1. 同軸式二級圓柱齒輪減速器帶式輸送機傳動系統設計
已經給你發到郵箱了,真不知道這些高校可不可以有點新的創意,這個課程設計,七八十年代的人就在做,太可悲了。那你好好完成自己的課程設計吧,加油。有問題還可以問我。
2. 設計某帶式運輸機的二級圓柱齒輪減速器傳動裝置
是這個么?需要請加我
3. 帶式輸送機傳動裝置中的二級圓柱齒輪減速器的設計
中等沖擊、雙向頻繁啟動;經常滿載、空載啟
我知道
4. 急求帶式輸送機傳動裝置中的二級圓柱齒輪減速器畢業設計
前 言
機械設計綜合課程設計在機械工程學科中佔有重要地位,它是理論應用於實際的重要實踐環節。本課程設計培養了我們機械設計中的總體設計能力,將機械設計系列課程設計中所學的有關機構原理方案設計、運動和動力學分析、機械零部件設計理論、方法、結構及工藝設計等內容有機地結合進行綜合設計實踐訓練,使課程設計與機械設計實際的聯系更為緊密。此外,它還培養了我們機械繫統創新設計的能力,增強了機械構思設計和創新設計。
本課程設計的設計任務是展開式二級圓柱齒輪減速器的設計。減速器是一種將由電動機輸出的高轉速降至要求的轉速比較典型的機械裝置,可以廣泛地應用於礦山、冶金、石油、化工、起重運輸、紡織印染、制葯、造船、機械、環保及食品輕工等領域。
本次設計綜合運用機械設計及其他先修課的知識,進行機械設計訓練,使已學知識得以鞏固、加深和擴展;學習和掌握通用機械零件、部件、機械傳動及一般機械的基本設計方法和步驟,培養學生工程設計能力和分析問題,解決問題的能力;提高我們在計算、制圖、運用設計資料(手冊、 圖冊)進行經驗估算及考慮技術決策等機械設計方面的基本技能,同時給了我們練習電腦繪圖的機會。
最後藉此機會,對本次課程設計的各位指導老師以及參與校對、幫助的同學表示衷心的感謝。
由於缺乏經驗、水平有限,設計中難免有不妥之處,懇請各位老師及同學提出寶貴意見。
帶式輸送機概論
帶式輸送機是一種摩擦驅動以連續方式運輸燃料的機械。應用它可以將物料在一定的輸送線上,從最初的供料點到最終的卸料點間形成一種物料的輸送流程。它既可以進行碎散物料的輸送,也可以進行成件物品的輸送。除進行純粹的物料輸送外,還可以與各工業企業生產流程中的工藝過程的要求相配合,形成有節奏的流水作業運輸線。所以帶式輸送機廣泛應用於現代化的各種工業企業中。在礦山的井下巷道、礦井地面運輸系統、露天采礦場及選礦廠中,廣泛應用帶式輸送機。它用於水平運輸或傾斜運輸。使用非常方便。
輸送機發展歷史
中國古代的高轉筒車和提水的翻車,是現代斗式提升機和刮板輸送機的雛形;17世紀中,開始應用架
空索道輸送散狀物料;19世紀中葉,各種現代結構的輸送機相繼出現。
1868年,在英國出現了帶式輸送機;1887年,在美國出現了螺旋輸送機;1905年,在瑞士出現了鋼帶式輸送機;1906年,在英國和德國出現了慣性輸送機。此後,輸送機受到機械製造、電機、化工和冶金工業技術進步的影響,不斷完善,逐步由完成車間內部的輸送,發展到完成在企業內部、企業之間甚至城市之間的物料搬運,成為材料搬運系統機械化和自動化不可缺少的組成部分。
輸送機的特點
帶式輸送機是煤礦最理想的高效連續運輸設備,與其他運輸設備(如機車類)相比具有輸送距離長、運量大、連續輸送等優點,而且運行可靠,易於實現自動化和集中化控制,尤其對高產高效礦井,帶式輸送機已成為煤炭開采機電一體化技術與裝備的關鍵設備。
帶式輸送機主要特點是機身可以很方便的伸縮,設有儲帶倉,機尾可隨採煤工作面的推進伸長或縮短,結構緊湊,可不設基礎,直接在巷道底板上鋪設,機架輕巧,拆裝十分方便。當輸送能力和運距較大時,可配中間驅動裝置來滿足要求。根據輸送工藝的要求,可以單機輸送,也可多機組合成水平或傾斜的運輸系統來輸送物料。
帶式輸送機廣泛地應用在冶金、煤炭、交通、水電、化工等部門,是因為它具有輸送量大、結構簡單、維修方便、成本低、通用性強等優點。
帶式輸送機還應用於建材、電力、輕工、糧食、港口、船舶等部門。
一、 設計任務書
設計一用於帶式運輸機上同軸式二級圓柱齒輪減速器
1. 總體布置簡圖
2. 工作情況
工作平穩、單向運轉
3. 原始數據
運輸機捲筒扭矩(N•m) 運輸帶速度(m/s) 捲筒直徑(mm) 使用年限(年) 工作制度(班/日)
350 0.85 380 10 1
4. 設計內容
(1) 電動機的選擇與參數計算
(2) 斜齒輪傳動設計計算
(3) 軸的設計
(4) 滾動軸承的選擇
(5) 鍵和聯軸器的選擇與校核
(6) 裝配圖、零件圖的繪制
(7) 設計計算說明書的編寫
5. 設計任務
(1) 減速器總裝配圖1張(0號或1號圖紙)
(2) 齒輪、軸、軸承零件圖各1張(2號或3號圖紙)
(3) 設計計算說明書一份
二、 傳動方案的擬定及說明
為了估計傳動裝置的總傳動比范圍,以便選擇合適的傳動機構和擬定傳動:方案,可由已知條件計算其驅動捲筒的轉速nw:
三. 電動機的選擇
1. 電動機類型選:Y行三相非同步電動機
2. 電動機容量
(1) 捲筒軸的輸出功率
(2) 電動機的輸出功率
傳動裝置的總效率
式中, 為從電動機至捲筒軸之間的各傳動機構和軸承的效率。由《機械設計課程設計》(以下未作說明皆為此書中查得)表2-4查得:V帶傳動 ;滾動軸承 ;圓柱齒輪傳動 ;彈性聯軸器 ;捲筒軸滑動軸承 ,則
故
(3) 電動機額定功率
由第二十章表20-1選取電動機額定功率
由表2-1查得V帶傳動常用傳動比范圍 ,由表2-2查得兩級展開式圓柱齒輪減速器傳動比范圍 ,則電動機轉速可選范圍為
可選符合這一范圍的同步轉速的電動3000 。
根據電動機所需容量和轉速,由有關手冊查出只有一種使用的電動機型號,此種傳動比方案如下表:
電動機型號 額定功率
電動機轉速
傳動裝置傳動比
Y100L-2 3 同步 滿載 總傳動比 V帶 減速器
3000 2880 62.06 2
三、 計算傳動裝置總傳動比和分配各級傳動比
1. 傳動裝置總傳動比
2. 分配各級傳動比
取V帶傳動的傳動比 ,則兩級圓柱齒輪減速器的傳動比為
按展開式布置考慮潤滑條件,為使兩級大齒輪直徑相近由圖12展開式曲線的
則i
所得 符合一般圓柱齒輪傳動和兩級圓柱齒輪減速器傳動比的常用范圍。
四、計算傳動裝置的運動和動力參數:
按電動機軸至工作機運動傳遞路線推算,得到各軸的運動和動力參數
1.各軸轉速:
2.各軸輸入功率:
Ⅰ~Ⅲ軸的輸出功率分別為輸入功率乘軸承效率0.99,捲筒軸輸出功率則為輸入功率乘捲筒的傳動效率0.96,計算結果見下表。
3. 各軸輸入轉矩:
Ⅰ~Ⅲ軸的輸出轉矩分別為輸入轉矩乘軸承效率0.99,捲筒軸輸出轉矩則為輸入轉矩乘捲筒的傳動效率0.96,計算結果見下表。
綜上,傳動裝置的運動和動力參數計算結果整理於下表:
軸名 功率
轉矩
轉速
傳動比
效率
輸入 輸出 輸入 輸出
電機軸 2.3 7.63 2880 2
0.96
I軸 2.21 14.65 1440
7.13
0.95
II軸 2.1 99.29 201. 96
4.35 0.95
III軸
2.0 410.58 46.43
1.00 0.98
捲筒軸 1.94 398.34
第三章 主要零部件的設計計算
§3.1 展開式二級圓柱齒輪減速器齒輪傳動設計
§3.1.1 高速級齒輪傳動設計
1. 選定齒輪類型、精度等級、材料及齒數
1)按以上的傳動方案,選用直齒圓柱齒輪傳動。
2)運輸機為一般工作,速度不高,故選用8級精度(GB 10095-88)。
3) 材料選擇。考慮到製造的方便及小齒輪容易磨損並兼顧到經濟性,兩級圓柱齒輪的大、小齒輪材料均用45鋼,大齒輪為正火處理,小齒輪熱處理均為調質處理且大、小齒輪的齒面硬度分別為260HBS,215HBS。
4)選小齒輪的齒數 ,大齒輪的齒數為 。
2. 按齒面接觸強度設計
由設計公式進行試算,即
(1) 確定公式內的各計算數值
1) 試選載荷系數
2) 由以上計算得小齒輪的轉矩:
3) 查6-12(機械設計基礎)表選取齒寬系數 ,查圖6-37(機械設計基礎)按齒面硬度的小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 。
計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1
4)計算應力循環次數
5) 按接觸疲勞壽命系數
(2) 計算:
1) 帶入 中較小的值,求得小齒輪分度圓直徑 的最小值為
3) 計算齒寬: 取 ,
4) 計算分度圓直徑與模數、中心距:
模數: 取第一系列標准值m=1.5
分度圓直徑:
中心距:
5) 校核彎曲疲勞強度:
符合齒形因數 由圖6-40得 =4.35, =3.98
彎曲疲勞需用應力:
1) 查圖6-41得彎曲疲勞強度極限 : ;
2) 查圖6-42取彎曲疲勞壽命系數
3) 計算彎曲疲勞許用應力.
取彎曲疲勞安全系數S=1,得
4) 校核計算:
<
<
故彎曲疲勞強度足夠
確定齒輪傳動精度:
圓周速度:
對照表6-9(機械設計基礎)根據一般通用機械精度等級范圍為6~8級可知,齒輪精度等級應選8級
§3.1.2 低速級齒輪傳動設計
1. 選定齒輪類型、精度等級、材料及齒數
1)按以上的傳動方案,選用直齒圓柱齒輪傳動。
2)運輸機為一般工作,速度不高,故選用8級精度(GB 10095-88)。
3) 材料選擇。考慮到製造的方便及小齒輪容易磨損並兼顧到經濟性,兩級圓柱齒輪的大、小齒輪材料均用45鋼,熱處理均為正火調質處理且大、小齒輪的齒面硬度分別為200HBS,250HBS,二者材料硬度差為40HBS。
4)選小齒輪的齒數 ,大齒輪的齒數為 ,取 。
2. 按齒面接觸強度設計
由設計公式進行試算,即
2) 確定公式內的各計算數值
1) 試選載荷系數
2) 由以上計算得小齒輪的轉矩
3) 查表及其圖選取齒寬系數 ,由圖6-37按齒面硬度的小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 。
4) 計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1
5) 查圖6-42取彎曲疲勞壽命系數
按接觸疲勞壽命系數
模數: 由表6-2取第一系列標准模數
分度圓直徑:
中心距:
齒寬:
校核彎曲疲勞強度:
復合齒形因數 由圖6-40得
6)計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1
得
校核計算: <
<
故彎曲疲勞強度足夠
確定齒輪傳動精度:
圓周速度:
對照表6-9(機械設計基礎)根據一般通用機械精度等級范圍為6~8級可知,齒輪精度等級應選8級
對各個軸齒輪相關計算尺寸
表6-3高速軸齒輪各個參數計算列表
名稱 代號 計算公式
齒數 Z
模數
壓力角
齒高系數
頂隙系數
齒距 P
齒槽寬 e
齒厚 s
齒頂高
齒根高
齒高 h
分度圓直徑 d
基圓直徑
齒頂圓直徑
齒根圓直徑
中心距
表6-3低速軸齒輪各個參數計算列表
名稱 代號 計算公式
齒數 Z
模數
壓力角
齒高系數
頂隙系數
齒距 P
齒槽寬 e
齒厚 s
齒頂高
齒根高
齒高 h
分度圓直徑 d
基圓直徑
齒頂圓直徑
齒根圓直徑
中心距
V帶的設計
1)計算功率
2)選擇帶型
據 和 =2880由圖10-12<械設計基礎>選取z型帶
3)確定帶輪基準直徑
由表10-9確定 <械設計基礎>
1) 驗算帶速
因為 故符合要求
2) 驗算帶長
初定中心距
由表10-6選取相近
3) 確定中心距
4) 驗算小帶輪包角
故符合要求
5) 單根V帶傳遞額定功率
據 和 查圖10-9得
8) 時單根V帶的額定功率增量:據帶型及 查表10-2<械設計基礎>得
10)確定帶根數
查表10-3 查表10-4 <械設計基礎>
11) 單根V帶的初拉力
查表10-5
12)用的軸上的力
13帶輪的結構和尺寸
以小帶輪為例確定其結構和尺寸,由圖10-11<械設計基礎>帶輪寬
§3.3 軸系結構設計
§3.3.1 高速軸的軸系結構設計
一、軸的結構尺寸設計
根據結構及使用要求,把該軸設計成階梯軸且為齒輪軸,共分七段,其中第5段為齒輪,如圖2所示:
圖2
由於結構及工作需要將該軸定為齒輪軸,因此其材料須與齒輪材料相同,均為合金鋼,熱處理為調制處理, 材料系數C為118。
所以,有該軸的最小軸徑為:
考慮到該段開鍵槽的影響,軸徑增大6%,於是有:
標准化取
其他各段軸徑、長度的設計計算依據和過程見下表:
表6 高速軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
(考慮鍵槽影響)
13.6
16
60
第2段
(由唇形密封圈尺寸確定)
20(18.88)
50
第3段 由軸承尺寸確定
(軸承預選6004 B1=12)
20
23
第4段
24(23.6)
145
第5段 齒頂圓直徑
齒寬
33
38
第6段
24
10
第7段
20
23
二、軸的受力分析及計算
軸的受力模型簡化(見圖3)及受力計算
L1=92.5 L2=192.5 L3=40
三、軸承的壽命校核
鑒於調整間隙的方便,軸承均採用正裝.預設軸承壽命為3年即12480h.
校核步驟及計算結果見下表:
表7 軸承壽命校核步驟及計算結果
計算步驟及內容 計算結果
6007軸承
A端 B端
由手冊查出Cr、C0r及e、Y值 Cr=12.5kN
C0r=8.60kN
e=0.68
計算Fs=eFr(7類)、Fr/2Y(3類) FsA=1809.55 FsB=1584.66
計算比值Fa/Fr FaA /FrA>e FaB /FrB< e
確定X、Y值 XA= 1,YA = 0, XB =1 YB=0
查載荷系數fP 1.2
計算當量載荷
P=Fp(XFr+YFa) PA=981.039 PB=981.039
計算軸承壽命
9425.45h
小於
12480h
由計算結果可見軸承6007合格.
表8 中間軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
由軸承尺寸確定
(軸承預選6008 )
33.6
40
25
第2段
(考慮鍵槽影響)
45(44.68)
77.5
第3段
50
12.5
第4段
99
109
第5段
46
39
考慮到低速軸的載荷較大,材料選用45,熱處理調質處理,取材料系數
所以,有該軸的最小軸徑為:
考慮到該段開鍵槽的影響,軸徑增大6%,於是有:
標准化取
其他各段軸徑、長度的設計計算依據和過程見下表:
表10 低速軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
(考慮鍵槽影響)
(由聯軸器寬度尺寸確定)
52.49
60(55.64)
142
第2段
(由唇形密封圈尺寸確定)
64(63.84)
50
第3段
66
16
第4段 由軸承尺寸確定
(軸承預選6014C )
70
24
第5段
78
75
第6段
20
88
20
第7段
齒寬+10
80(79.8)
119
§3.3.4 各軸鍵、鍵槽的選擇及其校核
因減速器中的鍵聯結均為靜聯結,因此只需進行擠壓應力的校核.
一、 高速級鍵的選擇及校核:
帶輪處鍵:按照帶輪處的軸徑及軸長選 鍵B8X7,鍵長50,GB/T1096
聯結處的材料分別為: 45鋼(鍵) 、40Cr(軸)
二、中間級鍵的選擇及校核:
(1) 高速級大齒輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B14X9GB/T1096
聯結處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、20Cr(軸)
此時, 鍵聯結合格.
三、低速級級鍵的選擇及校核
(1)低速級大齒輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B22X14,鍵長 GB/T1096
聯結處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、45(軸)
其中鍵的強度最低,因此按其許用應力進行校核,查手冊其
該鍵聯結合格
(2)聯軸器處鍵: 按照聯軸器處的軸徑及軸長選 鍵16X10,鍵長100,GB/T1096
聯結處的材料分別為: 45鋼 (聯軸器) 、45鋼(鍵) 、45(軸)
其中鍵的強度最低,因此按其許用應力進行校核,查手冊其
該鍵聯結合格.
第四章 減速器箱體及其附件的設計
§4.1箱體結構設計
根據箱體的支撐強度和鑄造、加工工藝要求及其內部傳動零件、外部附件的空間位置確定二級齒輪減速器箱體的相關尺寸如下:(表中a=322.5)
表12 箱體結構尺寸
名稱 符號 設計依據 設計結果
箱座壁厚 δ 0.025a+3=11 11
考慮鑄造工藝,所有壁厚都不應小於8
箱蓋壁厚 δ1 0.02a+3≥8 9.45
箱座凸緣厚度 b 1.5δ 16.5
箱蓋凸緣厚度 b1 1.5δ1 14.18
箱座底凸緣厚度 b2 2.5δ 27.5
地腳螺栓直徑 df 0.036a+12 24(23.61)
地腳螺栓數目 n 時,n=6
6
軸承旁聯結螺栓直徑 d1 0.75df 18
箱蓋與箱座聯接螺栓直徑 d 2 (0.5~0.6)df 12
軸承端蓋螺釘直徑和數目 d3,n (0.4~0.5)df,n 10,6
窺視孔蓋螺釘直徑 d4 (0.3~0.4)df 8
定位銷直徑 d (0.7~0.8) d 2 9
軸承旁凸台半徑 R1 c2 16
凸台高度 h 根據位置及軸承座外徑確定,以便於扳手操作為准 34
外箱壁至軸承座端面距離 l1 c1+c2+ (5~10) 42
大齒輪頂圓距內壁距離 ∆1 >1.2δ 11
齒輪端面與內壁距離 ∆2 >δ 10
箱蓋、箱座肋厚 m1 、 m m1≈0.85δ1 =8.03 m≈0.85δ=9.35 7
軸承端蓋凸緣厚度 t (1~1.2) d3 10
軸承端蓋外徑 D2 D+(5~5.5) d3 120
軸承旁邊連接
螺栓距離
S
120
第五章 運輸、安裝和使用維護要求
1、減速器的安裝
(1)減速器輸入軸直接與原動機連接時,推薦採用彈性聯軸器;減速器輸出軸與工作機聯接時,推薦採用齒式聯軸器或其他非剛性聯軸器。聯軸器不得用錘擊裝到軸上。
(2)減速器應牢固地安裝在穩定的水平基礎上,排油槽的油應能排除,且冷卻空氣循環流暢。
(3)減速器、原動機和工作機之間必須仔細對中,其誤差不得大於所用聯軸器的許用補償量。
(4)減速器安裝好後用手轉動必須靈活,無卡死現象。
(5)安裝好的減速器在正式使用前,應進行空載,部分額定載荷間歇運轉1~3h後方可正式運轉,運轉應平穩、無沖擊、無異常振動和雜訊及滲漏油等現象,最高油溫不得超過100℃;並按標准規定檢查輪齒面接觸區位置、面積,如發現故障,應及時排除。
2、使用維護
本類型系列減速器結構簡單牢固,使用維護方便,承載能力范圍大,公稱輸入功率0.85—6660kw,公稱輸出轉矩100—410000N.m,不怕工況條件惡劣,是適用性很好,應用量大面廣的產品。可通用於礦山、冶金、運輸、建材、化工、紡織、輕工、能源等行業的機械傳動。但有以下限制條件:
1.減速器高速軸轉速不高於1000r/min;
2.減速器齒輪圓周速度不高於20m/s;
3.減速器工作環境溫度為—40~45℃,低於0℃時,啟動前潤滑油應預熱到8℃以上,高於45℃時應採取隔熱措施。
3、減速器潤滑油的更換:
(1)減速器第一次使用時,當運轉150~300h後須更換潤滑油,在以後的使用中應定期檢查油的質量。對於混入雜質或變質的油須及時更換。一般情況下,對於長期工作的減速器,每500~1000h必須換油一次。對於每天工作時間不超過8h的減速器,每1200~3000h換油一次。
(2)減速器應加入與原來牌號相同的油,不得與不同牌號的油相混用。牌號相同而粘度不同的油允許混合用。
(3)換油過程中,蝸輪應使用與運轉時相同牌號的油清洗。
(4)工作中,當發現油溫溫升超過80℃或油池溫度超過100℃及產生不正常的雜訊等現象時,應停止使用,檢查原因。如因齒面膠合等原因所致,必須排除故障,更換潤滑油後,方可繼續運轉。
減速器應定期檢修。如發現擦傷、膠合及顯著磨損,必須採用有效措施制止或予以排除。備件必須按標准製造,更新的備件必須經過跑合和負荷試驗後才能正式使用。 用戶應有合理的使用維護規章制度,對減速器的運轉情況和檢驗中發現的問題應做認真的記錄 。
小 結
轉眼兩周的時間過去了,感覺時間過得真快,忙忙碌碌終於把機械設計做出來了。我通過這次設計學到了很多東西。使我對機械設計的內容有了進一步的了解.
因為剛結束課程就搞設計,還沒有來得及復習,所以剛開始遇到好多的問題,都感覺很棘手.因為機械設計是把我們這學期所學知識全部綜合起來了,還用到了許多先前開的課程,例如金屬工藝學,材料力學,機械原理等.
首先,我們要運用知識想好用什麼結構,然後進行軸大小長短的設計,要校核,選軸承。最後還要校核低速軸,看能否用。鍵也是一件重要的零件,校核也不可避免。所有這些都用到了力學和機械設計得內容,可是我當時力學沒有學好,機械設計又沒完全掌握,做這次設計真是不容易啊!.
但通過這次機械設計學到了許多,不僅是在知識方面,重要是在觀念方面。以往我們不管做什麼都有現成的東西,而我們只要算別人現有的東西就可以了,其實那就是抄。但現在很多是自己設計,沒有約束了反而不知所措了。其次,我在這次設計中出現了許多問題,經過常老師得指點,我學到了許多課本上沒有的東西他並且給我們講了一些實際用到的經驗.收獲真是破多啊!最後就是我們大學的課程開了這么多,我們一定要把基礎打牢,為以後的綜合運用打下基礎啊.這次機械設計課程就體現了,我們現在很缺乏把自己學的東西聯系起來的能力.
最後我總結一下通過這次機械設計我學到的。實踐出真知,不假。通過設計我現在可以了解真正的設計是一個怎樣的程序啊.而且其中出現了許多錯誤,為以後工作增加經驗。雖然機設很累,但我很充實,我學到了許多知識,我增加了社會競爭力,我又多了解了機械,又進步了。總之,這次機械設計雖然很累,但是我學到了好多自己從前不知道和沒有經歷的經驗。
參 考 文 獻
1 <<機械設計>>第八版 濮良貴主編 高等教育出版社 ,2006
2 <<機械設計課程設計>>第1版 . 王昆,何小柏主編 .機械工業出版社 ,2004
3 <<機械原理>> 申永勝主編 清華大學出版社 ,1999
4 <<材料力學 >> 劉鴻文主編 高等教育出版社 ,2004
5 <<幾何公差與測量>>第五版 甘永力主編 上海科學技術出版社 ,2003
6 <<機械制圖>>
5. 帶式運輸機傳動裝置的設計(二級展開式斜齒圓柱齒輪減速器設計)
機械設計製造來及其自動化源,指研究各種工業機械裝備及機電產品從設計、製造、運行控制到生產過程的企業管理的綜合技術學科。培養具備機械設計製造基礎知識與應用能力,能在工業生產第一線從事機械製造領域內的設計製造、科技開發、應用研究、運行管理和經營銷售等方面工作的高級工程技術人才。
以機械設計與製造為基礎,融入計算機科學、信息技術、自動控制技術的交叉學科,主要任務是運用先進設計製造技術的理論與方法,解決現代工程領域中的復雜技術問題,以實現產品智能化的設計與製造。
6. 急求 帶式輸送機傳動裝置中的二級圓柱齒輪減速器 機械設計課程設計
可以參考資料有
看看下面這個貼子,如果需要確認你的貼子發你郵箱
裝配圖:http://..com/question/158542087.html
7. 二級圓柱齒輪減速器設計
當傳動比在8以下時,可採用單級圓柱齒輪減速器。大於8時,最好選用二級(i=8—40)和二級以上(i>40)的減速器。單級減速器的傳動比如果過大,則其外廓尺寸將很大。二級和二級以上圓柱齒輪減速器的傳動布置形式有展開式、分流式和同軸式等數種。展開式最簡單,但由於齒輪兩側的軸承不是對稱布置,因而將使載荷沿齒寬分布不均勻,且使兩邊的軸承受力不等。為此,在設計這種減速器時應注意:1)軸的剛度宜取大些;2)轉矩應從離齒輪遠的軸端輸入,以減輕載荷沿齒寬分布的不均勻;3)採用斜齒輪布置,而且受載大的低速級又正好位於兩軸承中間,所以載荷沿齒寬的分布情況顯然比展開好。這種減速器的高速級齒輪常採用斜齒,一側為左旋,另一側為右旋,軸向力能互相抵消。為了使左右兩對斜齒輪能自動調整以便傳遞相等的載荷,其中較輕的齠輪軸在軸向應能作小量游動。同軸式減速器輸入軸和輸出軸位於同一軸線上,故箱體長度較短。但這種減速器的軸向尺寸較大。 圓柱齒輪減速器在所有減速器中應用最廣。它傳遞功率的范圍可從很小至40 000kW,圓周速度也可從很低至60m/s一70m/s,甚至高達150m/s。傳動功率很大的減速器最好採用雙驅動式或中心驅動式。這兩種布置方式可由兩對齒輪副分擔載荷,有利於改善受力狀況和降低傳動尺寸。設計雙驅動式或中心驅動式齒輪傳動時,應設法採取自動平衡裝置使各對齒輪副的載荷能得到均勻分配,例如採用滑動軸承和彈性支承。 圓柱齒輪減速器有漸開線齒形和圓弧齒形兩大類。除齒形不同外,減速器結構基本相同。傳動功率和傳動比相同時,圓弧齒輪減速器在長度方向的尺寸要比漸開線齒輪減速器約30%。
8. 急求~帶式輸送機傳動裝置中的二級圓柱齒輪減速器畢業設計
參考資料是有的,設計參數不一定相同,看圖http://..com/question/158095630.html,如果需要請確認你的帖子,我收到最佳答案的通知後發你有相關
9. 二級減速器設計
典型減速器設計
典型減速器是常用的減速器結構形式。本系統提供了13種典型的減速器結構形式。以下以總速比為60,輸入功率為5kw,輸入轉速為1450rpm的展開式三級圓柱齒輪減速器為例,介紹典型減速器的整個設計流程。
1. 啟動Gearbox2.0程序,彈出開始界面;
2. 點擊開始界面上的「典型減速器設計」圖標,進入典型減速器設計界面;
3. 點擊「三級圓柱」減速器圖標,這時在右邊的三個綠色表格內自動插入三級齒輪副的默認參數設置;
4. 在總速比欄鍵入總減速比60,在載荷要求欄鍵入輸入功率5kw,輸入轉速1450rpm,系統自動計算出輸出扭矩和輸出轉速;
5. (非必須步驟)設置其它的技術條件或參數,如人工設定速比分配,人工設定中心距分配,中心距是否取標准值,工作條件,載荷特性,速比分配原則,更改綠色表格內的齒輪副輸入參數等;
6. (非必須步驟)點擊「初步計算」按鈕,系統將計算出速比分配、幾何尺寸和強度等,並將部分數據填充到右下方的三個淡紅色的表格中;
7. (非必須步驟)點擊「結構簡圖」按鈕,將顯示按實際比例的結構簡圖,有助於用戶判斷設計的合理性;該功能只有在用戶點擊「初步計算」按鈕進行計算後才有效;
8. (非必須步驟)如果用戶不滿意當前的設計結果,按步驟5更改輸入條件,或者點擊菜單維護->設計選項更改一些默認設置,例如齒數的設置,這時三個淡紅色表格的背景將變成灰色,表示數據已「過時」,再次點擊「初步計算」按鈕重新進行計算,直到獲得較為滿意的結果;
9. 點擊「詳細計算」按鈕,進入詳細設計界面,用戶可以在該界面中完成減速器的全部設計任務;
10. 在型號文本框中輸入型號;
11. (非必須步驟)在該界面首先打開的是傳動設計子界面,向用戶報告各級傳動的計算結果,用戶可以對減速器載荷和表格中的綠色方格內的數據進行微調,也可以將某一級替換為以前設計的齒輪副;在對數據進行更改後,單元格的背景將變成灰色,表示數據已「過時」,必須點擊「刷新」按鈕,使系統根據用戶的更改重新計算結果;如果用戶對更改後的結果不滿意,可以單擊「恢復」按鈕使數據恢復到系統最初計算出的值。
12. 點擊結構簡圖頁,進入結構簡圖子界面;在該界面顯示按比例繪出的結構簡圖,同時報告各軸的最小軸徑以及減速器箱體的大致尺寸;其中軸徑按照最小軸徑畫出,暫時不考慮剛度條件;在該界面中用戶可以判斷設計結果的合理性,如果有必要,可以回到傳動設計子界面重新調整參數並刷新,該簡圖將自動得到更新;
13. 點擊齒輪精度頁,進入齒輪精度子界面;在該界面向用戶報告齒輪副的精度查詢結果;如果有必要,用戶可以更改齒輪的精度等級,然後點擊「更新」按鈕,系統將重新檢索出精度值;
14. 點擊數據輸出頁,進入數據輸出子界面;在該界面用戶必須首先點擊有上方的文件夾圖標指定工作文件夾,然後點擊文本輸出按鈕或Excel輸出按鈕輸出文本文件或Excel文件;Excel文件和文本文件是供用戶瀏覽的文件,裡麵包括了本次計算的所有結果; 15. 點擊零件設計頁,進入零件設計子界面;
16. 如果還沒有指定工作文件夾,請先指定工作文件夾;然後單擊右上方的「輸出AutoCAD圖紙」圖標按鈕,系統將啟動AutoCAD2000輸出dwg格式的圖紙到工作文件夾中,輸出後將圖紙插入到當前的界面中;用戶點擊「選擇圖紙」下拉列表框,可以選擇不同的圖紙顯示到當前界面中;
7. (非必須步驟)如果用戶如果對當前的結構尺寸設計不滿意,可以在輸出圖紙之前或之後對零件進行編輯;首先點擊「選擇圖紙」下拉列表框,選擇要編輯的圖紙,然後點擊該列表框右邊的「編輯當前零件」圖標按鈕,如果當前選擇的零件是軸或齒輪軸,將彈出軸設計窗口,如果當前選擇的零件是齒輪,將彈出齒輪設計窗口,如下圖所示;
18. (非必須步驟)在軸設計窗口,用戶可以更改各軸段的直徑和長度,查看鍵強度校核,選擇軸承等等;軸的圖形將隨用戶更改實時變更;
19. (非必須步驟)在齒輪設計窗口,用戶可以更改孔徑等尺寸,更改結構形式等等;
19. (非必須步驟)重新輸出dwg圖紙並更新零件設計界面中的圖紙;
21. 單擊菜單文件->保存為gbx文件或文件->保存到資料庫,可分別將設計結果保存到文件或資料庫中;這兩種保存的文件是供程序日後打開時用的,而非供用戶瀏覽的;用戶如果要瀏覽全部計算結果,請在數據輸出界面中輸出文本文件或Excel文件。