A. 永磁耦合器與液力耦合器區別在什麼地方哪個能好用一些
首先在使用液力偶合器做電機傳動時存在以下缺點:(1)結構復雜,日常維護工作量大,安裝、拆卸困難;(2)成本高,性價比低;(3)噴油著火不安全,使用油為工作液的液力偶合器不按規定維護使用易熔塞時,易發生噴油著火事故,污染現場環境;(4)使用壽命短,一般2-3年需更換;(5)無減振效果;(6)故障率高,可靠性差。
與液力耦合器相比,永磁偶合器具有以下十大優點:(1)節能效果顯著, 可調節氣隙改變轉速, 節能率達到10%--50%;(2)帶緩沖的軟啟動, 減少電機的沖擊電流, 延長設備使用壽命;(3)容忍較大的安裝對中誤差, 大大簡化了安裝調試過程;(4)超載保護功能, 提高了整個電機驅動系統的可靠性;(5)免維護, 無軸承, 不需加潤滑油或打油脂, 無磨耗件, 無材質劣化問題;(6)使用壽命長,設計壽命30年, 通過美國海軍質量檢驗; (7)減振效果好, 無機械聨結的扭矩傳遞;(8)結構簡單, 適應各種惡劣環境, 不產生污染物符合綠色產品;(9)不產生諧波;(10)體積小,安裝方便,可方便地對現有系統進行改造或用在新建系統。
曜中集團的麥福斯永磁耦合器免維護,無軸承, 不需加潤滑油或打油脂, 無磨損件, 無材質劣化問題,使用壽命可長達30年。
B. 電梯行業中,曳引機有永磁同步電機與永磁非同步電機兩種,請問它們有什麼區別
特點與優勢
優勢
驅動系統使用永磁同步無齒曳引機。由於永磁同步無齒曳引機與傳統的蝸輪、蝸桿傳動的曳引機相比具有如下優點: 永磁同步曳引機
1、永磁同步無齒曳引機是直接驅動,沒有蝸輪、蝸桿傳動副,永磁同步電機沒有作非同步電機所需非常佔地方的定子線圈,而製作永磁同步電機的主要材料是高能量密度的高剩磁感應和高矯頑力的釹鐵硼,其氣隙磁密一般達到0.75T以上,所以可以做到體積小和重量輕。 2、傳動效率高。由於採用了永磁同步電機直接驅動(沒有蝸輪蝸桿傳動副)其傳動效率可以提高20%~30%。 3、永磁同步無齒曳引機由於不存在一個非同步電機在高速運行時軸承所發生的雜訊和不存在蝸輪蝸桿副接觸傳動時所發生雜訊,所以整機雜訊可降低5~10db(A)。 4、能耗低。 從永磁同步電機工作原理可知其勵磁是由永磁鐵來實現的,不需要定子額外提供勵磁電流,因而電機的功率因數可以達到很高(理論上可以達到1)。同時永磁同步電機的轉子無電流通過,不存在轉子耗損問題 。一般比非同步電機降低45%~60% 耗損。由於沒有效率低、高能耗蝸輪蝸桿傳動副,能耗進一步降低。 5、永磁同步無齒曳引機由於不存在齒廓磨損問題和不需要定期更換潤滑油,因此其使用壽命長,且基本不用維修。在近期如果能盡快解決生產永磁同步電機成本問題,永磁同步無齒曳引機將代替由蝸輪蝸桿傳動副非同步電機組成的曳引機。當然將來超導電力拖動技術和磁懸浮驅動技術也會在電梯上應用。
特點
1、節能、驅動系統動態性能好: 採用多極低速直接驅動的永磁同步曳引機,無需龐大的機械傳動效率僅為70%左右的蝸輪、蝸桿減速齒輪箱;與感應電動機相比,無需從電網汲取無功電流,因而功率因數高;因沒有激磁繞組沒有激磁損耗,故發熱小,因而無需風扇、無風摩耗,效率高;採用磁場定向矢量變換控制,具有和直流電動機一樣優良的轉矩控制特性,起、制動電流明顯低於感應電動機,所需電動機功率和變頻器容量都得到減小。 2、平穩、雜訊低: 低速直接驅動,故軸承雜訊低,無風扇、無蝸輪蝸桿雜訊。雜訊一般可低5~10分貝,減小對環境雜訊污染。 3、建築空間: 永磁同步曳引機
無龐大減速齒輪箱、無激磁繞組、採用高性能釹鐵硼永磁材料,故電機體積小,重量輕,可縮小機房或無需機房。 4、壽命長、安全可靠: 永磁同步曳引機 電機無需電刷和集電環,故使用壽命長,且無齒輪箱的油氣,對環境污染少。 5、維護費用少:刷、無減速箱,維護簡單。 相對於有齒輪式曳引機,永磁同步曳引機具節能環保之絕對優勢,此於歐洲日本早有認知,近來於中國業界亦多有論述。除以上客戶端能明顯體認之優點外,於安全性之層面:因結構簡化,具剛性直軸制動的特點,提供全時上下行超速保護能力外,利用永磁電機的反電動勢特點,實現蝸輪蝸桿之自鎖功能,為電梯系統與乘客提供多層安全防護。於應用面之層面:因永磁同步曳引機小型化及薄型化特點,對電梯配置安排及與建築物間整合空間的搭配性,大大提升,相信對建築設計師提供更大的彈性設計空間,間接改善人於建物空間中之使用機能與品質。
編輯本段工作原理
同步發電機為了實現能量的轉換,需要有一個直流磁場而產生這個磁場的直流電流,稱為發電機的勵磁電流。根據勵磁電流的供給方式,凡是從其它電源獲得勵磁電流的發電機,稱為他勵發電機,從發電機本身獲得勵磁電源的,則稱為自勵發電機。 永磁同步曳引機
一、
獲得勵磁電流的方式
1、直流發電機供電的勵磁方式:這種勵磁方式的發電機具有專用的直流發電機,這種專用的直流發電機稱為直流勵磁機,勵磁機一般與發電機同軸,發電機的勵磁繞組通過裝在大軸上的滑環及固定電刷從勵磁機獲得直流電流。這種勵磁方式具有勵磁電流獨立,工作比較可靠和減少自用電消耗量等優點,是過去幾十年間發電機主要勵磁方式,具有較成熟的運行經驗。缺點是勵磁調節速度較慢,維護工作量大,故在10MW以上的機組中很少採用。 2、交流勵磁機供電的勵磁方式,現代大容量發電機有的採用交流勵磁機提供勵磁電流。交流勵磁機也裝在發電機大軸上,它輸出的交流電流經整流後供給發電機轉子勵磁,此時,發電機的勵磁方式屬他勵磁方式,又由於採用靜止的整流裝置,故又稱為他勵靜止勵磁,交流副勵磁機提供勵磁電流。交流副勵磁機可以是永磁機或是具有自勵恆壓裝置的交流發電機。為了提高勵磁調節速度,交流勵磁機通常採用100——200HZ的中頻發電機,而交流副勵磁機則採用400——500HZ的中頻發電機。這種發電機的直流勵磁繞組和三相交流繞組都繞在定子槽內,轉子只有齒與槽而沒有繞組,像個齒輪,因此,它沒有電刷,滑環等轉動接觸部件,具有工作可靠,結構簡單,製造工藝方便等優點。缺點是噪音較大,交流電勢的諧波分量也較大。 永磁同步曳引機
3、無勵磁機的勵磁方式: 在勵磁方式中不設置專門的勵磁機,而從發電機本身取得勵磁電源,經整流後再供給發電機本身勵磁,稱自勵式靜止勵磁。自勵式靜止勵磁可分為自並勵和自復勵兩種方式。自並勵方式它通過接在發電機出口的整流變壓器取得勵磁電流,經整流後供給發電機勵磁,這種勵磁方式具有結簡單,設備少,投資省和維護工作量少等優點。自復勵磁方式除沒有整流變壓外,還設有串聯在發電機定子迴路的大功率電流互感器。這種互感器的作用是在發生短路時,給發電機提供較大的勵磁電流,以彌補整流變壓器輸出的不足。這種勵磁方式具有兩種勵磁電源,通過整流變壓器獲得的電壓電源和通過串聯變壓器獲得的電流源。 曳引機
與勵磁電流有關特性
1、電壓的調節 自動調節勵磁系統可以看成為一個以電壓為被調量的負反饋控制系統。無功負荷電流是造成發電機端電壓下降的主要原因,當勵磁電流不變時,發電機的端電壓將隨無功電流的增大而降低。但是為了滿足用戶對電能質量的要求,發電機的端電壓應基本保持不變,實現這一要求的辦法是隨無功電流的變化調節發電機的勵磁電流。 2、無功功率的調節: 發電機與系統並聯運行時,可以認為是與無限大容量電源的母線運行,要改變發電機勵磁電流,感應電勢和定子電流也跟著變化,此時發電機的無功電流也跟著變化。當發電機與無限大容量系統並聯運行時,為了改變發電機的無功功率,必須調節發電機的勵磁電流。此時改變的發電機勵磁電流並不是通常所說的「調壓」,而是只是改變了送入系統的無功功率。 3、無功負荷的分配: 並聯運行的發電機根據各自的額定容量,按比例進行無功電流的分配。大容量發電機應負擔較多無功負荷,而容量較小的則負提供較少的無功負荷。為了實現無功負荷能自動分配,可以通過自動高壓調節的勵磁裝置,改變發電機勵磁電流維持其端電壓不變,還可對發電機電壓調節特性的傾斜度進行調整,以實現並聯運行發電機無功負荷的合理分配。
自動調節勵磁電流的方法
在改變發電機的勵磁電流中,一般不直接在其轉子迴路中進行,因為該迴路中電流很大,不便於進行直接調節,通常採用的方法是改變勵磁機的勵磁電流,以達到調節發電機轉子電流的目的。常用的方法有改變勵磁機勵磁迴路的電阻,改變勵磁機的附加勵磁電流,改變 可控硅的導通角等。這里主要講改變可控硅導通角的方法,它是根據發電機電壓、電流或功率因數的變化,相應地改變可控硅整流器的導通角,於是發電機的勵磁電流便跟著改變。這套裝置一般由晶體管,可控硅電子元件構成,具有靈敏、快速、無失靈區、輸出功率大、體積小和重量輕等優點。在事故情況下能有效地抑制發電機的過電壓和實現快速滅磁。自動調節勵磁裝置通常由測量單元、同步單元、放大單元、調差單元、穩定單元、限制單元及一些輔助單元構成。被測量信號(如電壓、電流等),經測量單元變換後與給定值相比較,然後將比較結果(偏差)經前置放大單元和功率放大單元放大,並用於控制可控硅的導通角,以達到調節發電機勵磁電流的目的。同步單元的作用是使移相部分輸出的觸發脈沖與可控硅整流器的交流勵磁電源同步,以保證控硅的正確觸發。調差單元的作用是為了使並聯運行的發電機能穩定和合理地分配無功負荷。穩定單元是為了改善電力系統的穩定而引進的單元 。勵磁系統穩定單元 用於改善勵磁系統的穩定性。限制單元是為了使發電機不致在過勵磁或欠勵磁的條件下運行而設置的。必須指出並不是每一種自動調節勵磁裝置都具有上述各種單元,一種調節器裝置所具有的單元與其擔負的具體任務有關。
調節勵磁的組成部件及輔助設備
自動調節勵磁的組成部件有機端電壓互感器、機端電流互感器、勵磁變壓器;勵磁裝置需要提供以下電流,廠用AC380v、廠用DC220v控制電源.廠用DC220v合閘電源;需要提供以下空接點,自動開機.自動停機.並網(一常開,一常閉)增,減;需要提供以下模擬信號,發電機機端電壓100V,發電機機端電流5A,母線電壓100V,勵磁裝置輸出以下繼電器接點信號;勵磁變過流,失磁,勵磁裝置異常等。 勵磁控制、保護及信號迴路由滅磁開關,助磁電路、風機、滅磁開關偷跳、勵磁變過流、調節器故障、發電機工況異常、電量變送器等組成。在同步發電機發生內部故障時除了必須解列外,還必須滅磁,把轉子磁場盡快地減弱到最小程度,保證轉子不過的情況下,使滅磁時間盡可能縮短,是滅磁裝置的主要功能。根據額定勵磁電壓的大小可分為線性電阻滅磁和非線性電阻滅磁。 永磁同步曳引機 近十多年來,由於新技術,新工藝和新器件的涌現和使用,使得發電機的勵磁方式得到了不斷的發展和完善。在自動調節勵磁裝置方面,也不斷研製和推廣使用了許多新型的調節裝置。由於採用微機計算機用軟體實現的自動調節勵磁裝置有顯著優點,目前很多國家都在研製和試驗用微型機計算機配以相應的外部設備構成的數字自動調節勵磁裝置,這種調節裝置將能實現自適應最佳調節。
C. 延遲型永磁耦合器是什麼
磁力抄耦合器也稱磁力聯軸器、永磁傳動裝置。
永磁渦流傳動裝置主要由銅轉子、永磁轉子和控制器三個部分組成。一般,銅轉子與電機軸連接,永磁轉子與工作機的軸連接,銅轉子和永磁轉子之間有空氣間隙(稱為氣隙),沒有傳遞扭矩的機械連接。這樣,電機和工作機之間形成了軟(磁)連接,通過調節氣隙來實現工作機軸扭矩、轉速的變化。因氣隙調節方式的不同,永磁渦流傳動裝置分為標准型、延遲型、限矩型、調速型等不同類型。
D. 帶式輸送機傳動裝置能用永磁電機嗎
一般帶式輸送機是選擇三相非同步電動機,主要是功率大,控制簡單,如想調速也方便,所以不清楚你為啥要用永磁電機,可以肯定只要功率及轉速能滿足機械要求換什麼形式電動機都可以
E. 永磁耦合器與永磁聯軸器是不是一回事
永磁耦合器與永磁聯軸器不是一回事,如下分析:
永磁耦合器,又名磁力內耦合器,是通過導體容和永磁體之間的氣隙實現由電動機到負載的轉矩傳輸的裝置,可實現電動機和負載間無機械連接的傳動方式,其工作原理是當兩者之間相對運動時,導體組件切割磁力線,在導體中產生渦電流,渦電流進而產生反感磁場,與永磁體產生的磁場交互作用,從而實現兩者之間的扭矩傳遞。主要結構為:永磁轉子、導體轉子。
永磁聯軸器是通過永磁體的磁力將原動機與工作機聯接起來的一種新型聯軸器,它無需直接的機械聯接,而是利用稀土永磁體之間的相互作用,利用磁場可穿透一定的空間距離和物質材料的特性,進行機械能量的傳送。磁力聯軸器的出現,徹底解決了某些機械裝置中動密封存在的泄漏問題。這種產品廣泛應用於化工、電鍍、造紙、制葯、食品、真空等行業的密封傳動機械上。 磁性聯軸器主要由外轉子、內轉子和隔離套組成。
以上凌斯東莞梅花聯軸器公司提供參考
F. 永磁渦流柔性傳動裝置是如何達到節能的
通過使用仟億達永磁渦流柔性傳動裝置可以控制流量而不是通過控制閥門或擋板來實現專控制,通過負屬載端的速度可以控制流量,達到節能。這也就意味著流量不受限制,便能達到節能。同樣,此項技術也可以在與負載完全斷開的情況下啟動設備,這也就意味著電機的啟動電流很小同時可以減小負載對設備啟動的沖擊負載。
G. 仟億達永磁渦流柔性傳動裝置是如何達到節能的
仟億達通過抄使用永磁渦流柔性傳動裝置可以控制流量而不是通過控制閥門或擋板來實現控制,通過負載端的速度可以控制流量,達到節能。這也就意味著仟億達永磁傳送流量不受限制,便能達到節能。同樣,仟億達永磁傳送技術也可以在與負載完全斷開的情況下啟動設備,這也就意味著電機的啟動電流很小,同時可以減小負載對設備啟動的沖擊負載。
H. 內置式永磁電機和表面式永磁電機的區別和優缺點是什麼
永磁同步電動機轉子磁路結構不同,則電動機的運行特性、控制系統等也不同回。根據永磁體在轉答子上的位置的不同,永磁同步電動機主要可分為:表面式和內置式。在表面式永磁同步電動機中,永磁體通常呈瓦片形,並位於轉子鐵心的外表面上,這種電機的重要特點是直、交軸的主電感相等;而內置式永磁同步電機的永磁體位於轉子內部,永磁體外表面與定子鐵心內圓之間有鐵磁物質製成的極靴,可以保護永磁體。這種永磁電機的重要特點是直、交軸的主電感不相等。因此,這兩種電機的性能有所不同。
永磁同步電動機結構簡單、體積小、重量輕、損耗小、效率高,和直流電機相比,它沒有直流電機的換向器和電刷等缺點。和非同步電動機相比,它由於不需要無功勵磁電流,因而效率高,功率因數高,力矩慣量比大,定子電流和定子電阻損耗減小,且轉子參數可測、控制性能好;但它與非同步電機相比,也有成本高、起動困難等缺點。和普通同步電動機相比,它省去了勵磁裝置,簡化了結構,提高了效率。永磁同步電機矢量控制系統能夠實現高精度、高動態性能、大范圍的調速或定位控制,因此永磁同步電機矢量控制系統引起了國內外學者的廣泛關注。
I. 電梯行業中,曳引機有永磁同步電機與永磁非同步電機兩種,它們有什麼區別
同步電機和非同步電機的區別就在於轉子磁場的來源。
同步電機需要一個勵磁內電源,這樣轉子容始終存在一個可以被定子提供的旋轉磁場驅動的磁場。只要制動轉矩合理,最終轉子的轉速總能達到定子中旋轉磁場的轉速,也就是同步轉速。
非同步電機則比較簡單。轉子的磁場來自定子繞組提供的旋轉磁場切割轉子中導體所產生的電流。轉子和旋轉磁場的速度差越大,轉子電流就越大,2個磁場的作用就越強烈。隨著轉速的提高,轉子電流越來越小,但是絕不能沒有。這就造成了,轉子轉速必須和同步轉速有一定的差值,來維持旋轉磁場切割轉子導體。以維持轉子的持續轉動。這個轉速的差,與同步轉速的比值就是轉差率。非同步電機轉速永遠達不到同步轉速,所以叫非同步電機。