Ⅰ 樁基檢測千斤頂到泰州樂鋒液壓製造有限公司
100T手動的千斤頂有么?什麼價格?
Ⅱ 樁基奧氏法靜載荷試驗
(Osterberg Cell Load Test,簡稱為「O-Cell試驗」)
一、奧氏法靜載荷試驗簡介
隨著大直徑、超長樁不斷被許多大型工程所採用,這類樁的荷載試驗所需的費用和周期都急劇增加。對高承載力(>10000kN)樁,載荷試驗方法,是將千斤頂放置在樁的底部,千斤頂的作用是,在向上頂起樁身的同時,也向下擠壓樁端土,使形成的樁的摩阻力和端阻力互為反力,可測得一條與樁頂施加荷載反方向的荷載—位移曲線,通過適當換算後得到相當於樁頂加荷的承載力和位移關系的Q—S曲線,這樣就解決了大噸位樁豎向承載力現場試驗問題,它既有利於指導設計,還可以解決受場地和設備條件限制無法進行大型、超大型單樁豎向承載力原位試驗問題。
這種方法在國外被冠名為Osterberg試樁法,在國內有叫做自平衡試樁。
Osterberg法已成功地應用到鑽孔樁、壁板樁、打入式鋼管樁及預制混凝土樁等樁型中,最大可提供多達220 MN的試驗載荷,測試深度達100m以上,樁徑可達3m。
二、Osterberg試樁法的試驗裝置
試驗裝置的主要設備是經特別設計的液壓千斤頂式的荷載箱(也稱為壓力單元)。根據測試目的不同,荷載箱既可以安置到樁底,也可安置到樁的中間部位。荷載箱可回收,也可是一次性的。可回收的荷載箱一般放置在空心預制樁離樁底不遠的內部,用一對精細加工的卡口,事先澆築、固定在試驗樁內部樁端。試驗時,將荷載箱放到卡口的位置,順時針旋轉90°將荷載箱鎖住;試驗後,再逆時針旋轉90°將其卸下供重復使用。
現以鋼管打入樁為例,說明Osterberg試樁法的試驗裝置。
圖2-29為荷載箱被焊於鋼管樁的底端,荷載箱由活塞、頂蓋、箱壁三部分組成。箱壁由較厚的鋼板製成,其外徑與樁的外徑相同,活塞底的承壓板外徑略大於樁外徑。頂蓋與活塞均用鋼材製成,頂蓋呈漏斗狀,漏鬥口內有螺紋以安裝輸壓豎管;活塞頂面有錐形孔,孔內有螺紋與測位移的芯棒連接。當荷載箱隨樁打入設計標高後,將輸壓豎管與荷載箱頂蓋擰緊連接,再在輸壓豎管中插入芯棒與千斤頂活塞擰緊連接。芯棒的外徑小於輸壓豎管的內徑,以便從輸壓豎管和芯棒的間隙中為千斤頂輸油。輸壓豎管的頂部裝有密封圈來定位芯棒和密封油路,密封圈應不影響芯棒上下自由位移。試驗時,油壓通過液壓輸入口後經輸壓豎管與芯棒之間的環狀空隙傳至荷載箱內,隨著壓力增大,活塞與頂蓋被推開,推動樁體向上移動和通過承壓板壓縮樁端土;此時,樁側阻力與樁端阻力隨之發揮作用。用輸油壓力表可控制、監測、換算施加的壓力大小。一隻千分表支承在基準樑上,與芯棒相連,測量活塞向下的位移;一隻千分表與輸壓豎管相,連測量頂蓋向上的位移;另一隻千分表與樁頂相連,測量樁頂向上的位移。樁頂向上的位移與樁底向上的位移之差,就是加荷時樁身摩阻力所引起的樁身彈性壓縮。
圖2-29 Osterberg試驗裝置示意圖
圖2-30 灌注樁Osterberg試驗示意圖
圖2-31 Osterberg試驗現場(from LOADTEST International Inc)
對於大直徑鑽孔灌注樁和人工挖孔樁的Osterberg試驗法,應首先清孔底、注混凝土漿、找平、使荷載箱能受力均勻;將Osterberg法的荷載箱焊接於鋼筋籠底部,做好輸壓豎管與頂蓋、芯棒與活塞之間的連接工作;然後下放至孔底後灌注混凝土,待混凝土強度等級達到設計要求後,進行試樁。
對於預制混凝土打入樁,早期的一般做法是:在樁預制時將輸壓豎管預埋於樁身中,並將樁底做成平底,預埋一塊樁底鋼板,然後將樁起吊就位,用4隻大螺栓將荷載箱迅速安裝於樁底鋼板上。近年的做法是:將荷載箱的箱蓋直接澆注在樁身底部。Osterberg靜載試驗現場情況見圖2-30、圖2-31所示。
三、基本原理
如圖2-32所示,常規樁頂載入試驗的樁頂荷載P等於樁側摩阻力F和樁端阻力Q之和,即:P=F+Q(不計試樁前樁身自重W在樁端的反力)。奧氏法通常在樁底端預埋一個荷載箱,試樁時通常採用荷載箱在樁底部產生向上、向下兩個方向的荷載P0,向上的荷載P0=W+F,向下的荷載為樁身自重與由載入產生的端部反力增量Q之和,即:P0=W+Q,受力機理和樁頂載入相同。該兩種試樁方法的荷載換算如下:
P=F+Q=(P0-W)+(P0-W);P=2(P0-W) (2-43)
式中:荷載箱加荷量P0=液壓表讀數×荷載箱標定常數。
四、試驗結果分析
確定單樁極限承載力一般應繪制Q—S上,Q—S下曲線和S上—lgt,S下—lgt,S上—lgQ,S下—lgQ等曲線。
根據位移隨荷載的變化特徵確定極限承載力對於陡降型Q—S曲線,取Q—S曲線發生明顯陡降的起始點;對於緩變形Q—S曲線,按位移值確定極限值,即:極限側阻Qu上取S上=40~60mm 對應的荷載;極限端阻Qu下取S下=40~60mm對應的荷載。當S—lgt尾部有明顯彎曲時,取其前一級荷載為極限荷載。
圖2-32 Osterberg載荷試驗原理
分別求出上、下段樁的極限承載力Qu上和Qu下,然後考慮樁自重影響,求出單樁豎向抗壓極限承載力,如式(2-44)所示:
Qu=(Qu上-W)/γ+Qu下 (2-44)
式中:γ為樁端體土的重度(kN/m3),對於粘性土、粉土取0.8;對於砂土取0.7;W為荷載箱上部樁的自重(kN)。
五、問題探討
現行的設計規范,均需由樁頂載入試驗所確定的極限承載力,因此,需將O-Cell試驗資料進行轉換,才能獲得與現行規范相應的測試指標。轉換建立在下列三個假設基礎之上:
(1)樁體向上產生的土體剪切力和頂部載入時樁體向下產生的土體剪切力是相等的;
(2)O-Cell試驗載入時樁端支承力變化和頂部載入時完全相同;
(3)樁體為剛性,暫不計其壓縮量。
顯然,這些假設肯定會對試驗結果產生影響:
1.首先是樁身自重問題
傳統載荷試驗方法不計樁自重的作用,Osterberg試樁法在計算土向下側摩阻力時,將荷載箱向上頂力減去樁自重W;轉換到樁頂載入模式時,為了不計自重影響,還應再次減去這段樁自重。這對中、小力型樁不會有顯著的誤差,但對自重近千噸的大型樁,顯然是不適宜的。
2.端承力、側摩阻的極限值和變形問題
當側摩阻力進入極限狀態時,土體剪切變形產生的位移量較小——粘性土一般在5~10mm左右,而砂性土則略有增加;而端承力極限狀態時的沉降,則多為50~100mm。在某一極限沉降量時,樁側和樁端承載力不可能同時進入極限狀態。為了解決此問題,必須找准平衡點位置,使O-Cell向上及向下載入都達到極限或至少相近,但要找准它是極其困難的。因此,將樁側和樁端極限承載力之和作為樁頂載入試驗的極限承載力,需要進一步探討。
3.樁身壓縮問題
樁頂載入時樁頂沉降量包含了樁身壓縮。而Osterberg試樁法不計樁身的壓縮量,這是一個較大問題。對大量中、小型樁,樁身壓縮量大都為1~3mm;誤差尚可接受;但對樁直徑2m以上、長達百餘米的大型樁,其樁身壓縮量隨荷載增加而增大,實測的樁身壓縮量常達20~30mm。因此,樁體為剛性、暫不計壓縮量這條假設亟需修正。
國內試樁規范有的取40mm樁頂沉降量作為試樁終止加荷載判據或極限荷載選取標准,這對樁身壓縮量達20~30mm的大型樁是不適合的,應以載入曲線出現拐點作為判斷標准為宜。若在無明顯拐點時,可考慮選用國內現有的規范所建議的3%~5%D(樁徑)的沉降標准。
4.載荷試驗後對試驗樁的補強處理
工程樁在進行承載力自平衡法深層載荷試驗後,試驗將會使樁端載荷箱部位與持力層之間形成一個小的縫隙,該縫隙對樁的承載能力有一定影響。為了消除這種不良影響,應採取如下兩種辦法處理,以使試驗樁的豎向承載力能達到原設計指標:
(1)利用位移棒護管(圖2-32),直接用M10高強度水泥漿對試樁樁底進行注漿補強處理,使試驗產生的縫隙用高強度水泥漿充實,並對載荷箱起到防止滲水銹蝕作用;
(2)試驗樁施工時應將試驗樁的樁端直徑適當放大,以抵消試驗部位對樁端阻力的影響。
Ⅲ 常用樁基檢測的檢測方法有哪些分別能檢測哪些指標
樁基檢測工作是確保樁基工程施工質量至關重要的一個環節,檢測工作質量、測試方法及結論直接關繫到建築物的安全和正常使用。
常用的樁基檢測主要方法有:靜載試驗。鑽芯法、低應變法、高應變法、聲波透射法等。
靜載實驗在確定單樁極限承載力方面,是目前最為准確、可靠的檢驗方法,下面視頻針對靜載試驗過程做了詳細的介紹。https://v.qq.com/x/page/e03989ic1ao.html
第一步:選點試驗
現場選試驗點,原則上每單位工程不應少於3點,1000m2以上工程,每100m2 至少應有1點,3000m2以上工程,每300m2至少應有1點。由委託單位及監理單位共同確定。將樁頭處理干凈且打毛至完整的水平截面,使樁頂(高於或低於自然地面)與自然地面基本標高一致為宜。
第二步:安裝千斤頂
被檢測基樁,周圍鋪設120mm厚的中砂墊層,上方正放1.5m2的承壓板,加墊板,固定油壓千斤頂。最大載入時的極限壓力均未超過千斤頂、油泵、油管額定工作壓力的80%。架設壓重平台反力裝置,設置鋼架承重平台,上堆重物,可堆放沙袋,混泥土塊等。
第三步:安裝觀測系統
安裝全自動電動油泵,壓力感測器並聯在電動油泵供油管口處。2個位移感測器對稱安裝在承壓板兩側。接收器垂直承壓板,連接到靜力載荷測試儀。
第四步:採集數據
詳細步驟見視頻介紹:https://v.qq.com/x/page/e03989ic1ao.html
Ⅳ 基坑支護及樁基施工需要配備哪些試驗和檢測儀器
基坑支護用到的,預應力張拉試驗,設備液壓千斤頂,樁基需要進行單樁承載力及低應變檢測,如果是CFG樁,要檢測復合承載力,一般由建設單位聘請具有檢測資質的第三方機構檢測
Ⅳ 樁基檢測砼強度是以靜載還是動測為准
以靜載為准,至於什麼情況下才做,一般是設計等級為甲、乙的樁基,地質條件復雜試驗目的:採用接近於豎向抗壓樁的實際工作條件的試驗方法,確定單樁豎向(抗壓)極限承載力,作為設計依據,或對工程樁的承載力進行抽樣檢驗和評價。當埋設有樁底反力和樁身應力、應變測量元件時,尚可直接測定樁周各土層的極限側阻力和極限端阻力。除對於以樁身承載力控制極限承載力的工程樁試驗載入至承載力設計值的1.5-2倍外,其餘試樁均應載入至破壞。
C.0.2 試驗載入裝置:一般採用油壓千斤頂載入,千斤頂的載入反力裝置可根據現場實際條件取。
C.0.2.1 錨樁橫梁反力裝置(圖C-1):
錨樁、反力梁裝置能提供的反力應不小於預估最大試驗荷載的1.2-1.5倍。
採用工程樁作錨樁時,錨樁數量不得少於4根,並應對試驗過程錨樁上拔量進行監測。
C.0.2.2 壓重平台反力裝置:壓重量不得少於預估試樁破壞荷載的1.2倍;壓重應在試驗開始前一次加上,並均勻穩固放置於平台上;
C.0.2.3 錨樁壓重聯合反力裝置:當試樁最大載入量超過錨樁的抗拔能力時,可在橫樑上放置或懸掛一定重物,由錨樁和重物共同承受千斤頂載入反力。
千斤頂平放於試樁中心,當採用2個以上千斤頂載入時,應將千斤頂並聯同步工作,並使千斤頂的合力通過試樁中心。
C.0.3 荷載與沉降的量測儀表:荷載可用放置於千斤頂上的應力環、應變式壓力感測器直接測定,或採用聯於千斤頂的壓力表測定油壓,根據千斤頂率定曲線換算荷載。試樁沉降一般採用百分表或電子位移計測量。對於大直徑樁應在其2個正交直徑方向對稱安置4個位移測試儀表,中等和小直徑樁徑可安置2個或3個位移測試儀表。沉降測定平面離樁頂距離不應小於0.5倍樁徑,固定和支承百分表的夾具和基準梁在構造上應確保不受氣溫、振動及其他外界因素影響而發生豎向變位。、樁施工質量可靠性低和本地區採用的新樁型或新工藝的情況下。
Ⅵ 靜載荷的靜載檢測方法
檢測方法:利用壓重平台反力裝置,採用快速維持荷載法。荷載由油泵通過千斤頂施加於樁頂,採用千斤頂並聯控制荷載的施加,千斤頂的合力中心應與樁軸線重合。樁頂沉降量由位移感測器測得,全程採用靜力荷載測試儀器自動採集數據,最後將原始數據進行室內資料整理。
檢測步驟
(1)荷載分級:根據《建築地基基礎檢測規范》(DBJ15-60-2008)載入分為10級進行,第一級取分級荷載2倍進行載入。
(2)試驗載入方式,在廣東地區大多採用快速維持荷載法。快速維持荷載法的試驗步驟:
a.每級荷載施加後按第5、15、30min測讀沉降量,以後每隔15min測讀一次。b.受檢樁沉降相對收斂標准:最後15min時間間隔的樁頂沉降量小於相鄰15min時間間隔的樁頂沉降量。c.當樁頂沉降速率達到相對穩定標准時,再施加下一級荷載;d.卸載時,每級卸載量取分級荷載的2倍。每級荷載維持15 min,按第5、15 min測讀樁頂沉降量;卸載至零後,應測讀樁頂殘余沉降量,維持時間2h。
(3)終止載入條件:
a.某級荷載作用下,樁頂沉降量大於或等於40mm,本級荷載大於或等於前一級荷載作用下沉降量的5倍;b.某級荷載作用下,樁頂沉降量大於或等於40mm,本級荷載加上後24h尚未達到穩定標准;c.當達到最大試驗荷載。
(4)單樁豎向抗壓極限承載力Qu可按下列方法綜合分析確定;
a.某級荷載作用下,樁頂沉降量大於或等於40mm,本級荷載大於或等於前一級荷載作用下沉降量的5倍,取此終止荷載前一級的荷載為極限荷載。b.某級荷載作用下,樁頂沉降量大於或等於40mm,本級荷載加上後24h尚未達到穩定標准,取此終止荷載前一級的荷載為極限荷載。c.當達到最大試驗荷載,取此的荷載為極限荷載。d.根據沉降隨荷載變化的特徵確定:對於陡降型Q-s曲線,取其發生明顯陡降的起始點所對應的荷載值。e.根據沉降隨時間變化的特徵確定:取s-lgt曲線尾部出現明顯向下彎曲的前一級荷載值。
Ⅶ 請問壓樁100噸千斤頂用油壓泵顯示30mpa 實際承受是多少噸位 ,公式附帶寫下怎麼計算謝謝。
首先,你得知道千斤頂出廠時(或者檢定時)給出的在100噸(FMAX)時的壓力數PMAX。
讀數:PT與實際出力FT的關系基本上呈線性關系即FT=(PT/PMAX)*FMAX。這個應該對應的是48噸。
這樣你就可以得到你實際的噸位數了,值的注意的是:在小噸位時可能因為千斤頂密封圈的摩擦原因使得出力要比計算值要小。
在大噸位時因為密封圈變形已經被完全約束,側向壓力沒有太大的變化,對出力的影響就要小。這里的大小噸位指相對使用千斤頂的最大出力而言。
所以在計算時要注意。另外因為液壓油有個緩慢的體積壓縮過程,樁的位移都會使對應的壓力變小,注意補壓。
一般100噸的千斤頂對應的PMAX為60MPa,其它的對應關系150,62.5;200,63;320,60;600,62。這些在千斤頂的說明書上也有。
出力與油壓的關系是和千斤頂的油缸有效面積有關的,不能簡單的只看油壓。各種測量儀表都是有一定的誤差的,所以最好有廠家的說明,有檢定單位的檢定證書(有各個壓力下的出力值)。
(7)樁基檢測油壓千斤頂裝置擴展閱讀:
千斤頂按結構特徵可分為齒條千斤頂、螺旋千斤頂和液壓(油壓)千斤頂三種。
按其他方式可分為分離式千斤頂、卧式千斤頂、爪式千斤頂、同步千斤頂、油壓千斤頂、電動千斤項等。其中常用的千斤頂有螺旋千斤頂、液壓千斤項、電動千斤項等。
(1)螺旋千斤頂。螺旋千斤頂的螺紋無自鎖作用,裝有制動器。放鬆制動器,重物即可自行快速下降,縮短返程時間,但這種千斤頂構造較復雜。
螺旋千斤項能長期支持重物,最大起重量已達100 t,應用較廣。下部裝上水平螺桿後,還能使重物做小距離橫移。
(2)液壓千斤頂。用於液壓傳動系統中作中間介質,起傳遞和轉換能量作用,用時還起著液壓系統內各部件問的潤滑、防腐、冷卻、沖洗等作用。
(3)電動千斤頂。千斤頂內部裝有保壓裝置,防止超壓,如果超壓,千斤頂就會回不到一定位置,特殊結構對千斤頂能起到雙重保護作用,下斤項裝上俯沖裝置後,可實現低高度達到高行程的目的。
參考資料來源:千斤頂(機械設備)_網路
Ⅷ 靜荷載 實驗 樁基 監理
單樁豎向抗壓靜載試驗
C.0.1 試驗目的:採用接近於豎向抗壓樁的實際工作條件的試驗方法,確定單樁豎向(抗壓)極限承載力,作為設計依據,或對工程樁的承載力進行抽樣檢驗和評價。當埋設有樁底反力和樁身應力、應變測量元件時,尚可直接測定樁周各土層的極限側阻力和極限端阻力。除對於以樁身承載力控制極限承載力的工程樁試驗載入至承載力設計值的1.5-2倍外,其餘試樁均應載入至破壞。
C.0.2 試驗載入裝置:一般採用油壓千斤頂載入,千斤頂的載入反力裝置可根據現場實際條件取。
C.0.2.1 錨樁橫梁反力裝置(圖C-1):
錨樁、反力梁裝置能提供的反力應不小於預估最大試驗荷載的1.2-1.5倍。
採用工程樁作錨樁時,錨樁數量不得少於4根,並應對試驗過程錨樁上拔量進行監測。
C.0.2.2 壓重平台反力裝置:壓重量不得少於預估試樁破壞荷載的1.2倍;壓重應在試驗開始前一次加上,並均勻穩固放置於平台上;
C.0.2.3 錨樁壓重聯合反力裝置:當試樁最大載入量超過錨樁的抗拔能力時,可在橫樑上放置或懸掛一定重物,由錨樁和重物共同承受千斤頂載入反力。
千斤頂平放於試樁中心,當採用2個以上千斤頂載入時,應將千斤頂並聯同步工作,並使千斤頂的合力通過試樁中心。
C.0.3 荷載與沉降的量測儀表:荷載可用放置於千斤頂上的應力環、應變式壓力感測器直接測定,或採用聯於千斤頂的壓力表測定油壓,根據千斤頂率定曲線換算荷載。試樁沉降一般採用百分表或電子位移計測量。對於大直徑樁應在其2個正交直徑方向對稱安置4個位移測試儀表,中等和小直徑樁徑可安置2個或3個位移測試儀表。沉降測定平面離樁頂距離不應小於0.5倍樁徑,固定和支承百分表的夾具和基準梁在構造上應確保不受氣溫、振動及其他外界因素影響而發生豎向變位。
C.0.5 試樁製作要求
C.0.5.1 試樁頂部一般應予加強,可在樁頂配置加密鋼筋網2-3層,或以薄鋼板圓筒作成加勁箍與樁頂混凝土澆成一體,用高標號砂漿將樁頂抹平。對於預制樁,若樁頂未破損可不另作處理。
C.0.5.2 為安置沉降測點和儀表,試樁頂部露出試坑地面的高度不宜小於600mm,試坑地面宜與樁承台底設計標高一致。
C.0.5.3 試樁的成樁工藝和質量控制標准應與工程樁一致。為縮短試樁養護時間,混凝土強度等級可適當提高,或摻入早強劑。
C.0.6 從成樁到開始試驗的間歇時間:在樁身強度達到設計要求的前提下,對於砂類土,不應少於10d;對於粉土和粘性土,不應少於15d;對於淤泥或淤泥質土,不應少於25d。
C.0.7 試驗載入方式:採用慢速維持荷載法,即逐級載入,每級荷載達到相對穩定後加下一級荷載,直到試樁破壞,然後分級卸載到零。當考慮結合實際工程樁的荷載特徵可採用多循環加、卸載法(每級荷載達到相對穩定後卸載到零)。當考慮縮短試驗時間,對於工程樁的檢驗性試驗,可採用快速維持荷載法,即一般每隔一小時加一級荷載。
C.0.8 加卸載與沉降觀測:
C.0.8.1 載入分級:每級載入為預估極限荷載的1/10-1/15,第一級可按2倍分級荷載加荷;
C.0.8.2 沉降觀測:每級載入後間隔5、10、15min各測讀一次,以後每隔15min測讀一次,累計1h後每隔30min測讀一次。每次測讀值記入試驗記錄表;
C.0.8.3 沉降相對穩定標准:每一小時的沉降不超過0.1mm,並連續出現兩次(由1.5h內連續三次觀測值計算),認為已達到相對穩定,可加下一級荷載。
C.0.8.4 終止載入條件:當出現下列情況之一時,即可終止載入:
(1)某級荷載作用下,樁的沉降量為前一級荷載作用下沉降量的5倍;
(2)某級荷載作用下,樁的沉降量大於前一級荷載作用下沉降量的2倍,且經24h尚未達到相對穩定;
(3)已達到錨樁最大抗拔力或壓重平台的最大重量時。
C.0.8.5 卸載與卸載沉降觀測:每級卸載值為每級載入值的2倍。每級卸載後隔15min測讀一次殘余沉降,讀兩次後,隔30min再讀一次,即可卸下一級荷載,全部卸載後隔3-4h再讀一次。
C.0.9 試驗報告內容及資料整理
C.0.9.4 確定單樁豎向極限承載力:一般應繪Q-s,s-lgt曲線,以及其他輔助分析所需曲線:
C.0.9.5 當進行樁身應力、應變和樁底反力測定時,應整理出有關數據的記錄表和繪制樁身軸力分布、側阻力分布、樁端-阻力荷載、樁端阻力-沉降關系等曲線;
C.0.9.6 按第C.0.10條和第C.0.11條確定單樁豎向極限承載力標准值。
C.0.10 單樁豎向極限承載力可按下列方法綜合分析確定:
C.0.10.1 根據沉降隨荷載的變化特徵確定極限承載力:對於陡降型Q-s曲線取Q-s曲線發生明顯陡降的起始點;
C.0.10.2根據沉降量確定極限承載力:對於緩變型Q-s曲線一般可取s=40-60mm對應的荷載,對於大直徑樁可取s=0.03-0.06D(D為樁端直徑,大樁徑取低值,小樁徑取高值)所對應的荷載值;對於細長樁(l/d>80)可取s=60-80mm對應的荷載;
C.0.10.3 根據沉降隨時間的變化特徵確定極限承載力,取s-lgt曲線尾部出現明顯向下彎曲的前一級荷載值。
Ⅸ 現在做實驗需要把千斤頂(油壓千斤頂)平躺在地上當水平載入裝置,但是水平躺著之後,頂只能升出來2-3厘米
油壓千斤頂的原理是連通器原理。當將油壓千斤頂水平放到後,液面發生了變化,無法形成連通器了。可以換一個機械螺旋千斤頂就好了。
Ⅹ 樁基靜載試驗的常見反力裝置
靜載試驗中,作用於樁上的荷載一般由反力裝置提供。反力裝置的易用程度直接影響著試驗的過程和結果,常用的有堆載反力裝置和錨樁反力裝置。
(1)堆載反力裝置就是在樁項使用鋼梁設置一承重平台,上堆重物,依靠放在樁頭上的千斤頂將平台逐步項起,從而將力施加到樁身。反力裝置的主梁可以選用型鋼,也可用自行加工的箱梁,平台形狀可以根據需要設置為方型或矩形,堆載用的重物可以選用砂袋、混凝土預制塊等。
(2)錨樁反力裝置在具體的應用中又可根據反力錨的不同分為兩種:將反力架與錨樁連接在一起提供反力的,俗稱錨樁反力裝置。
錨樁反力裝置就是將被測樁周圍對稱的幾根錨樁用錨筋與反力架連接起來,依靠樁頂的千斤頂將反力架頂起,由被連接的錨樁提供反力,提供反力的大小由錨樁數量,反力架強度和被連接錨樁的抗拔力決定。錨樁反力裝置一般不會受現場條件和載入噸位數的限制,當條件允許,採用工程樁作錨樁是最經濟的,但在試驗過程中需要觀測錨樁的上拔量,以免拔斷,造成工程損失。
錨桿反力裝置是將幾只螺旋鑽鑽入地下或在岩基中植入錨桿,使用地錨提供反力,俗稱錨桿反力裝置。小噸位基樁、復合地基以及岩基載荷板試驗,小巧易用的地錨就顯示出了工程上的便捷性。地錨根據螺旋鑽受力方向的不同可分為斜拉式(也即傘式)和豎直式,斜拉式中的螺旋鑽受土的豎向阻力和水平阻力的影響,豎直式中的螺旋鑽只受土的豎向阻力的影響,而在基岩中植入錨桿主要受基岩自身的強度及植入深度的影響。