導航:首頁 > 裝置知識 > 送料機械手裝置設計

送料機械手裝置設計

發布時間:2022-09-24 08:23:51

❶ 自動上下料機械手plc程序設計

用plc控制很好解決,但需結合你手中機械手來編寫程序,特別是伺服驅動部分,發多少個脈沖與你所採用伺服電機、速比均有關。

❷ 注塑機機械手設計的要點有哪些

注塑機專用機械手的設計要點:
一、手部
注塑機專用機械手的手部是用來直接抓取注塑製品的部件。由於注塑製品的形狀,大小,重量及表面特徵等方面存在著差異,因此注塑機械手的手部有多種形式,一般可分為夾持式和吸附式兩種。夾持式手部的主要形式為夾鉗式,常用於抓取不易破碎或變形的製品,它對所抓取的製品的形狀有較大的適應性。夾持式手部由手指,傳動機構和驅動裝置組成。
對於夾持式手部,進行設計選用時主要考慮以下幾點。
(1)手部應具有適應的夾緊力和驅動。
(2)手指應具有足夠的開關范圍。
(3)手指對製品應具有一定的夾持精度。
(4)手部對製品應具有一定的適應能力,且要求手部能耐受注塑製品剛從模腔中取出時的高溫及腐蝕性。
二、驅動系統
注塑用機械手的驅動系統一般可分為氣壓驅動和電力驅動等兩類,也可以根據工作要求採用上述兩種類型的組合系統來完成驅動。
在設計選用驅動系統時應注意以下幾點。
(1)根據機械手的負載量來確定驅動系統的類型,一般來說,重負載的可選擇電力驅動系統,輕負載的可選擇氣壓驅動系統。
(2)對於作點位控制的注塑機械手多採用氣壓驅動系統。
(3)對於需要採用伺服控制的機械手多採用電力驅動系統。
三、控制系統
注塑用機械手的所有動作都在控制系統的指揮下完成,尤其是機械手與注塑機的協調工作關系,更是要依賴控制系統來達到。在控制系統的指揮下,機械手按照預定的工作程序完成各個動作,從而將注塑生產出的製品從模具中取出並傳送到指定地點或下一個生產工序中,並向模腔中噴灑脫模劑。在設計時,應根據注塑機的性能,機械手的作業條件和要求,製品的形狀和重量等來確定控制系統。
一般來說,設計或選用控制系統應遵循以下一些要點。
(1)應確保機械手有足夠的定位精度;
(2)應注意機械手與注塑機的動作配合協調,確保機械手抓取製品離開模具後,注塑機和機械手能夠各自繼續進行動作,從而減少時間浪費;
(3)應注意控制機械手的運行速度,即要使機械手能夠滿足注塑成型最短周期的要求,有要考慮是否會產生慣性沖擊和振動;
(4)應考慮控制系統的費用與實際工作要求之前的平衡關系。
自由度:通常把傳送機構的運動稱為傳送機構的自由度。人從手指到肩部共有27個自由度。而如將機械手的手臂也製成這樣多的自由度,既困難又不必要。從力學的角度分析,物件在空間只有6個自由度。因此為抓取和傳送在空間不同位置和方位物件,傳送機構也應具有6個自由度。常用的機械手傳送機構的自由度還多為少於6個的。一般的專用機械手只有2~4個自由度,而通用機械手則多數為3~6個自由度(這里所說的自由度數目,均不包括手指的抓取動作)。
機械手的每一個自由度是由其操作機的獨立驅動關節來實現的。所以在應用中,關節和自由度在表達機械手的運動靈活性方面是意義相通的。又由於關節在實際構造上是由回轉或移動的軸來完成的,所以又習慣稱之為軸。因此,就有了6自由度、6關節或6軸機械手的命名方法。它們都說明這一機械手的操作有6個獨立驅動的關節結構,能在其工作空間中實現抓取物件的任意位置和姿態。
四、工作步驟:
注塑用機械手在抓取製品及噴灑脫模劑時一般採用如下的工作步驟:機械手手臂下降並引發注塑機開模-注塑機頂出注塑製品並向機械手發出。
頂出信號—機械手伸入模腔中抓取製品-機械手向模腔噴灑脫模劑—機械手上升離開模腔—機械手向注塑機發出閉模信號並引發注塑機閉模—。
機械手移動到指定位置處放下製品—機械手回復到原位準備進行下一次動作。

❸ 沖壓機構及送料機構設計

第一節 沖床沖壓機構、送料機構及傳動系統的設計
一、 設計題目
設計沖制薄壁零件沖床的沖壓機構、送料機構及其傳動系統。沖床的工藝動作如圖5—1a)所示,上模先以比較大的速度接近坯料,然後以勻速進行拉延成型工作,此後上模繼續下行將成品推出型腔,最後快速返回。上模退出下模以後,送料機構從側面將坯料送至待加工位置,完成一個工作循環。

(a) (b) (c)
圖5—1 沖床工藝動作與上模運動、受力情況
要求設計能使上模按上述運動要求加工零件的沖壓機構和從側面將坯料推送至下模上方的送料機構,以及沖床的傳動系統,並繪制減速器裝配圖。
二、 原始數據與設計要求
1.動力源是電動機,下模固定,上模作上下往復直線運動,其大致運動規律如圖b)所示,具有快速下沉、等速工作進給和快速返回的特性;
2.機構應具有較好的傳力性能,特別是工作段的壓力角應盡可能小;傳動角γ大於或等於許用傳動角[γ]=40o;
3.上模到達工作段之前,送料機構已將坯料送至待加工位置(下模上方);
4.生產率約每分鍾70件;
5.上模的工作段長度l=30~100mm,對應曲柄轉角0=(1/3~1/2)π;上模總行程長度必須大於工作段長度的兩倍以上;
6.上模在一個運動循環內的受力如圖c)所示,在工作段所受的阻力F0=5000N,在其他階段所受的阻力F1=50N;
7.行程速比系數K≥1.5;
8.送料距離H=60~250mm;
9.機器運轉不均勻系數δ不超過0.05。
若對機構進行運動和動力分析,為方便起見,其所需參數值建議如下選取:
1)設連桿機構中各構件均為等截面均質桿,其質心在桿長的中點,而曲柄的質心則與回轉軸線重合;
2)設各構件的質量按每米40kg計算,繞質心的轉動慣量按每米2kg·m2計算;
3)轉動滑塊的質量和轉動慣量忽略不計,移動滑塊的質量設為36kg;
6)傳動裝置的等效轉動慣量(以曲柄為等效構件)設為30kg·m2;
7) 機器運轉不均勻系數δ不超過0.05。
三、 傳動系統方案設計
沖床傳動系統如圖5-2所示。電動機轉速經帶傳動、齒輪傳動降低後驅動機器主軸運轉。原動機為三相交流非同步電動機,其同步轉速選為1500r/min,可選用如下型號:
電機型號 額定功率(kw) 額定轉速(r/min)
Y100L2—4 3.0 1420
Y112M—4 4.0 1440
Y132S—4 5.5 1440
由生產率可知主軸轉速約為70r/min,若電動機暫選為Y112M—4,則傳動系統總傳動比約為。取帶傳動的傳動比ib=2,則齒輪減速器的傳動比ig=10.285,故可選用兩級齒輪減速器。圖5—2 沖床傳動系統
四、 執行機構運動方案設計及討論
該沖壓機械包含兩個執行機構,即沖壓機構和送料機構。沖壓機構的主動件是曲柄,從動件(執行構件)為滑塊(上模),行程中有等速運動段(稱工作段),並具有急回特性;機構還應有較好的動力特性。要滿足這些要求,用單一的基本機構如偏置曲柄滑塊機構是難以實現的。因此,需要將幾個基本機構恰當地組合在一起來滿足上述要求。送料機構要求作間歇送進,比較簡單。實現上述要求的機構組合方案可以有許多種。下面介紹幾個較為合理的方案。
1.齒輪—連桿沖壓機構和凸輪—連桿送料機構
如圖5—3所示,沖壓機構採用了有兩個自由度的雙曲柄七桿機構,用齒輪副將其封閉為一個自由度。恰當地選擇點C的軌跡和確定構件尺寸,可保證機構具有急回運動和工作段近於勻速的特性,並使壓力角盡可能小。
送料機構是由凸輪機構和連桿機構串聯組成的,按機構運動循環圖可確定凸輪推程運動角和從動件的運動規律,使其能在預定時間將工件推送至待加工位置。設計時,若使lOG<lOH ,可減小凸輪尺寸。

圖5—3 沖床機構方案之一 圖5—4沖床機構方案之二
2.導桿—搖桿滑塊沖壓機構和凸輪送料機構
如圖5—4所示,沖壓機構是在導桿機構的基礎上,串聯一個搖桿滑塊機構組合而成的。導桿機構按給定的行程速比系數設計,它和搖桿滑塊機構組合可達到工作段近於勻速的要求。適當選擇導路位置,可使工作段壓力角較小。
送料機構的凸輪軸通過齒輪機構與曲柄軸相連。按機構運動循環圖可確定凸輪推程運動角和從動件的運動規律,則機構可在預定時間將工件送至待加工位置。
3.六連桿沖壓機構和凸輪—連桿送料機構
如圖5—5所示,沖壓機構是由鉸鏈四桿機構和搖桿滑塊機構串聯組合而成的。四桿機構可按行程速比系數用圖解法設計,然後選擇連桿長lEF及導路位置,按工作段近於勻速的要求確定鉸鏈點E的位置。若尺寸選擇適當,可使執行構件在工作段中運動時機構的傳動角γ滿足要求,壓力角較小。
凸輪送料機構的凸輪軸通過齒輪機構與曲柄軸相連,若按機構運動循環圖確定凸輪轉角及其從動件的運動規律,則機構可在預定時間將工件送至待加工位置。設計時,使lIH<lIR,則可減小凸輪尺寸。

圖5—5沖床機構方案之三 圖5—6沖床機構方案之四
4.凸輪—連桿沖壓機構和齒輪—連桿送料機構
如圖5—6所示,沖壓機構是由凸輪—連桿機構組合,依據滑塊D的運動要求,確定固定凸輪的輪廓曲線。
送料機構是由曲柄搖桿扇形齒輪與齒條機構串聯而成,若按機構運動循環圖確定曲柄搖桿機構的尺寸,則機構可在預定時間將工件送至待加工位置。
選擇方案時,應著重考慮下述幾個方面:
1)所選方案是否能滿足要求的性能指標;
2)結構是否簡單、緊湊;
3)製造是否方便,成本可否降低。
經過分析論證,方案1是四個方案中最為合理的方案,下面就對其進行設計。
五、 沖壓機構設計
由方案1圖5—3可知,沖壓機構是由七桿機構和齒輪機構組合而成。由組合機構的設計可知,為了使曲柄AB回轉一周,C點完成一個循環,兩齒輪齒數比Z1/Z2應等於1。這樣,沖壓機構設計就分解為七桿機構和齒輪機構的設計。
1.七桿機構的設計
設計七桿機構可用解析法。首先根據對執行構件(滑塊F)提出的運動特性和動力特性要求選定與滑塊相連的連桿長度CF,並選定能實現上述要求的點C的軌跡,然後按導向兩桿組法設計五連桿機構ABCDE的尺寸。
設計此七桿機構也可用實驗法,現說明如下。
如圖5—7所示,要求AB、DE均為曲柄,兩者轉速相同,轉向相反,而且曲柄在角度的范圍內轉動時,從動件滑塊在l=60mm范圍內等速移動,且其行程H=150mm。圖5—7 七桿機構的設計

1)任作一直線,作為滑塊導路,在其上取長為l的線段,並將其等分,得分點F1、F2、…、Fn(取n=5)。
2)選取lCF為半徑,以Fi各點為圓心作弧得K1、K2、…、K5。
3)選取lDE為半徑,在適當位置上作圓,在圓上取圓心角為的弧長,將其與l對應等分,得分點D1、D2、…、D5。
4)選取lDC為半徑,以Di為圓心作弧,與K1、K2、…、K5對應交於C1、C2、…、C5。
5)取lBC為半徑,以Ci為圓心作弧,得L1、L2、…、L5。
6)在透明白紙上作適量同心圓弧。由圓心引5條射線等分(射線間夾角為)。
7)將作好圖的透明紙覆在Li曲線族上移動,找出對應交點B1、B2、…、B5,便得曲柄長lAB及鉸鏈中心A的位置。
8)檢查是否存在曲柄及兩曲柄轉向是否相反。同樣,可以先選定lAB長度,確定lDE和鉸鏈中心E的位置。也可以先選定lAB、lDE和A、E點位置,其方法與上述相同。
用上述方法設計得機構尺寸如下:
lAB=lDE=100mm, lAE=200mm, lBC= lDC=283mm, lCF=430mm,A點與導路的垂直距離為162mm,E點與導路的垂直距離為223mm。
2.齒輪機構設計
此齒輪機構的中心距a=200mm,模數m=5mm,採用標準直齒圓柱齒輪傳動,Z1=Z2=40,ha*=1.0。
六、 七桿機構的運動和動力分析
用圖解法對此機構進行運動和動力分析。將曲柄AB的運動一周360o分為12等份,得分點B1、B2、…、B12,針對曲柄每一位置,求得C點的位置,從而得C點的軌跡,然後逐個位置分析滑塊F的速度和加速度,並畫出速度線圖,以分析是否滿足設計要求。
圖5—8是沖壓機構執行構件速度與C點軌跡的對應關系圖,顯然,滑塊在F4~F8這段近似等速,而這個速度值約為工作行程最大速度的40%。該機構的行程速比系數為

故此機構滿足運動要求。圖5-8 七桿機構的運動和動力分析
在進行機構動力分析時,先依據在工作段所受的阻力F0=5000N,並認為在工作段內為常數,然後求得加於曲柄AB的平衡力矩Mb,並與曲柄角速度相乘,獲得工作段的功率;計入各傳動的效率,求得所需電動機的功率為5.3KW,故所確定的電動機型號Y132S—4(額定功率為5.5KW)滿足要求。(動力分析具體過程及結果略)。
七、 機構運動循環圖
依據沖壓機構分析結果以及對送料機構的要求,可繪制機構運動循環圖(如圖5—9所示)。當主動件AB由初始位置(沖頭位於上極限點)轉過角(=90o)時,沖頭快速接近坯料;又當曲柄由轉到(=210o)時,沖頭近似等速向下沖壓坯料;當曲柄由轉到(=240o)時,沖頭繼續向下運動,將工件推出型腔;當曲柄由轉到(=285o)時,沖頭恰好退出下模,最後回到初始位置,完成一個循環。送料機構的送料動作,只能在沖頭退出下模到沖頭又一次接觸工件的范圍內進行。故送料凸輪在曲柄AB由300o轉到390o完成升程,而曲柄AB由390o轉到480o完成回程。

圖5-9 機構運動循環圖
七、送料機構設計
送料機構是由擺動從動件盤形凸輪機構與搖桿滑塊機構串聯而成,設計時,應先確定搖桿滑塊機構的尺寸,然後再設計凸輪機構。
1.四桿機構設計
依據滑塊的行程要求以及沖壓機構的尺寸限制,選取此機構尺寸如下:
LRH=100mm,LOH=240mm,O點到滑塊RK導路的垂直距離=300mm,送料距離取為250mm時,搖桿擺角應為45.24o。
2.凸輪機構設計
為了縮小凸輪尺寸,擺桿的行程應小AB,故取,最大擺角為22.62o。因凸輪速度不高,故升程和回程皆選等速運動規律。因凸輪與齒輪2固聯,故其等速轉動。用作圖法設計凸輪輪廓,取基圓半徑r0=50mm,滾子半徑rT=15mm。
八、調速飛輪設計
等效驅動力矩Md、等效阻力矩Mr和等效轉動慣量皆為曲柄轉角的函數,畫出三者的變化曲線,然後用圖解法求出飛輪轉動慣量JF。
九、帶傳動設計
採用普通V帶傳動。已知:動力機為Y132S-4非同步電動機,電動機額定功率P=5.5KW ,滿載轉速n1=1440rpm ,傳動比i=2, 兩班制工作。
(1)計算設計功率Pd
由[6]中的表6-6查得工作情況系數KA =1.4

(2)選擇帶型 由[6]中的圖6-10初步選用A型帶
(3)選取帶輪基準直徑 由[6]中的表6-7選取小帶輪基準直徑
由[6]中的表6-8取直徑系列值取大帶輪基準直徑:
(4)驗算帶速V
在(5~25m/s) 范圍內,帶速合適。
(5)確定中心a和帶的基準長度
在 范圍內初選中心距
初定帶長
查[6]中的表6-2 選取A型帶的標准基準長度
求實際中心距
取中心距為500mm。
(6)驗算小帶輪包角
包角合適
(7)確定帶的根數Z
查表得
取Z=3根
(8)確定初拉力
單根普通V帶的初拉力
(9)計算帶輪軸所受壓力


(10)帶傳動的結構設計(略)
十、齒輪傳動設計
齒輪減速器的傳動比為ig=10.285,採用標准得雙級圓柱齒輪減速器,其代號為
ZLY-112-10-1。


第二節 棒料校直機執行機構與傳動系統設計
一、設計題目
棒料校直是機械零件加工前的一道准備工序。若棒料彎曲,就要用大棒料才能加工出一個小零件,如圖5-10所示,材料利用率不高,經濟性差。故在加工零件前需將棒料校直。現要求設計一短棒料校直機。確定機構運動方案並進行執行機構與傳動系統的設計。

圖5-10 待校直的彎曲棒料
二、設計數據與要求
需校直的棒料材料為45鋼,棒料校直機其他原始設計數據如表5-1所示。
表5-1 棒料校直機原始設計數據
參數

分組 直徑d2
(mm) 長度L
(mm) 校直前最大麴率半徑ρ
(mm) 最大校直力
(KN) 棒料在校直時轉數
(轉) 生產率
(根/分)
1 15 100 500 1.0 5 150
2 18 100 400 1.2 4 120
3 22 100 300 1.4 3 100
4 25 100 200 1.5 2 80
註:室內工作,希望沖擊振動小;原動機為三相交流電動機,使用期限為10年,每年工作300天,每天工作16小時,每半年作一次保養,大修期為3年。

三、工作原理的確定
1) 用平面壓板搓滾棒料校直(圖5-11)。此方法的優點是簡單易行,缺點是因材料的回彈,材料校得不很直。
2) 用槽壓板搓滾棒料校直。考慮到「糾枉必須過正」,故將靜搓板作成帶槽的形狀,動、靜搓板的橫截面作成圖5-12所示形狀。用這種方法既可能將彎的棒料校直,但也可能將直的棒料弄彎了,不很理想。
3) 用壓桿校直。設計一個類似於圖5-13所示的機械裝置,通過一電動機,一方面讓棒料回轉,另一方面通過凸輪使壓桿的壓下量逐漸減小,以達到校直的目的。其優點是可將棒料校得很直;缺點是生產率低,裝卸棒料需停車。
4) 用斜槽壓板搓滾校直。靜搓板的縱截面形狀如圖5-14所示,其槽深是由深變淺而最後消失。其工作原理與上一方案使壓下量逐漸減小是相同的,故也能將棒料校得很直。其缺點是動搓板作往復運動,有空程,生產效率不夠高。雖可利用如圖所示的偏置曲柄滑塊機構的急回作用,來減少空程損失,但因動搓板質量大,又作往復運動,其所產生的慣性力不易平衡,限制了機器運轉速度的提高,故生產率仍不理想。
5) 行星式搓滾校直。如圖5-15所示,其動搓板變成了滾子1,作連續回轉運動,靜搓板變成弧形構件3,其上開的槽也是由深變淺而最後消失。這種方案不僅能將棒料校得很直,而且自動化程度和生產率高,所以最後確定採用此工作原理。圖5-11平面壓板搓滾棒料校直 圖5-12 槽壓板搓滾棒料校直

圖5-13 壓桿校直

圖5-14 斜槽壓板搓滾校直 圖5-15 行星式搓滾校直

四、執行機構運動方案的擬定
行星式棒料校直機有兩個執行構件,即動搓板滾子和送料滑塊。動搓板滾子的運動為單方向等速連續轉動,可將其直接裝在機器主軸上。送料滑塊的運動為往復移動。圖5-16給出了兩種送料機構方案,其中圖a)為曲柄搖桿機構與齒輪、齒條機構組合,圖b)為擺動推桿盤形凸輪機構與導桿滑塊機構的組合,曲柄(或凸輪)每轉一周送出一根棒料。由於凸輪機構能使送料機構的動作和搓板滾子的運動能更好的協調,故圖b)的執行機構運動方案優於圖a),下面設計計算針對圖b)方案進行。


a) b)
圖5-16 行星式棒料校直機執行機構運動方案

五、傳動系統運動方案的擬定
初步擬定的傳動方案如圖5-17所示。驅使動搓板滾子1轉動的為主傳動鏈,為提高其傳動效率,主傳動鏈應盡可能簡短,而且還要求沖擊振動小,故圖中採用了一級帶傳動和一級齒輪傳動。傳動鏈的第一級採用帶傳動有下列優點:電動機的布置較自由,電動機的安裝精度要求較低,帶傳動有緩沖減振和過載保安作用。
圖5-17 行星式棒料校直機傳動方案

六、執行機構設計
由於動搓板滾子1直接裝在機器主軸上,只有執行構件,沒有執行機構,故只需對送料機構進行設計。對於圖5-16b)所示得運動方案,送料機構的設計,實際上就是擺動推桿盤狀凸輪機構的設計。
凸輪軸的轉動是由滾子軸(傳動主軸)的轉動經過齒輪機構傳動減速而得到的。下面來討論滾子軸與凸輪軸間的傳動比應如何確定。
應注意在校直棒料時,不允許兩根棒料同時進入校直區,否則將因兩根棒料的相互干擾,可能一根棒料也未被校直。所以一定要待前一根棒料退出落下後,後一根棒料才能進入校直區。
設滾子1的直徑,棒料的直徑為,校直區的工作角為,從棒料進入到退出工作區,滾子1的轉角為。因在棒料校直時的運動狀態跟行星輪系傳動一樣,弧形搓板相當於固定的內齒輪,其內經為,角相當於行星架的轉角,根據周轉輪系的計算式,即可求得滾子1的相應轉角,即


設已確定為了校直棒料,棒料需在校直區轉過的轉數為,校直區的工作角為,則滾子1的直徑,可由下式確定:

為了保證不出現兩根棒料同時在校直區的現象,應在滾子1轉過角度時,送料凸輪4才轉一轉,由此可定出齒輪的傳動比為

圖中採用了一級齒輪減速(輪為過輪,用它主要是為了協調中心距)。若一級齒輪減速不能滿足要求時,可考慮用二級或三級齒輪減速。
對於第一組數據,並設校直區的工作角為=1200,則由上面公式可求得滾子1的直徑=240mm,滾子1的轉角為=2550,故取1=2600,從而求得齒輪的傳動比為ig=0.722。故取Zc=26,Za=36。
送料滑塊應將棒料推送到A點,設推送距離對應的圓心角為300,則可求得滑塊行程約為120mm,若取擺桿長lCF=400mm,則其擺角為17.25o。
確定推桿運動規律,設計凸輪輪廓曲線(略)。
七、傳動系統設計
原動機選為Y100L2-4非同步電動機,電動機額定功率P=3KW ,滿載轉速n=1420rpm,則傳動系統的總傳動比為i=n/n1,其中n1為滾子1的轉速。對於第一組數據,n1=2600×150/3600 =108.3,總傳動比為i=13.11,若取帶傳動的傳動比為ib=3.0,則齒輪減速器的傳動比為ig=13.11/3.0=4.3,故採用單級斜齒圓柱齒輪減速器。
帶傳動和單級斜齒圓柱齒輪減速器的設計(略)。

❹ 沖床自動送料裝置結構圖和工作原理

給你介紹下NCF系列滾輪送料機的工作原理吧
送料機與沖床聯機時,需要至少2個信版號:送料權、放鬆(2個信號來自沖床凸輪)
送料機PLC根據設定的送料長度,在收到送料信號後,輸出信號到伺服放大器,伺服放大器控制電機運轉,電機運轉的度數由編碼器反饋回伺服放大器,二者配合完成設定的送料長度傳送。
當沖床到達下死點時,送料機PLC接收到放鬆信號,此時PLC輸出1個信號驅動電磁閥動作,此電磁閥控制送料機氣缸,氣缸活塞動作,使送料機構上滾輪松開。
這就是送料機的主要工作過程,如此循環動作,完成沖壓過程。

❺ 設計一台物料搬運機械手。

文庫很多的

❻ 機械原理課程設計 熱鐓擠送料機械手

圖3.1 機械手的外觀

設計二自由度關節式熱鐓擠送料機械手,由電動機驅動,夾送圓柱形鐓料,往40噸鐓頭機送料。以方案A為例,它的動作順序是:手指夾料,手臂上擺15º,手臂水平回轉120º,手臂下擺15º,手指張開放料。手臂再上擺,水平反轉,下擺,同時手指張開,准備夾料。主要要求完成手臂上下擺動以及水平回轉的機械運動設計。圖3.1為機械手的外觀圖。技術參數見表3.1。

3.2 功能分解[5]

夾料機構:靠平面連桿機構做間歇的直線往復運動

送料機構:送料機構由2種動作的組合,一是間歇的回轉運動,二是做上下擺動。

夾料機構:通過凸輪對手臂上平面連桿機構的控制來調整手指間的間隙從而達到對物料的夾緊和松開。

送料機構:當料被抓緊後,通過凸輪對連桿一端的位置的改變進行對桿的擺角進行調整,從而實現對物料的拿起和放下的動作。手臂的回轉通過回轉機構進行實現。

3.3 選用機構

夾料機構與擺動機構:根據動作要求,由表2.1設計實例庫A3、A1={a31,a41,a42,a11,a51},由於機構要具有停歇功能,且要進行運動變換,故選擇直動從動件盤形凸輪。

送料機構2:由表2.1設計實例庫A2={a14,a24,a34,a44,a54},由工藝動作可得,該機構選用齒輪機構a14。

3.4 機構組合

為使機構能夠順利工作,採用串聯和並聯結合的結構組合,其中A1為夾料機構,A2為擺動機構,A3為回轉機構。如圖3.2所示:

A3

A1

A2

圖3.2 機構組合圖

3.4.1 機構運動簡圖

方案一:

圖3.3 傳動方案一

方案二:

圖3.4 傳動方案二

3.4.2 方案評價

方案一:該機器依靠兩盤狀凸輪及連桿機構實現手指的張合與手臂的上下擺動。而圓柱凸輪的旋轉帶動鏈輪回轉從而實現手臂的回轉。這種雖然方案簡單易行,但結構較大,鏈傳動是撓性的拉拽,難於定位;而且鏈條及鏈輪布置在水平面內,鏈條不宜過長。定位精度不能保證,故不宜採用此方案。

方案二:該方案在手指的動作和手臂的仰俯方面與方案一採取同種設計,在手臂的回轉上採用了不同機構,它通過軸上的圓柱形凸輪12來帶動齒條13的運動,通過齒條來實現齒輪6和7的運動從而完成手臂的回轉。此方案結構簡單,各運動部件之間的運動都易於實現,不會出現干涉現象。由於傳動鏈較短,累積誤差也不會太大,從而可以滿足

3.5 傳動設計

3.5.1 傳動比計算

已知電動機的轉速為1440r/min,送料頻率為15次/min即i總=1440/15=96

3.5.2 運動循環設計

機械手的動作順序:

手指夾料——手臂上擺15°——手臂回轉120°——手臂下擺15°——手指松開——手臂上擺15°——手臂反轉120°——手臂下擺15°

機械手工作的頻率為15次/min,T=4s。軸轉一次要完成一個循環,轉角分配如表3.3所示:

表3.3 轉角分配表

2.5.3凸輪設計[6][7]

1) 手指凸輪設計:由連桿機構(如圖3.5所示)可計算出凸輪尺寸。桿AC=200mm,AB=90mm,ED=215mm。此凸輪為擺動從動件盤狀凸輪。基圓半徑r=35mm,擺桿為70mm。

圖3.5 手指連桿機構

取基圓半徑r=35,由作圖法得到凸輪如圖3.6所示:

圖3.6 手指凸輪

2) 手臂凸輪設計:由連桿機構(如圖3.7所示)可計算出凸輪尺寸。桿AC=684mm,AB=580mm,ED=150mm。此凸輪為擺動從動件盤狀凸輪。基圓半徑r=65mm,擺桿為50mm。

圖3.7 手臂連桿機構

取基圓半徑r=65mm,由作圖法得到手臂凸輪如圖3.8所示:

圖3.8 手臂凸輪

3)圓柱形凸輪設計:

XD=2*3.14*30=188.4mm;

升程h=56.72mm;

圓柱半徑rP=30mm;

由作圖法得到圓柱凸輪如圖3.9所示:

圖3.9 圓柱凸輪

參考: http://xiajuxiong2008.blog.163.com/blog/static/11158719200855105035456/#comment=fks_

❼ 畢業設計關於兩指機械手設計方案

加分發給你,先給你個頭看看目錄
摘要 1
第一章 機械手設計任務書 1
1.1畢業設計目的 1
1.2本課題的內容和要求 2
第二章 抓取機構設計 4
2.1手部設計計算 4
2.2腕部設計計算 7
2.3臂伸縮機構設計 8
第三章 液壓系統原理設計及草圖 11
3.1手部抓取缸 11
3.2腕部擺動液壓迴路 12
3.3小臂伸縮缸液壓迴路 13
3.4總體系統圖 14
第四章 機身機座的結構設計 15
4.1電機的選擇 16
4.2減速器的選擇 17
4.3螺柱的設計與校核 17
第五章 機械手的定位與平穩性 19
5.1常用的定位方式 19
5.2影響平穩性和定位精度的因素 19
5.3機械手運動的緩沖裝置 20
第六章 機械手的控制 21
第七章 機械手的組成與分類 22
7.1機械手組成 22
7.2機械手分類 24
第八章 機械手Solidworks三維造型 25
8.1上手爪造型 26
8.2螺栓的繪制 30
畢業設計感想 35
參考資料 36

送料機械手設計及Solidworks運動模擬

摘要
本課題是為普通車床配套而設計的上料機械手。工業機械手是工業生產的必然產物,它是一種模仿人體上肢的部分功能,按照預定要求輸送工件或握持工具進行操作的自動化技術設備,對實現工業生產自動化,推動工業生產的進一步發展起著重要作用。因而具有強大的生命力受到人們的廣泛重視和歡迎。實踐證明,工業機械手可以代替人手的繁重勞動,顯著減輕工人的勞動強度,改善勞動條件,提高勞動生產率和自動化水平。工業生產中經常出現的笨重工件的搬運和長期頻繁、單調的操作,採用機械手是有效的。此外,它能在高溫、低溫、深水、宇宙、放射性和其他有毒、污染環境條件下進行操作,更顯示其優越性,有著廣闊的發展前途。
本課題通過應用AutoCAD 技術對機械手進行結構設計和液壓傳動原理設計,運用Solidworks技術對上料機械手進行三維實體造型,並進行了運動模擬,使其能將基本的運動更具體的展現在人們面前。它能實行自動上料運動;在安裝工件時,將工件送入卡盤中的夾緊運動等。上料機械手的運動速度是按著滿足生產率的要求來設定。

關鍵字 機械手,AutoCAD,Solidworks 。

第一章 機械手設計任務書

1.1畢業設計目的
畢業設計是學生完成本專業教學計劃的最後一個極為重要的實踐性教學環節,是使學生綜合運用所學過的基本理論、基本知識與基本技能去解決專業范圍內的工程技術問題而進行的一次基本訓練。這對學生即將從事的相關技術工作和未來事業的開拓都具有一定意義。
其主要目的:
培養學生綜合分析和解決本專業的一般工程技術問題的獨立工作能力,拓寬和深化學生的知識。
培養學生樹立正確的設計思想,設計構思和創新思維,掌握工程設計的一般程序規范和方法。
培養學生樹立正確的設計思想和使用技術資料、國家標准等手冊、圖冊工具書進行設計計算,數據處理,編寫技術文件等方面的工作能力。
培養學生進行調查研究,面向實際,面向生產,向工人和技術人員學習的基本工作態度,工作作風和工作方法。

1.2本課題的內容和要求

(一、)原始數據及資料
(1、)原始數據:
生產綱領:100000件(兩班制生產)
自由度(四個自由度)
臂轉動180º
臂上下運動 500mm
臂伸長(收縮)500mm
手部轉動 ±180º
(2、)設計要求:
a、上料機械手結構設計圖、裝配圖、各主要零件圖(一套)
b、液壓原理圖(一張)
c、機械手三維造型
d、動作模擬模擬
e、設計計算說明書(一份)
(3、)技術要求
主要參數的確定:
a、坐標形式:直角坐標系
b、臂的運動行程:伸縮運動500mm,回轉運動180º。
c、運動速度:使生產率滿足生產綱領的要求即可。
d、控制方式:起止設定位置。
e、定位精度:±0.5mm。
f、手指握力:392N
g、驅動方式:液壓驅動。
(二、)料槽形式及分析動作要求
( 1、)料槽形式
由於工件的形狀屬於小型回轉體,此種形狀的零件通常採用自重輸送的輸料槽,如圖1.1所示,該裝置結構簡單,不需要其它動力源和特殊裝置,所以本課題採用此種輸料槽。

圖1.1機械手安裝簡易圖
(2、)動作要求分析如圖1.2所示
動作一:送 料
動作二:預夾緊
動作三:手臂上升
動作四:手臂旋轉
動作五:小臂伸長
動作六:手腕旋轉
預夾緊
手臂上升
手臂旋轉
小臂伸長
手腕旋轉
手臂轉回
圖1.2 要求分析
第二章 抓取機構設計

2.1手部設計計算

一、對手部設計的要求
1、有適當的夾緊力
手部在工作時,應具有適當的夾緊力,以保證夾持穩定可靠,變形小,且不損壞工件的已加工表面。對於剛性很差的工件夾緊力大小應該設計得可以調節,對於笨重的工件應考慮採用自鎖安全裝置。
2、有足夠的開閉范圍
夾持類手部的手指都有張開和閉合裝置。工作時,一個手指開閉位置以最大變化量稱為開閉范圍。對於回轉型手部手指開閉范圍,可用開閉角和手指夾緊端長度表示。手指開閉范圍的要求與許多因素有關,如工件的形狀和尺寸,手指的形狀和尺寸,一般來說,如工作環境許可,開閉范圍大一些較好,如圖2.1所示。

圖2.1 機械手開閉示例簡圖

3、力求結構簡單,重量輕,體積小
手部處於腕部的最前端,工作時運動狀態多變,其結構,重量和體積直接影響整個機械手的結構,抓重,定位精度,運動速度等性能。因此,在設計手部時,必須力求結構簡單,重量輕,體積小。
4、手指應有一定的強度和剛度
5、其它要求
因此送料,夾緊機械手,根據工件的形狀,採用最常用的外卡式兩指鉗爪,夾緊方式用常閉史彈簧夾緊,松開時,用單作用式液壓缸。此種結構較為簡單,製造方便。
二、拉緊裝置原理
如圖2.2所示【4】:油缸右腔停止進油時,彈簧力夾緊工件,油缸右腔進油時松開工件。

圖2.2 油缸示意圖
1、右腔推力為
FP=(π/4)D²P (2.1)
=(π/4)0.5²2510³
=4908.7N
2、根據鉗爪夾持的方位,查出當量夾緊力計算公式為:
F1=(2b/a)(cosα′)²N′ (2.2)
其中 N′=498N=392N,帶入公式2.2得:
F1=(2b/a)(cosα′)²N′
=(2150/50)(cos30º)²392
=1764N
則實際加緊力為 F1實際=PK1K2/η (2.3)
=17641.51.1/0.85=3424N

經圓整F1=3500N
3、計算手部活塞桿行程長L,即
L=(D/2)tgψ (2.4)
=25×tg30º
=23.1mm
經圓整取l=25mm
4、確定「V」型鉗爪的L、β。
取L/Rcp=3 (2.5)
式中: Rcp=P/4=200/4=50 (2.6)
由公式(2.5)(2.6)得:L=3×Rcp=150
取「V」型鉗口的夾角2α=120º,則偏轉角β按最佳偏轉角來確定,
查表得:
β=22º39′
5、機械運動范圍(速度)【1】
(1)伸縮運動 Vmax=500mm/s
Vmin=50mm/s
(2)上升運動 Vmax=500mm/s
Vmin=40mm/s
(3)下降Vmax=800mm/s
Vmin=80mm/s
(4)回轉Wmax=90º/s
Wmin=30º/s
所以取手部驅動活塞速度V=60mm/s
6、手部右腔流量
Q=sv (2.7)
=60πr²
=60×3.14×25²
=1177.5mm³/s
7、手部工作壓強
P= F1/S (2.8)
=3500/1962.5=1.78Mpa
2.2腕部設計計算

腕部是聯結手部和臂部的部件,腕部運動主要用來改變被夾物體的方位,它動作靈活,轉動慣性小。本課題腕部具有回轉這一個自由度,可採用具有一個活動度的回轉缸驅動的腕部結構。
要求:回轉±90º
角速度W=45º/s
以最大負荷計算:
當工件處於水平位置時,擺動缸的工件扭矩最大,採用估演算法,工件重10kg,長度l=650mm。如圖2.3所示。
1、計算扭矩M1〖4〗
設重力集中於離手指中心200mm處,即扭矩M1為:
M1=F×S (2.9)
=10×9.8×0.2=19.6(N·M)

F

S
F
圖2.3 腕部受力簡圖
2、油缸(伸縮)及其配件的估算扭矩M2〖4〗
F=5kg S=10cm
帶入公式2.9得
M2=F×S=5×9.8×0.1 =4.9(N·M)
3、擺動缸的摩擦力矩M摩〖4〗
F摩=300(N)(估算值)
S=20mm (估算值)
M摩=F摩×S=6(N·M)
4、擺動缸的總摩擦力矩M〖4〗
M=M1+M2+M摩 (2.10)
=30.5(N·M)
5.由公式
T=P×b(ΦA1²-Φmm²)×106/8 (2.11)
其中: b—葉片密度,這里取b=3cm;
ΦA1—擺動缸內徑, 這里取ΦA1=10cm;
Φmm—轉軸直徑, 這里取Φmm=3cm。
所以代入(2.11)公式
P=8T/b(ΦA1²-Φmm²)×106
=8×30.5/0.03×(0.1²-0.03²)×106
=0.89Mpa
又因為
W=8Q/(ΦA1²-Φmm²)b
所以
Q=W(ΦA1²-Φmm²)b/8
=(π/4)(0.1²-0.03²)×0.03/8
=0.27×10-4m³/s
=27ml/s

2.3臂伸縮機構設計

手臂是機械手的主要執行部件。它的作用是支撐腕部和手部,並帶動它們在空間運動。
臂部運動的目的,一般是把手部送達空間運動范圍內的任意點上,從臂部的受力情況看,它在工作中即直接承受著腕部、手部和工件的動、靜載荷,而且自身運動又較多,故受力較復雜。
機械手的精度最終集中在反映在手部的位置精度上。所以在選擇合適的導向裝置和定位方式就顯得尤其重要了。
手臂的伸縮速度為200m/s
行程L=500mm
1、手臂右腔流量,公式(2.7)得:【4】
Q=sv
=200×π×40²
=1004800mm³/s
=0.1/10²m³/s
=1000ml/s
2、手臂右腔工作壓力,公式(2.8) 得:〖4〗
P=F/S (2.12)
式中:F——取工件重和手臂活動部件總重,估算 F=10+20=30kg, F摩=1000N。
所以代入公式(2.12)得:
P=(F+ F摩)/S
=(30×9.8+1000)/π×40²
=0.26Mpa
3、繪制機構工作參數表如圖2.4所示:

圖2.4機構工作參數表
4、由初步計算選液壓泵〖4〗
所需液壓最高壓力
P=1.78Mpa
所需液壓最大流量
Q=1000ml/s
選取CB-D型液壓泵(齒輪泵)
此泵工作壓力為10Mpa,轉速為1800r/min,工作流量Q在32—70ml/r之間,可以滿足需要。
5、驗算腕部擺動缸:
T=PD(ΦA1²-Φmm²)ηm×106/8 (2.13)
W=8θηv/(ΦA1²-Φmm²)b (2.14)
式中:Ηm—機械效率取: 0.85~0.9
Ηv—容積效率取: 0.7~0.95
所以代入公式(2.13)得:
T=0.89×0.03×(0.1²-0.03²)×0.85×106/8
=25.8(N·M)
T<M=30.5(N·M)
代入公式(2.14)得:
W=(8×27×10-6)×0.85/(0.1²-0.03²)×0.03
=0.673rad/s
W<π/4≈0.785rad/s
因此,取腕部回轉油缸工作壓力 P=1Mpa
流量 Q=35ml/s
圓整其他缸的數值:
手部抓取缸工作壓力PⅠ=2Mpa
流量QⅠ=120ml/s
小臂伸縮缸工作壓力PⅠ=0.25Mpa
流量QⅠ=1000ml/s

第三章 液壓系統原理設計及草圖

3.1手部抓取缸

圖 3.1手部抓取缸液壓原理圖〖7〗

1、手部抓取缸液壓原理圖如圖3.1所示
2、泵的供油壓力P取10Mpa,流量Q取系統所需最大流量即Q=1300ml/s。
因此,需裝圖3.1中所示的調速閥,流量定為7.2L/min,工作壓力P=2Mpa。
採用:
YF-B10B溢流閥
2FRM5-20/102調速閥
23E1-10B二位三通閥

❽ 注塑機專用機械手都有哪些設計要點

注塑機專用機械手的設計要點:
一、手部
注塑機專用機械手的手部是用來直接抓取注塑製品的部件。由於注塑製品的形狀,大小,重量及表面特徵等方面存在著差異,因此注塑機械手的手部有多種形式,一般可分為夾持式和吸附式兩種。夾持式手部的主要形式為夾鉗式,常用於抓取不易破碎或變形的製品,它對所抓取的製品的形狀有較大的適應性。夾持式手部由手指,傳動機構和驅動裝置組成。
對於夾持式手部,進行設計選用時主要考慮以下幾點。
(1)手部應具有適應的夾緊力和驅動。
(2)手指應具有足夠的開關范圍。
(3)手指對製品應具有一定的夾持精度。
(4)手部對製品應具有一定的適應能力,且要求手部能耐受注塑製品剛從模腔中取出時的高溫及腐蝕性。
二、驅動系統
注塑用機械手的驅動系統一般可分為氣壓驅動和電力驅動等兩類,也可以根據工作要求採用上述兩種類型的組合系統來完成驅動。
在設計選用驅動系統時應注意以下幾點。
(1)根據機械手的負載量來確定驅動系統的類型,一般來說,重負載的可選擇電力驅動系統,輕負載的可選擇氣壓驅動系統。
(2)對於作點位控制的注塑機械手多採用氣壓驅動系統。
(3)對於需要採用伺服控制的機械手多採用電力驅動系統。
三、控制系統
注塑用機械手的所有動作都在控制系統的指揮下完成,尤其是機械手與注塑機的協調工作關系,更是要依賴控制系統來達到。在控制系統的指揮下,機械手按照預定的工作程序完成各個動作,從而將注塑生產出的製品從模具中取出並傳送到指定地點或下一個生產工序中,並向模腔中噴灑脫模劑。在設計時,應根據注塑機的性能,機械手的作業條件和要求,製品的形狀和重量等來確定控制系統。
一般來說,設計或選用控制系統應遵循以下一些要點。
(1)應確保機械手有足夠的定位精度;
(2)應注意機械手與注塑機的動作配合協調,確保機械手抓取製品離開模具後,注塑機和機械手能夠各自繼續進行動作,從而減少時間浪費;
(3)應注意控制機械手的運行速度,即要使機械手能夠滿足注塑成型最短周期的要求,有要考慮是否會產生慣性沖擊和振動;
(4)應考慮控制系統的費用與實際工作要求之前的平衡關系。
自由度:通常把傳送機構的運動稱為傳送機構的自由度。人從手指到肩部共有27個自由度。而如將機械手的手臂也製成這樣多的自由度,既困難又不必要。從力學的角度分析,物件在空間只有6個自由度。因此為抓取和傳送在空間不同位置和方位物件,傳送機構也應具有6個自由度。常用的機械手傳送機構的自由度還多為少於6個的。一般的專用機械手只有2~4個自由度,而通用機械手則多數為3~6個自由度(這里所說的自由度數目,均不包括手指的抓取動作)。
機械手的每一個自由度是由其操作機的獨立驅動關節來實現的。所以在應用中,關節和自由度在表達機械手的運動靈活性方面是意義相通的。又由於關節在實際構造上是由回轉或移動的軸來完成的,所以又習慣稱之為軸。因此,就有了6自由度、6關節或6軸機械手的命名方法。它們都說明這一機械手的操作有6個獨立驅動的關節結構,能在其工作空間中實現抓取物件的任意位置和姿態。
四、工作步驟:
注塑用機械手在抓取製品及噴灑脫模劑時一般採用如下的工作步驟:機械手手臂下降並引發注塑機開模-注塑機頂出注塑製品並向機械手發出。
頂出信號—機械手伸入模腔中抓取製品-機械手向模腔噴灑脫模劑—機械手上升離開模腔—機械手向注塑機發出閉模信號並引發注塑機閉模—。
機械手移動到指定位置處放下製品—機械手回復到原位準備進行下一次動作。

❾ 課題十 機械手控制設計(1人)

你好朋友,我正好有你要的畢業設計,我做的設計就是這個!機械手的控制設計!免費的給你!發一點你看看啊!第一章 引 言 1.1 工業機械手概述工業機器人由操作機(機械本體)、控制器、伺服驅動系統和檢測感測裝置構成,是一種仿人操作,自動控制、可重復編程、能在三維空間完成各種作業的機電一體化自動化生產設備。特別適合於多品種、變批量的柔性生產。它對穩定、提高產品質量,提高生產效率,改善勞動條件和產品的快速更新換代起著十分重要的作用。機器人應用情況,是一個國家工業自動化水平的重要標志。生產中應用機械手可以提高生產的自動化水平,可以減輕勞動強度、保證產品質量、實現安全生產;尤其在高溫、高壓、低溫、低壓、粉塵、易爆、有毒氣體和放射性等惡劣的環境中,它代替人進行正常的工作,意義更為重大。因此,在機械加工、沖壓、鑄、鍛、焊接、熱處理、電鍍、噴漆、裝配以及輕工業、交通運輸業等方面得到越來越廣泛的引用。機械手的結構形式開始比較簡單,專用性較強,僅為某台機床的上下料裝置,是附屬於該機床的專用機械手。隨著工業技術的發展,製成了能夠獨立的按程序控制實現重復操作,適用范圍比較廣的「程序控制通用機械手」,簡稱通用機械手。由於通用機械手能很快的改變工作程序,適應性較強,所以它在不斷變換生產品種的中小批量生產中獲得廣泛的引用。氣壓傳動機械手是以壓縮空氣的壓力來驅動執行機構運動的機械手。其主要特點是:介質李源極為方便,輸出力小,氣動動作迅速,結構簡單,成本低。但是,由於空氣具有可壓縮的特性,工作速度的穩定性較差,沖擊大,而且氣源壓力較低,抓重一般在30公斤以下,在同樣抓重條件下它比液壓機械手的結構大,所以適用於高速、輕載、高溫和粉塵大的環境中進行工作。氣動技術有以下優點: (1)介質提取和處理方便。氣壓傳動工作壓力較低,工作介質提取容易,而後排入大氣,處理方便,一般不需設置回收管道和容器:介質清潔,管道不易堵存在介質變質及補充的問題. (2)阻力損失和泄漏較小,在壓縮空氣的輸送過程中,阻力損失較小(一般不卜澆塞僅為油路的千分之一),空氣便於集中供應和遠距離輸送。外泄漏不會像液壓傳動那樣,造成壓力明顯降低和嚴重污染。 (3)動作迅速,反應靈敏。氣動系統一般只需要0.02s-0.3s即可建立起所需的壓力和速度。氣動系統也能實現過載保護,便於自動控制。 (4)能源可儲存。壓縮空氣可存貯在儲氣罐中,因此,發生突然斷電等情況時,機器及其工藝流程不致突然中斷。 (5)工作環境適應性好。在易燃、易爆、多塵埃、強磁、強輻射、振動等惡劣環境中,氣壓傳動與控制系統比機械、電器及液壓系統優越,而且不會因溫度變化影響傳動及控制性能。 (6)成本低廉。由於氣動系統工作壓力較低,因此降低了氣動元、輔件的材質和加工精度要求,製造容易,成本較低。傳統觀點認為:由於氣體具有可壓縮性,因此,在氣動伺服系統中要實現高精度定位比較困難(尤其在高速情況下,似乎更難想像)。此外氣源工作壓力較低,抓舉力較小。雖然氣動技術作為機器人中的驅動功能已有部分被工業界所接受,而且對於不太復雜的機械手,用氣動元件組成的控制系統己被接受,但由於氣動機器人這一體系己經取得的一系列重要進展過去介紹得不夠,因此在工業自動化領域里,對氣動機械手、氣動機器人的實用性和前景存在不少疑慮。 1.2 氣動機械手的設計要求 1.2.2 課題的設計要求本課題將要完成的主要任務如下: (1)機械手為通用機械手,因此相對於專用機械手來說,它的適用面相對較廣。 (2)選取機械手的座標型式和自由度。 (3)設計出機械手的各執行機構,包括:手部、手腕、手臂等部件的設計。為了使通用性更強,手部設計成可更換結構,不僅可以應用於夾持式手指來抓取棒料工件,在工業需要的時候還可以用氣流負壓式吸盤來吸取板料工件。 (4)氣壓傳動系統的設計本課題將設計出機械手的氣壓傳動系統,包括氣動元器件的選取,氣動迴路的設計,並繪出氣動原理圖。 (5)機械手的控制系統的設計本機械手擬採用可編程序控制器(PLC)對機械手進行控制,本課題將要選取PLC型號,根據機械手的工作流程編制出PLC程序,並畫出梯形圖。 1.3 機械手的系統工作原理及組成機械手的系統工作原理框圖如圖1-1所示。 圖1-1機械手的系統工作原理框圖 機械手的工作原理:機械手主要由執行機構、驅動系統、控制系統以及位置檢測裝置等所組成。在PLC程序控制的條件下,採用氣壓傳動方式,來實現執行機構的相應部位發生規定要求的,有順序,有運動軌跡,有一定速度和時間的動作。同時按其控制系統的信息對執行機構發出指令,必要時可對機械手的動作進行監視,當動作有錯誤或發生故障時即發出報警信號。位置檢測裝置隨時將執行機構的實際位置反饋給控制系統,並與設定的位置進行比較,然後通過控制系統進行調整,從而使執行機構以一定的精度達到設定位置. (一)執行機構包括手部、手腕、手臂和立柱等部件,有的還增設行走機構。 1、手部即與物件接觸的部件。由於與物件接觸的形式不同,可分為夾持式和吸附式手在本課題中我們採用夾持式手部結構。夾持式手部由手指(或手爪)和傳力機構所構成。手指是與物件直接接觸的構件,常用的手指運動形式有回轉型和平移型。回轉型手指結構簡單,製造容易,故應用較廣泛。平移型應用較少,其原因是結構比較復雜,但平移型手指夾持圓形零件時,工件直徑變化不影響其軸心的位置,因此適宜夾持直徑變化范圍大的工件。手指結構取決於被抓取物件的表面形狀、被抓部位(是外廓或是內孔)和物件的重量及尺寸。而傳力機構則通過手指產生夾緊力來完成夾放物件的任務。傳力機構型式較多時常用的有:滑槽杠桿式、連桿杠桿式、斜面杠桿式、齒輪齒條式、絲杠螺母彈簧式和重力式等。 2、手腕是連接手部和手臂的部件,並可用來調整被抓取物件的方位(即姿勢) 3、手臂手臂是支承被抓物件、手部、手腕的重要部件。手臂的作用是帶動手指去抓取物件,並按預定要求將其搬運到指定的位置。工業機械手的手臂通常由驅動手臂運動的部件(如油缸、氣缸、齒輪齒條機構、連桿機構、螺旋機構和凸輪機構等)與驅動源(如液壓、氣壓或電機等)相配合,以實現手臂的各種運動。 4、立柱立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回轉運動和升降(或俯仰)運動均與立柱有密切的聯系。機械手的立柱因工作需要,有時也可作橫向移動,即稱為可移式立柱。 5、機座機座是機械手的基礎部分,機械手執行機構的各部件和驅動系統均安裝於機座上,故起支撐和連接的作用。 (二)驅動系統驅動系統是驅動工業機械手執行機構運動的。它由動力裝置、調節裝置和輔助裝置組成。常用的驅動系統有液壓傳動、 氣壓傳動、機械傳動。 (三)控制系統控制系統是支配著工業機械手按規定的要求運動的系統。目前工業機械手的控制系統一般由程序控制系統和電氣定位(或機械擋塊定位)系統組成。該機械手採用的是PLC程序控制系統,它支配著機械手按規定的程序運動,並記憶人們給予機械手的指令信息(如動作順序、運動軌跡、運動速度及時間),同時按其控制系統的信息對執行機構發出指令,必要時可對機械手的動作進行監視,當動作有錯誤或發生故障時即發出報警信號。 (四)位置檢測裝置控制機械手執行機構的運動位置,並隨時將執行機構的實際位置反饋給控制系統,並與設定的位置進行比較,然後通過控制系統進行調整,從而使執行機構以一定的精度達到設定位置. 第二章 機械手的整體設計方案

參考資料: http://sunqiliang99.blog.163.com

閱讀全文

與送料機械手裝置設計相關的資料

熱點內容
dec在數控機床上是什麼意思 瀏覽:964
冰櫃換什麼製冷液效果好 瀏覽:916
全自動洗衣機軸承壞了需要多少錢 瀏覽:121
自控閥門儀表怎麼裝配 瀏覽:81
主通風振動檢測裝置 瀏覽:52
一氧化碳還原氧化銅的實驗裝置圖 瀏覽:745
清潔保養維護機械或電器裝置前 瀏覽:736
石灰石脫硫再熱裝置作用 瀏覽:780
鞋廠設備多少錢 瀏覽:444
閥門上開過力是什麼 瀏覽:353
汽車改裝排氣閥門開關控制盒壞了 瀏覽:662
燃氣灶離燃氣閥門距離圖 瀏覽:211
五菱宏光儀表盤上的表怎麼調 瀏覽:202
網課批註設備哪個好 瀏覽:938
鋒馭儀表台怎麼設置中文 瀏覽:3
氣動計數迴路應用於哪些設備 瀏覽:500
一種可測量磁感應強度的實驗裝置 瀏覽:884
多液力元件傳動裝置 瀏覽:37
夾具中分度裝置的作用 瀏覽:518
閥門cl4500是什麼意思 瀏覽:495