術,有時也稱為功率電子技術。一般情況下,它是將一種形式的工業電能轉換成另一種形式的工業電能。例如,將交流電能變換成直流電能或將直流電能變換成交流電能;將工頻電源變換為設備所需頻率的電源;在正常交流電源中斷時,用逆變器(見電力變流器)將蓄電池的直流電能變換成工頻交流電能。應用電力電子技術還能實現非電能與電能之間的轉換。例如,利用太陽電池將太陽輻射能轉換成電能。與電子技術不同,電力電子技術變換的電能是作為能源而不是作為信息感測的載體。因此人們關注的是所能轉換的電功率。
電力電子技術是建立在電子學、電工原理和自動控制三大學科上的新興學科。因它本身是大功率的電技術,又大多是為應用強電的工業服務的,故常將它歸屬於電工類。電力電子技術的內容主要包括電力電子器件、電力電子電路和電力電子裝置及其系統。電力電子器件以半導體為基本材料,最常用的材料為單晶硅;它的理論基礎為半導體物理學;它的工藝技術為半導體器件工藝。近代新型電力電子器件中大量應用了微電子學的技術。電力電子電路吸收了電子學的理論基礎,根據器件的特點和電能轉換的要求,又開發出許多電能轉換電路。這些電路中還包括各種控制、觸發、保護、顯示、信息處理、繼電接觸等二次迴路及外圍電路。利用這些電路,根據應用對象的不同,組成了各種用途的整機,稱為電力電子裝置。這些裝置常與負載、配套設備等組成一個系統。電子學、電工學、自動控制、信號檢測處理等技術常在這些裝置及其系統中大量應用。