Ⅰ 現代汽車中的電控系統有哪些各自的作用是什麼
汽車電控系統包括硬體和軟體兩部分。
1.包括動力傳動總成的電子控制。底盤的電子控制車身版系統的電子控制信息通訊權系統。發動機電控系統、自動變速器電控 系統、制動防抱死系統、安全氣囊系統、電控懸架系統、電控動力轉向系統、自動空調系統等。
2.電子控制系統就是應用控制裝置自動地、有目的地控制、操作機器設備或過程,使之有一定的狀態和性能。自動控制系統一般由檢測反饋單元、指令及信號處理單元、轉換放大單元、執行器和動力源等幾部分組成。
3.從控制原理來看,汽車電控系統可以簡化為感測器、ECU和執行器三大組成部分。感測器是感知信息的部件,功用是向ECU提供汽車運行狀況和發動機工況等。ECU接收來自感測器的信息,經信息處理後發出相應的控制指令給執行器。
4.執行器即執行元件,其功用是執行ECU的專項指令,從而完成控制目的。感測器、ECU和執行器三部分相互間的工作關系。
Ⅱ 發動機電控的主要系統有哪些,分別有什麼作用
發動機電控系統主要包括電控燃油噴射系統、電控點火系統和其他輔助控制系統。分別有以下作用:
1、燃油噴射控制-------電控燃油噴射系統(EFI) 在電控燃油噴射系統中,噴油量控制是最基本的也是最重要的控制內容,電子控制單元(ECU)主要根據進氣量確定基本的噴油量,再根據其他感測器(如冷卻液溫度感測器、節氣門位置感測器等)信號對噴油量進行修正,使發動機在各種運行工況下均能獲得最佳濃度的混合氣,從而提高發動機的動力性、經濟性和排放性。除噴油量控制外,電控燃油噴射系統還包括噴油正時控制、斷油控制和燃油泵控制。
2、點火控制-------電控點火系統(ESA) 電控點火系統最基本的功能是點火提前角控制。該系統根據各相關感測器信號,判斷發動機的運行工況和運行條件,選擇最理想的點火提前角,點燃混合氣,從而改善發動機的燃燒過程,以實現提高發動機動力性、經濟性和降低排放污染的目的。此外,電控點火系統還具有通電時間控制和爆燃控制功能。
3、怠速控制--------怠速控制系統 怠速控制(IS(:)系統是發動機輔助控制系統,其功能是在發動機怠速工況下,根據發動機冷卻液溫度、空調壓縮機是否工作、變速器是否掛入擋位等,通過怠速控制閥對發動機的進氣量進行控制,使發動機隨時以最佳怠速轉速運轉。
4、排放控制-------排放控制系統 其功能主要是對發動機排放控制裝置的工作實行電子控制。排放控制的項目主要包括:廢氣再循環(EGR)控制,活性炭罐電磁閥控制,氧感測器和空燃比閉環控制,二次空氣噴射控制等。
5、進氣控制-------進氣控制系統 進氣控制系統的功能是根據發動機轉速和負荷的變化,對發動機的進氣進行控制,以提高發動機的充氣效率,從而改善發動機動力性。
6、增壓控制-------增壓控制系統 增壓控制系統的功能是對發動機進氣增壓裝置的工作進行控制。在裝有廢氣渦輪增壓裝置的汽車上,ECU根據檢測到的進氣管壓力,對增加裝置進行控制,從而控制增壓裝置對進氣增壓的強度。
7、巡航控制--------巡航控制系統 駕駛員設定巡航控制模式後,ECU根據汽車運行工況和運行環境信息,自動控制發動機工作,使汽車自動維持一定車速行駛。
8、警告提示 由ECU控制各種指示和報警裝置,一旦控制系統出現故障,該系統能及時發出信號以警告提示,如氧感測器失效、油箱油溫過高等。
9、自診斷功能--------自診斷與報警系統 在發動機控制系統中,電子控制單元(ECU)都具設有自診斷系統,對控制系統各部分的工作情況進行監測。當ECU檢測到來自感測器或輸送給執行元件的故障信號時,立即點亮儀表盤上的「CI_tE(:K ENGINE」燈(俗稱故障指示燈),以提示駕駛員發動機有故障;同時,系統將故障信息以設定的數碼(故障碼)形式儲存在存儲器中,以便幫助維修人員確定故障類型和范圍。對車輛進行維修時,維修人員可通過特定的操作程序(有些需藉助專用設備)調取故障碼。故障排除後,必須通過特定的操作程序清除故障碼,以免與新的故障信息混雜,給故障診斷帶來困難。
10、失效保護功能--------失效保護系統 失效保護系統的功能主要是當感測器或感測器線路發生故障時,控制系統自動按電腦中預先設定的參考信號值工作,以便發動機能繼續運轉。如:冷卻液溫度感測器電路有故障時,可能會向EC[J輸人低於一50~C或高於139~(2的冷卻液溫度信號,失效保護系統將自動按設定的標准冷卻液溫度信號(80~C)控制發動機工作,否則會引起混合氣過濃或過稀,導致發動機不能工作。此外,當對發動機工作影響較大的感測器或電路發生故障時,失效保護系統則會自動停止發動機工作。如:ECU收不到點火控制器返回的點火確認信號時,失效保護系統則立即停止燃油噴射,以防大量燃油進入氣缸而不能點火工作。
11、應急功能--------應急備用系統 應急備用系統功能是當控制系統電腦發生故障時,自動啟用備用系統(備用集成電路),按設定的信號控制發動機轉入強制運轉狀態,以防車輛停駛在路途中。應急備用系統只能維持發動機運轉的基本功能,但不能保證發動機性能。 除上述控制系統外,應用在發動機上的電控系統還有冷卻風扇控制、配氣正時控制、發電機控制等。應當說明的是,上述各控制系統在不同的汽車發動機上,只是或多或少地被採用。此外,隨著汽車技術和電子技術的發展,發動機控制系統的功能必將日益增加。
Ⅲ 電氣傳動技術在各個領域的應用
電氣傳動技術的特點及展望
1 引言
電氣傳動技術是指用電動機把電能轉換成機械能,帶動各種類型的生產機械、交通車輛以及生活中需要運動物品的技術;是通過合理使用電動機實現生產過程機械設備電氣化及其自動控制的電器設備及系統的技術總稱[1]。一個完整的電氣傳動系統包括三部分:控制部分、功率部分、電動機。
電氣傳動技術是電力電子與電機及其控制相結合的產物,內容涉及電機、電力電子、控制理論、計算機、微電子、現代檢測技術、模擬技術、電力系統、機械、材料和信息技術等多種學科,是這些學科交叉融合而形成的一門新型的綜合性學科。對於位置控制(伺服)系統,也稱為運動控制。
電氣傳動技術誕生於20世紀初的第二次工業革命時期,電氣傳動技術大大推動了人類社會的現代化進步。它是研究如何通過電動機控制物體和生產機械按要求運動的學科。隨著感測器技術和自動控制理論的發展,由簡單的繼電、接觸、開環控制,發展為較復雜的閉環控制系統。20世紀60年代,特別是80年代以來,隨著電力電子技術、現代控制理論、計算機技術和微電子技術的發展,逐步形成了集多種高新技術於一身的全新學科技術一現代電氣傳動技術。2 電氣傳動的主體電動機
電動機分為交流電動機和直流電動機。二者的結構、工作原理不同,所需的電氣傳動裝置也不同。電氣傳動可分為兩類:直流電氣傳動和交流電氣傳動。由於歷史上最早出現的是以蓄電池形式供電的直流電動機,所以直流傳動也是唯一的電氣傳動方式。直到1885年義大利都靈大學發明了感應電動機,而後出現了交流電,解決了三相制交流電的輸變問題交流電氣傳動才出現。20世紀80年代之前,直流電氣傳動在高性能的電氣傳動領域占絕對統治地位。此後,隨著電力電子技術和計算機控制技術的發展,以及現代控制理論的應用,交流電氣傳動得到了快速發展,靜動態性能可以與直流電氣傳動相媲美。因此交流電氣傳動在高性能的電氣傳動領域所佔比例逐年上升,目前已處於主導地位。
2.1 直流電動機傳動
直流電動機的轉速n的表達式為 式中:Ua 電動機電樞兩端的電壓;Ia 電動機電樞迴路電流;R 電動機迴路電阻;Ke 電動機電勢常數;φ 電動機勵磁磁通。
直流電動機的調速方式有三種:一是調壓調速,即保持R和φ不變,通過調節Ua來調節n,是一種大范圍無級調速方式;二是弱磁升速,即保持R和Ua不變,通過減少φ來升高n,是一種小范圍無級調速方式;三是變電阻調速,即保持Ua和φ不變,通過調節R來調節n,是一種大范圍有級調速方式。對於要求大范圍平滑調速的直流電氣傳動系統來說,調壓調速方式最好。而且現代工業企業的低壓供電系統多數採用交流供電,通過可控變流裝置即可提供可調的直流電壓信號,所以直流調壓調速方式應用最廣泛。在電力電子變換器中,用於控制直流電機的主要是由全控器件組成的斬波器或PWM變換器,以及晶閘管相控整流器。
直流電氣傳動控制技術的發展經歷了以下演變過程:開環控制→單閉環控制→多閉環控制;分立元件電路控制→小規模集成電路控制→大規模集成電路控制; 模擬電路控制→數模電路混合控制→數字電路控制;硬體控制→軟體控制。
2.2 交流電動機傳動
交流電動機分非同步電動機和同步電動機兩大類。按照非同步電動機的基本原理,從定子傳入轉子的電磁功率Pm可分為兩部分:一部分是拖動負載的有效功率P1=(1-s) Pm,另一部分是轉差功率Ps=sPm。轉差功率是評價調速系統效率高低的一種標志,因此交流非同步電動機調速方式分三類:一是轉差功率消耗型調速, 即把全部轉差功率轉化成熱能消耗掉。該調速方式結構簡單,但效率低,而且轉速越低,效率越低;二是轉差功率回饋型調速,即轉差功率的一部分轉化成熱能消耗掉,大部分則通過變流裝置回饋電網或轉化為機械能予以利用。該調速方式結構復雜,但效率比第一類高;三是轉差功率不變型調速,即無論轉速高低,消耗的轉差功率基本不變。該調速方式結構復雜,但效率最高。在非同步電動機的各種調速方式中,效率最高、性能最好、應用最廣泛的是變壓變頻調速方式。它是一種轉差功率不變型調速,可以實現大范圍平滑調速。
同步電動機沒有轉差,當然也沒有轉差功率,所以同步電動機調速只能是轉差功率不變型調速。而同步電動機轉子極對數固定,因此只能採用變壓變頻調速方式。
交流電氣傳動控制模式的發展經歷了以下演變過程:轉速開環的恆壓頻比控制→轉速閉環轉差頻率控制→矢量控制→解耦控制→模糊控制;分立元件電路控制→小規模集成電路控制→大規模集成電路控制;模擬電路控制→數字電路控制;硬體控制→軟體控制。3 現代電氣傳動的物質基礎一電力電子器件
電力電子技術是現代電氣傳動的基石,其直接決定和影響著現代電氣傳動的發展。如果把計算機比作現代生產設備的大腦,電力電子器件及功率變換裝置則可視為支配手足(電機)的肌肉和神經,因此,電力電子變換器是信息流與物質/能量流之間的重要紐帶[2][3]。
1957年世界上第一隻晶閘管(SCR)的問世標志著電力電子學的誕生,從此,電力電子器件的發展日新月異。從20世紀60年代第一代半控型電力電子器件一晶閘管(SCR)發明至今,已經歷了第二代有自關斷能力的全控型電力電子器件 CTR,GTO,MOSFET,第三代復合場控制器件一IGBT,SIT,MCT等和正蓬勃發展的第四代模塊化功率器件一功率集成電路(PIC),如智能化模塊IPM和專用功率器件模塊ASPM等。這為交流傳動實現高性能控制提供了必需的變頻裝置。電力電子器件的每一次更新換代,都會引起功率變換裝置和交流傳動性能的迅速提高,它們相互競爭、相互促進,向高電壓、大電流、高頻化、集成化、模塊化、智能化方向發展,並逐步在性能和價格上可以與直流傳動相媲美,而且在某些方面實現了直流傳動所不能達到的高性能。
交流傳動在實現節能和獲得高性能的同時,也帶來了諸如電網功率因數降低、諧波和電磁干擾等「污染」。另外,隨著容量的增加,功率變換器的體積增大。為了解決這些弊端,1964年,A.Schonug率先將通信系統的脈寬調制(PWM)技術應用於交流電氣傳動,使變頻器由傳統的相控電流型逆變器、電壓型逆變器發展到脈寬調制(PWM)型逆變器,大大緩解了對環境的「污染」,減小了變頻器的體積,簡化了變換裝置的控制,為近代交流傳動開辟了新的發展領域。目前,常用的交流PWM控制技術有:以輸出電壓接近正弦波為其控制目標的基於正弦波對三角波脈寬調制的SPWM控制和基於消除指定次數諧波的HEPWM控制;以輸出正弦波電流為其控制目標的基於電流滯環跟蹤的CHPWM控制;以及以被控電機的旋轉磁場接近圓形為其控制目標的電壓空間矢量控制(SVPWM控制)。電力電子器件及其功率變換裝置在交流傳動的發展中起著非常關鍵的作用,可以說沒有電力電子技術的發展,就沒有今天高性能的電氣傳動技術。4 電氣傳動自動化技術發展總趨勢及主要的發展方向
電氣傳動自動化技術發展總趨勢是:交流變頻調速逐步取代直流調速、無觸點控製取代有接點邏輯控制、全數字控制與數模復合控制並存。電氣自動化技術的發展是由用戶的需求和相關學科的技術發展所推動的,他直接涉及改善電氣傳動的性能、價格、尺寸、能源消耗與節約設計,調試等方面。其主要發展方向有:
4.1 實現高水平控制
電氣傳動自動化技術基於電動機和機械模型的控制策略,有矢量控制、磁場控制、直接轉矩控、現代理論的控制策略,有滑模變結構技術、模型參考自適應技術、採用微分幾何理論的非線性解魯棒觀測器,在某種指標意義下的最優控制技術和逆奈奎斯特陣列設計方法等;基於智能控制思想的控制策略,有模糊控制、神經元網路、專家系統和各種各樣的優化自診斷技術等。以高速微處理器RISC( Reced Instruction Set Computer )及高速DSP(DigitalSignal Processor)為基礎的數字控制模板處理速度大大提高,有足夠的能力實現各種控制演算法,Windows操作系統的引人可自由設計,圖形編程的控制技術也有很大的發展。
4.2 開發清潔電能的變流器
所謂清潔電能變流器是指變流器的功率因數接近1,網側和負載側有盡可能低的諧波分量,以減少對電網的公害和電動機的轉矩脈動。對中小容量變流器,提高開關頻率的PWM控制是有效的;對大容量交流器,在常規的開關頻率下,可改變電路結構和控制方式,實現清潔電能的變換。
4.3 系統化
電氣傳動自動化的發展與其相關技術的發展是分不開的。電氣傳動自動化技術的發展是將電網、整流器、逆變器、電動機、生產機械和控制系統為一個整體。從系統上進行考慮。例如要求和上位控制的可編程式控制制器通過串列通信連接,一般都帶有串列通訊標准功能(RS-232、RS-485),此外還通過專用的開放匯流排方式運行。
4.4 CAD技術
模擬與計算機輔助設計技術(CAD)、電動機模擬器、負載模擬器以及各種CAD軟體引人對變頻器的設計和測試提供了強有力的支持。
4.5 縮小裝置尺寸
緊湊型變流器要求功率和控制元件具有高的集成度,其中包括智能化的功率模塊、緊湊型的光耦合器、高頻率的開關電源,以及採用新型電工材料製造的小體積變壓器、電抗器和電容器。功率器件冷卻方式的改變(如水冷、蒸發冷卻和熱管)對縮小裝置的尺寸也很有效。現在主迴路中占發熱量50%-70%的IGBT的損耗已大幅度減少,集電極一發射極的飽和電壓(Vcesat)大為降低,現已開發出了第4代IGBT:目前,國外已研製成功高密度Building Block(系統集成)。
Ⅳ 汽車底盤電控裝置在發展的過程中都有哪有具體的應用
1、防抱死制動系統(ABS):確保在緊急制動、易打滑路面及制動時方向的穩定性、操縱的可靠性和制動時的安全性。
2、驅動防滑轉/牽引力控制系統(ASR/TCS):減少驅動輪空轉、增大牽引力,提高汽車加速和操作穩定性。
3、自動變速控制系統:減少頻繁換擋和換擋沖擊.增強變速與汽車性能的匹配,提高行駛平穩性和乘坐舒適性。
4、電控懸架系統:緩和並哀減由地面引起的對車身的沖擊和振動.傳遞作用在車輪與車身之間的各種力和力矩.以提高汽車行駛平穩性和乘坐舒性。
5、巡航控制系統(CCS):將汽車控制在經濟車速下行駛,降低油粍;無須頻繁加油,提高舒適性和安全性。
6、電控動力轉向系統(EPS):藉助發動機動力或電源電力,將其轉換成液壓能或機械能.驅動轉向輪偏轉,實現助力轉向,使轉向輕便;減輕駕駛員勞動強度,提高安全性。
7、四輪轉向系統(4WS):提高汽車轉向的機動靈活性和高速行駛的操縱穩定性。
Ⅳ 汽車的電控自動變速器(ECAT)是什麼
汽車電控自動變速器(ECAT)
摘要: ECAT可以根據發動機的載荷、轉速、車速、制動器工作狀態及駕駛員所控制的各種參數,經過計算機的計算、判斷後自動地改變變速桿的位置,從而實現變速器換擋的最佳控制,即可得到最佳擋位和最佳換擋時間。它的優點是加速性能好、靈敏度高、能准確地反映行駛負荷和道路條件等。傳動系統的電子控制裝置,能自動適應瞬時工況變化,保持發動機以盡可能低的轉速工作。電子氣動換擋裝置是利用電子裝置取代機械換擋桿及其與變速機構間的連接,並通過電磁閥及氣動伺服閥汽缸來執行。它不僅能明顯地簡化汽車操縱,而且能實現最佳的行駛動力性和安全性
關鍵詞:汽車自動變速器檢測故障診斷
電子控制自動變速器是通過各種感測器,將發動機轉速、節氣門開度、車速、發動機冷卻液溫度、自動變速器油溫度等參數轉變為電信號,並輸入計算機;計算機根據這些信號,按照設定的換檔規律,向換檔電磁閥、油壓電磁閥等發出電子控制信號,換檔電磁閥和油壓電磁閥再將計算機的電子控制信號轉變為液壓控制信號,閥體中的各個控制閥根據這些液壓控制信號,控制換檔執行機構的動作,從而實現自動換檔,電子控制變速器是由液力變矩器與行星齒輪機構組合實現動力傳遞和變速,可將其分成液力傳動、機械輔助變速和自動控制三大功能部分。液力變矩器通過液力傳遞動力,將發動機飛輪輸出的功率輸送給行星齒輪機構。液力變矩器可在一定范圍內實現增力矩減速和無級變速,在必要時還可通過其鎖止離合器鎖止液力變矩器來提高傳動效率。目前採用的行星齒輪式變速器包括行星齒輪變速機構和換擋執行機構兩部分,其作用是進一步增矩減速,通過變換檔位實現不同的傳動比,以提高汽車的適應能力。行星齒輪機構與液力變矩器相配合,就形成了更大范圍內的變速。
自動控制系統包括電子控制系統和液壓控制系統兩部分。自動變速器ECU根據各感測器及有關開關的輸入信號產生相應的電控信號控制各電磁閥的動作。再通過換擋閥及閥體中的各油路轉換為相應的控制油壓,從而實現對換擋執行機構、油壓調節裝置及液力變矩器鎖止裝置等的自動控制。
液力變矩器的基本原件是泵輪、渦輪、導輪。液力變矩器的泵輪和變矩器殼為一體,變矩器殼體則與發動機飛輪相連,因此泵輪是變矩器的主動件。渦輪與輸出軸相連,為變矩器的從動件。泵輪和渦輪都稱為工作輪,兩輪之間有一定的間隙,兩輪上都均布有葉片,變矩器殼體內充滿了自動變速器油。
當發動機飛輪帶動泵輪轉動後,泵輪內的自動變速器油在泵輪的葉片的作用下隨之一起旋轉;自動變速器油又在自身離心力的作用而甩向泵輪葉片的外緣,並從渦輪葉片的外緣沖向渦輪葉片,使得渦輪在自動變速器油的作用下旋轉起來;沖入渦輪的自動變速器油從其葉片的外緣流向內緣後,又流回到泵輪的內緣,將再次被泵輪甩向外緣。在泵輪作用下,自動變速器油循環流動,將轉矩傳遞給渦輪。
而在泵輪和渦輪之間的導輪靜止不動,流向渦輪內緣的自動變速器油沖向導輪後,沿導輪葉片流回泵輪。自動變速器給導輪的沖擊力,導輪則給液壓油一個同樣大小的反作用力,此反作用力傳遞給了渦輪,起到了增矩的作用。
行星齒輪機構由行星齒輪組和換擋執行機構等組成。不同車型的自動變速器其行星齒輪機構各部分的結構類型、布置形式、數量往往不同。行星齒輪組由太陽輪、行星齒輪及行星架、齒圈等組成。將太陽輪、齒圈、行星齒輪架3個基本元件中的任選2個元件分別作為主動件和被動件,第3個元件有確定的轉速(固定,轉速為0或有約束,轉速為某一數值),以獲得確定的傳動比。
齒輪變速器換擋執行機構有離合器、制動器和單向離合器,用於對行星齒輪構件實施不同的連接或制動,以實現不同的傳動組合。離合器的作用是連接軸和行星齒輪機構的旋轉元件。換檔離合器常採用多片濕式離合器,由液壓迴路來控制其結合與分離。換檔制動器由液壓操縱,其作用是將行星齒輪變速器中某一元件(太陽輪、行星輪架或齒圈)固定,使其不能轉動。換檔制動器通常有多片濕式制動器和帶式制動器兩種型式。行星輪變速器中單向離合器的作用是單方向傳遞動力或單方向制動,確保平順無沖擊換檔。
電子控制系統由以下三個基本部分組成:信號輸入感測器和各種控制開關、微機控制器部分和輸出執行部分。
通過各種感測器和各種控制開關向控制器輸入車輛行駛情況、發動機和變速器運行工況和司機操縱要求等信息。從輸入信號類型來看,有以下三種輸入量:模擬量如節氣門位置感測器、變速器油溫感測器等,脈沖量 如車速感測器、發動機轉速感測器等和開關量如選檔桿位開關、行駛模式開關等。
微機控制器部分一般也稱電子控制單元ECU,它接受各種輸入信號,進行處理,作出判斷,發出控制命令,實現自動變速器各種控制,並實現與其他控制器的和檢測儀器等的通信網路。
輸出執行部分主要是各種電磁閥,它將ECU輸出的電控信號轉變為相應的液壓控制信號,使有關的液壓執行元件動作,從而完成自動變速器的各項自動控制。
通過上述電子控制自動變速器結構和原理的分析,可以看出電子控制與液壓控制相比,具有明顯的優勢:電子控制可以實現以前由液壓控制難以實現的更復雜多樣的控制功能,使變速器的性能得到提高。電子控制可以極大地簡化液壓控制結構,減少生產投資等。電子控制功能藉助於軟硬體結合才能實現,由於軟體易於修改,可使產品具有適應結構參數變化的特性。隨著汽車電子化的發展,汽車傳動系的電子控制可以與發動機、制動系、安全氣囊等系統通過匯流排聯網,資源共享,實現整體控制,進一步簡化控制結構。現代汽車電子控制自動變速器還具有如下的發展趨勢:自動預選式換檔系統:近來ZF公司開發了一種自動預選式換檔系統,它可以使駕駛員體會到駕駛車輛的快感,又不需要緊張費力的操作。這種自動預選式換檔裝置,是全自動換檔系統的基礎,它的性能包括:電子控制自動選檔,換檔時刻由駕駛員確定;駕駛員不需要手操作換檔。主動和被動保護裝置;診斷屏幕實現系統監督。自動變速器除採用無級變速作用的變矩器外,其齒輪數也在不斷增多,從而使變速范圍不斷加寬。這有助於改善發動機的燃油經濟性和動力性,使發動機工況進一步向最佳化逼近。
小型化:減輕重量、縮短動力傳遞路線,能使汽車節油,自動變速器的小型化正起著這種作用。20世紀70年代以來(FI置發動機前輪驅動)微型車急劇增多,從而為自動變速器小型化提供了前提條件。此外,自動驅動橋(即把變速器與驅動橋合為一個整體)的趨勢十分突出,小型化又推動了FF化和自動驅動橋的發展
Ⅵ 傳動裝置都有哪些作用
汽車傳動系的基本功能就是將發動機發出的動力傳給驅動車輪。它的首要任務就是與汽車發動機協同工作,以保證汽車能在不同使用條件下正常行駛,並具有良好的動力性和燃油經濟性,為此,汽車傳動系都具備以下的功能:
1、減速和變速:
我們知道,只有當作用在驅動輪上的牽引力足以克服外界對汽車的阻力時,汽車才能起步和正常行駛。由實驗得知,即使汽車在平直得瀝青路面上以低速勻速行駛,也需要克服數值約相當於1.5%汽車總重力得滾動阻力。以東風EQ1090E型汽車為例,該車滿載總質量為9290kg(總重力為91135N),其最小滾動阻力約為1367N。若要求滿載汽車能在坡度為30%的道路上勻速上坡行駛,則所要克服的上坡阻力即達2734N。東風EQ1090E型汽車的6100Q-1發動機所能產生的最大扭距為353Nm(1200-1400rpm)。假設將這以扭距直接如數傳給驅動輪,則驅動輪可能得到的牽引力僅為784N。顯然,在此情況下,汽車不僅不能爬坡,即使在平直的良好路面上也不可能勻速行駛。
另一方面,6100Q-1發動機在發出最大功率99.3kW時的曲軸轉速為3000rpm。假如將發動機與驅動輪直接連接,則對應這一曲軸轉速的汽車速度將達510km/h。這樣高的車速既不實用,也不可能實現(因為相應的牽引力太小,汽車根本無法啟動)。
2、減速作用:
為解決這些矛盾,必須使傳動系具有減速增距作用(簡稱減速作用),亦即使驅動輪的轉速降低為發動機轉速的若干分之一,相應地驅動輪所得到的扭距則增大到發動機扭距的若干倍。
汽車的使用條件,諸如汽車的實際裝載量、道路坡度、路面狀況,以及道路寬度和曲率、交通情況所允許的車速等等,都在很大范圍內不斷變化。這就要求汽車牽引力和速度也有相當大的變化范圍。對活塞式內燃機來說,在其整個轉速范圍內,扭距的變化范圍不大,而功率的及燃油消耗率的變化卻很大,因而保證發動機功率較大而燃油消耗率較低的曲軸轉速范圍,即有利轉速范圍很窄。為了使發動機能保持在翻譯公司有利轉速范圍內工作,而汽車牽引力和速度有能在足夠大的范圍內變化,應當使傳動系傳動比(所謂傳動比就是驅動輪扭距與發動機扭距之比以及發動機轉速與驅動輪轉速之比)能在最大值與最小值之間變化,即傳動系應起變速作用。
3、差速作用
當汽車轉彎行駛時,左右車輪在同一時間內滾過的距離不同,如果兩側驅動輪僅用以根剛性軸驅動,則二者角速度必然相同,因而在汽車轉彎時必然產生車輪相對於地面滑動的現象。這將使轉向困難,汽車的動力消耗增加,傳動系內某些零件和輪胎加速磨損。所以,我們需要在驅動橋內裝置具有差速作用的部件——差速器,使左右兩驅動輪可以以不同的角速度旋轉。
Ⅶ 電動汽車傳動裝置的作用是什麼
傳動裝置電動汽車傳動裝置的作用是將電動機的驅動轉矩傳給汽車的驅動軸,當採用電動輪驅動時,傳動裝置的多數部件常常可以忽略。因為電動機可以帶負載啟動,所以電動汽車上無需傳統內燃機汽車的離合器
Ⅷ 電控自動變速器的功用由哪些
電控自動變速器的作用是能對不同負荷和車速選擇最佳速比,使發動機工作在相應最佳轉速。所有換檔由變速器自行完成,駕駛員僅用加速踏板表達對車速變化的意圖和通過選檔桿選擇要求的運行狀態。電控液力自動變速器(AT)是在傳統液力自動變速器的基礎上增設電子控制系統而形成的。
電控自動變速器由液力傳動系統,機械式齒輪變速系統,液壓操縱系統和電子控制系統組成。
自動變速器,亦稱自動變速箱,台灣稱為自排變速箱,香港稱為自動波,通常來說是一種可以在車輛行駛過程中自動改變齒輪傳動比的汽車變速器,從而使駕駛員不必手動換檔,也用於大型設備鐵路機車。
汽車自動變速器常見的有四種型式:分別是液力自動變速器(AT)、機械式無級變速器(CVT)、電控機械式自動變速器(AMT)、雙離合自動變速器(Dual Clutch Transmission--DCT)。轎車普遍使用的是AT,AT幾乎成為自動變速器的代名詞。AT是由液力變扭器、行星齒輪和液壓操縱系統組成,通過液力傳遞和齒輪組合的方式來達到變速變矩。其中液力變扭器是AT最重要的部件,它由泵輪、渦輪和導輪等構件組成,兼有傳遞扭矩和離合的作用。
Ⅸ 汽車自動擋變速箱的傳動原理
自動變速器中的變速齒輪機構所採用的型式有普通齒輪式和行星齒輪式兩種。採用普通齒輪式的變速器,因為尺寸較大,最大傳動比較小,只有少數車型採用。目前絕大多數轎車自動變速器中的齒輪變速器採用的是行星齒輪式。
變速齒輪機構主要包括行星齒輪機構和換檔執行機構兩部門。
行星齒輪機構,是自動變速器的重要組成部門之一,主要因為太陽輪(也稱中央輪)、內齒圈、行星架和行星齒輪等元件組成。行星齒輪機構是實現變速的機構,速比的改變是通過以不同的元件作主動件和限制不同元件的運動而實現的。在速比改變的過程中,整個行星齒輪組還存在運動,動力傳遞沒有間斷,因而實現了動力換擋。
換擋執行機構主要是用來改變行星齒輪中的主動元件或限制某個元件的運動,改變動力傳遞的方向和速比,主要由多片式離合器、制動器和單向超越離合器等組成。離合器的作用是把動力傳給行星齒輪機構的某個元件使之成為主動件。制動器的作用是將行星齒輪機構中的某個元件抱住,使之不動。單向超越離合器也是行星齒輪變速器的換擋元件之一,其作用和多片式離合器及制動器基本相同,也是用於固定或連接幾個行星排中的某些太陽輪、行星架、齒圈等基本元件,讓行星齒輪變速器組成不同傳動比的擋位。