⑴ 求「物料搬運機器人控制設計(6千克)」畢業設計
這個需要你自己找,不過我這有一篇概述發給你
簡介:機械手可在空間抓放物體,動作靈活多樣,適用於可變換生產品種的中、小批量自動化生產,廣泛應用於柔性自動線[1]。筆者開發的用於熱處理淬火加工的物料搬運機械手,採用PLC控制,是一種按預先設定的程序進行工件分揀、搬運和淬火加工的自動化裝置,可部分代替人工在高溫和危險的作業區進行單調持久的作業,並可根據工件的變化以及淬火工藝的要求隨時更改相關控制參數。
關鍵字:可編程式控制制器,機械手,定位控制
1引言
機械手可在空間抓放物體,動作靈活多樣,適用於可變換生產品種的中、小批量自動化生產,廣泛應用於柔性自動線[1]。筆者開發的用於熱處理淬火加工的物料搬運機械手,採用PLC控制,是一種按預先設定的程序進行工件分揀、搬運和淬火加工的自動化裝置,可部分代替人工在高溫和危險的作業區進行單調持久的作業,並可根據工件的變化以及淬火工藝的要求隨時更改相關控制參數。
2物料搬運機械手結構
物料搬運機械手為三自由度氣壓式圓柱坐標型機械手,主要由機座、腰部、水平手臂、垂直手臂、氣爪等部分組成。其中,腰部採用步進電機驅動旋轉,手臂及氣爪採用氣缸等氣動元件。對應的物料分揀裝置由4個普通氣缸構成,用以將不同長度的工件經分揀後送至各自的軌道中,並在軌道終端進行淬火加工,加工完畢後再由機械手抓取、搬運和分類堆放。機械手抓取長、短工件的順序不是固定的,要視物料分揀裝置的分揀結果以及長、短工件哪一個先到達軌道終端來定。但機械手對工件的堆放順序卻是固定的,要按照一定的規律堆放(如圖1中,長、短工件各放一邊,以4個為一組進行堆放),並且堆放工件的位置精度也是有要求的。
3機械手控制系統組成
由於取工件和堆放工件都有定位精度要求,所以在機械手控制中,除了要對垂直手臂滑塊氣缸、氣爪等普通氣缸進行控制外,還要涉及到對水平手臂氣缸以及機械手腰部回轉的伺服控制。其中,機械手水平手臂氣缸的伺服控制採用氣動比例伺服控制系統;機械手的回轉控制則採用三相混和式步進電機及其控制系統。考慮到機械手工作的穩定性、可靠性以及各種控制元器件連接的靈活性和方便性,對這種混合驅動機械手採用PLC作為核心控制器,上述各控制對象都必須在PLC的統一控制下協同工作(如圖2所示),PLC採用日本三菱公司的FX2N-32MR型PLC(16點輸入、16點輸出)。
步進電機選用深圳白山機電公司的BS110HB3L142-04型三相混合式步進電機,最大扭矩:12Nm;保持轉矩:13.5Nm;額定電流4.2A。步進電機驅動器性能的優劣,直接關繫到步進電機的正常運行,必須合理選配。為此,我們仍選擇白山公司與BS110三相混合式步進電機配套的Q3HB220M等角度恆力矩細分型驅動器,定位精度可達30000步/轉。為了確保步進電機控制的穩定性、可靠性以及便於日後維護,我們選擇與FX2N系列PLC配套的脈沖發生單元FX2N-1PG作為步進電機驅動器的控制單元[2]。PLC通過擴展電纜、控制信號以及FROM/TO指令對1PG進行控制,向1PG發出定位命令,然後由1PG通過向步進電機驅動器輸出指定數量的脈沖(最大100KPPS)來具體執行這個定位命令,從而最終實現PLC對步進電機的伺服定位控制,既提高了控制的靈活性和可靠性,又便於控製程序的編寫。
在圖2中,FX2N-1PG的FP和RP分別與步進電機的DR-和PU-端子相連,表示輸出脈沖類型分別為前向脈沖和反向脈沖。1PG的DOG端為確定步進電機原點位置時所用。在調試時,當步進電機接近原點位置時,應通過此端對應的按鈕接通24V電源,從而使步進電機開始以原點返回速度(爬行速度)轉動,以便在到達設定的原點位置時方便於PG0端的控制。PG0+和PG0-為步進電機到達原點位置時的停轉控制信號,需外加一個5V電源,正端接PG0+,負端通過開關K與PG0-相連。當步進電機在DOG信號的控制下緩慢轉動到達設定的原點位置時,可通過手動或行程開關觸發PG0+和PG0-,使兩端接通5V電源,於是電機停轉,並將原點位置記錄下來,存貯在1PG的BFM#26和#27這2個寄存器中,作為PLC對步進電機進一步控制的基準和重要參數。
氣動比例伺服控制系統採用德國Festo公司的相關產品,主要由HMP坐標氣缸、伺服定位控制器SPC200以及與之配套的內置位移感測器MLO-POT-0225、氣動伺服閥MPYE-5-1/8-LF-010-B和伺服定位控制連接器SPC-AIF-POT等裝置組成。在圖2的控制系統硬體接線中,主要涉及其中SPC200的DIO數字量I/O模塊的接線[3]。從該圖中可見,一方面PLC通過輸出端Y0-Y3控制SPC200的定位指令(RecordSelect工作方式)記錄號選取,並通過Y6啟動伺服定位;另一方面SPC200又通過定位任務完成信號Q0.4(MC-A)將定位執行情況反饋到PLC的輸入端X12,以便於PLC的程序控制。
在滑塊氣缸和氣爪上都安裝有磁性開關感測器,用於檢測氣缸活塞的位置。通過這些感測器的信號,並結合步進電機和氣動伺服的啟停信號,在PLC的控制下,就能夠對滑塊氣缸和氣爪對應的電磁閥進行控制,進而實現氣缸的動作。
4控制系統PLC程序設計
4.1步進電機初始化控製程序
PLC與1PG間通過FROM/TO指令進行聯系。通過TO指令,PLC將控制命令及參數寫入1PG的緩存,而在1PG控制下,步進電機的運行狀態則由PLC通過FROM指令讀入,以便程序處理。在圖3所示的部分步進電機初始化程序中,PLC一旦通電運行,便在每一個循環執行周期中將其M0~M15寄存器的內容寫入1PG的操作命令緩存「BFM#25」中,控制1PG的工作。同時,PLC還不斷從1PG的「BFM#28」、「BFM#27」和「BFM#26」緩存中讀入步進電機的運行狀態和當前位置值,以便在邏輯控制中通過對這些輸入值的處理來進一步控制機械手的動作。
按設計要求,同類型工件每4個為一組放置,兩種工件各自的堆放順序不能互相干擾。因此,同類型的4個工件搬運為一個基本循環,在各自的工件循環中分別設置了相應的工件計數標志位。
4.2機械手綜合控製程序
綜合前述的步進電機和氣動伺服控制技術,同時結合對垂直手臂滑塊氣缸、氣爪的控制要求,下面給出機械手完成一次定位並抓取工件的部分PLC程序
該程序表明:當工件分揀加工完畢後,機械手首先轉動一定的角度指向取工件位置,待步進電機定位結束後,垂直手臂滑塊氣缸活塞落下,然後水平手臂氣缸在氣動伺服控制下伸出設定的定位位移。定位位移是由PLC的輸出端子(Y2~Y0)控制SPC200輸入端子(I0.2~I0.0)的狀態來決定的,如附表所示,從而實現了PLC對氣動伺服定位的控制。當氣動伺服定位結束後,氣爪動作,夾緊工件。後續的搬運和放置工件的控製程序原理與之類似。
5結束語
上述針對機械手的控制方法充分利用了PLC和其它控制裝置的特性,結構緊湊、控制可靠,目前在現場運行良好。作為一個相對獨立的PLC控制系統,它還可以通過RS-485匯流排或CC-Link匯流排與生產線上的其它PLC及控制器組成工業控制網路,實現更進一步的自動化生產控制。
⑵ 急求一篇有關提高裝卸搬運效率的文獻綜述!
機電一體化技術的應用與發展前景
摘要:機電一體化是一種復合技術,是機械技術與微電子技術、信息技術互相滲透的產物,是機電工業發展的必然趨勢。文章簡述了機電一體化技術的基本結構組成和主要應用領域,並指出其發展趨勢。
關鍵詞:機械工業;機電一體化;數控;模塊化
現代科學技術的發展極大地推動了不同學科的交叉與滲透,引起了工程領域的技術改造與革命。
在機械工程領域,由於微電子技術和計算機技術的迅速發展及其向機械工業的滲透所形成的機電一體化,使機械工業的技術結構、產品機構、功能與構成、生產方式及管理體系發生了巨大變化,使工業生產由「機械電氣化」邁入了「機電
一體化」為特徵的發展階段。
一、機電一體化的核心技術
機電一體化包括軟體和硬體兩方面技術。硬體是由機械本體、感測器、信息處
理單元和驅動單元等部分組成。因此,為加速推進機電一體化的發展,必須從以下
幾方面著手。
(一)機械本體技術
機械本體必須從改善性能、減輕質量和提高精度等幾方面考慮。現代機械產品一般都是以鋼鐵材料為主,為了減輕質量除了在結構上加以改進,還應考慮利用非金屬復合材料。只有機械本體減輕了重量,才有可能實現驅動系統的小型化,進而在控制方面改善快速響應特性,減少能量消耗,提高效率。
(二)感測技術
感測器的問題集中在提高可靠性、靈
敏度和精確度方面,提高可靠性與防干擾
有著直接的關系。為了避免電干擾,目前
有採用光纖電纜感測器的趨勢。對外部信
息感測器來說,目前主要發展非接觸型檢
測技術。
(三)信息處理技術
機電一體化與微電子學的顯著進步、
信息處理設備(特別是微型計算機)的普
及應用緊密相連。為進一步發展機電一體
化,必須提高信息處理設備的可靠性,包
括模/數轉換設備的可靠性和分時處理
的輸入輸出的可靠性,進而提高處理速
度,並解決抗干擾及標准化問題。
(四)驅動技術
電機作為驅動機構已被廣泛採用,但
在快速響應和效率等方面還存在一些問
題。目前,正在積極發展內部裝有編碼器
的電機以及控制專用組件-感測器-電
機三位一體的伺服驅動單元。
(五)介面技術
為了與計算機進行通信,必須使數據
傳遞的格式標准化、規格化。介面採用同
一標准規格不僅有利於信息傳遞和維修,
而且可以簡化設計。目前,技術人員正致
力於開發低成本、高速串列的介面,來解
決信號電纜非接觸化、光導纖維以及光藕
器的大容量化、小型化、標准化等問題。
(六)軟體技術
軟體與硬體必須協調一致地發展。為
了減少軟體的研製成本,提高生產維修的
效率,要逐步推行軟體標准化,包括程序
標准化、程序模塊化、軟體程序的固化、推
行軟體工程等。
二、機電一體化技術的主要應用領域
(一)數控機床
數控機床及相應的數控技術經過40
年的發展,在結構、功能、操作和控制精度
上都有迅速提高,具體表現在:
1、匯流排式、模塊化、緊湊型的結構,即
採用多C PU、多主匯流排的體系結構。
2、開放性設計,即硬體體系結構和功
能模塊具有層次性、兼容性、符合介面標
准,能最大限度地提高用戶的使用效益。
3、W O P技術和智能化。系統能提供
面向車間的編程技術和實現二、三維加工
過程的動態模擬,並引入在線診斷、模糊
控制等智能機制。
4、大容量存儲器的應用和軟體的模
塊化設計,不僅豐富了數控功能,同時也
加強了C N C系統的控制功能。
5、能實現多過程、多通道控制,即具
有一台機床同時完成多個獨立加工任務
或控制多台和多種機床的能力,並將刀具
破損檢測、物料搬運、機械手等控制都集
成到系統中去。
6、系統的多級網路功能,加強了系統
組合及構成復雜加工系統的能力。
7、以單板、單片機作為控制機,加上專
用晶元及模板組成結構緊湊的數控裝置。
(二)計算機集成製造系統(CIMS)
C IM S的實現不是現有各分散系統
的簡單組合,而是全局動態最優綜合。它
打破原有部門之間的界線,以製造為基幹
來控制「物流」和「信息流」,實現從經營
決策、產品開發、生產准備、生產實驗到生
產經營管理的有機結合。企業集成度的提
高可以使各種生產要素之間的配置得到
更好的優化,各種生產要素的潛力可以得
到更大的發揮。
(三)柔性製造系統(FMS)
柔性製造系統是計算機化的製造系
統,主要由計算機、數控機床、機器人、料
盤、自動搬運小車和自動化倉庫等組成。
它可以隨機地、實時地、按量地按照裝配
部門的要求,生產其能力范圍內的任何工
件,特別適於多品種、中小批量、設計更改
頻繁的離散零件的批量生產。
(四)工業機器人
第1代機器人亦稱示教再現機器人,
它們只能根據示教進行重復運動,對工作
環境和作業對象的變化缺乏適應性和靈活
性;第2代機器人帶有各種先進的感測元
件,能獲取作業環境和操作對象的簡單信
息,通過計算機處理、分析,做出一定的判
斷,對動作進行反饋控制,表現出低級智
能,已開始走向實用化;第3代機器人即智
能機器人,具有多種感知功能,可進行復雜
的邏輯思維、判斷和決策,在作業環境中獨
立行動,與第5代計算機關系密切。
三、機電一體化技術的發展前景
縱觀國內外機電一體化的發展現狀
和高新技術的發展動向,機電一體化將朝
著以下幾個方向發展。
(一)智能化
智能化是機電一體化與傳統機械自
動化的主要區別之一,也是21世紀機電
一體化的發展方向。近幾年,處理器速度
的提高和微機的高性能化、感測器系統的
集成化與智能化為嵌入智能控制演算法創
造了條件,有力地推動著機電一體化產品
向智能化方向發展。智能機電一體化產品
可以模擬人類智能,具有某種程度的判斷推理、邏輯思維和自主決策能力,從而取
代製造工程中人的部分腦力勞動。
(二)系統化
系統化的表現特徵之一就是系統體
系結構進一步採用開放式和模式化的總
線結構。系統可以靈活組態,進行任意的
剪裁和組合,同時尋求實現多子系統協調
控制和綜合管理。表現特徵之二是通信功
能大大加強,一般除R S232等常用通信
方式外,實現遠程及多系統通信聯網需要
的局部網路正逐漸被採用。未來的機電一
體化更加註重產品與人的關系,如何賦予
機電一體化產品以人的智能、情感、人性
顯得越來越重要。機電一體化產品還可根
據一些生物體優良的構造研究某種新型
機體,使其向著生物系統化方向發展。
(三)微型化
微型機電一體化系統高度融合了微
機械技術、微電子技術和軟體技術,是機
電一體化的一個新的發展方向。國外稱微
電子機械繫統的幾何尺寸一般不超過
1cm 3,並正向微米、納米級方向發展。由於
微機電一體化系統具有體積小、耗能小、
運動靈活等特點,可進入一般機械無法進
入的空間並易於進行精細操作,故在生物
醫學、航空航天、信息技術、工農業乃至國
防等領域,都有廣闊的應用前景。目前,利
用半導體器件製造過程中的蝕刻技術,在
實驗室中已製造出亞微米級的機械元件。
(四)模塊化
模塊化也是機電一體化產品的一個
發展趨勢,是一項重要而艱巨的工程。由
於機電一體化產品種類和生產廠家繁多,
研製和開發具有標准機械介面、電氣接
口、動力介面、信息介面的機電一體化產
品單元是一項復雜而重要的事,它需要制
訂一系列標准,以便各部件、單元的匹配
和介面。機電一體化產品生產企業可利用
標准單元迅速開發新產品,同時也可以不
斷擴大生產規模。
(五)網路化
網路技術的飛速發展對機電一體化
有重大影響,使其朝著網路化方向發展。
機電一體化產品的種類很多,面向網路的
方式也不同。由於網路的普及,基於網路
的各種遠程式控制制和監視技術方興未艾,而
遠程式控制制的終端設備本身就是機電一體
化產品。
(六)綠色化
工業的發達使人們物質豐富、生活舒
適的同時也使資源減少,生態環境受到嚴
重污染,於是綠色產品應運而生。綠色化
是時代的趨勢,其目標是使產品從設計、
製造、包裝、運輸、使用到報廢處理的整個生命周期中,對生態環境無危害或危害極
小,資源利用率極高。機電一體化產品的
綠色化主要是指使用時不污染生態環境,
報廢時能回收利用。綠色製造業是現代制
造業的可持續發展模式。
綜上所述,機電一體化是眾多科學技
術發展的結晶,是社會生產力發展到一定
階段的必然要求。它促使機械工業發生戰
略性的變革,使傳統的機械設計方法和設
計概念發生著革命性的變化。大力發展新
一代機電一體化產品,不僅是改造傳統機
械設備的要求,而且是推動機械產品更新
換代和開辟新領域、發展與振興機械工業
的必由之路。
⑶ 搬運機械手及控制設計 的畢業設計
第一章 緒 論 1
1.1 前 言 1
1.2 搬運機械手在生產中的應用 1
1.2.1 建造旋轉零件(轉軸、盤類、環類)自動線 2
1.2.2 在實現單機自動化方面 2
1.3 搬運機械手的結構 2
第二章 搬運機械手的總體設計方案 4
2.1 設計方案的擬定 4
2.1.1 熟悉該產品的加工工藝 4
2.1.2 收集資料 5
2.2 基本參數的確定 5
2.2.1 抓取重量 5
2.2.2 工作時間的確定 5
2.2.3 根據工藝要求確定參數 6
2.2.4 確定最大活動范圍與速度 6
2.2.5 確定定位精度 7
2.3 機構形式的選擇 7
2.4 驅動源的選擇 8
2.5 控制系統的選擇 8
2.6 搬運機械手的自由度與坐標形式選擇 9
2.7 本次設計的方案確定 12
2.7.1 確定機械手的規格、坐標形式及自由度 12
2.7.2 規格參數 12
2.7.3 總體布置 13
第三章 搬運機械手的手部設計 14
3.1 手部設計基本要求 14
3.2 手部結構 14
3.3 選擇手爪的類型及夾緊裝置 15
3.4 手指回轉型手部及其受力分析 15
3.5 夾緊力及驅動力的計算 17
3.6 彈簧的設計計算 17
第四章 腕部的設計計算 21
4.1 腕部設計的基本要求 21
4.2 腕部的結構以及選擇 21
4.2.1 典型的腕部結構 21
4.2.2 腕部結構和驅動機構的選擇 21
4.3 腕部的設計計算 21
4.3.1 腕部設計考慮的參數 21
4.3.2 腕部的驅動力矩計算 21
4.3.3 腕部驅動力的計算 21
4.3.4 液壓缸蓋螺釘的計算 21
4.3.5 動片和輸出軸間的連接螺釘 24
第五章 臂部的設計及有關計算 25
5.1 臂部的設計要求 25
5.2 手臂的典型機構以及結構的選擇 26
5.2.1 手臂的典型運動機構 26
5.2.2 手臂運動機構的選擇 26
5.3 手臂直線運動的驅動力計算 26
5.3.1 手臂摩擦力的分析與計算 27
5.3.2 手臂慣性力的計算 28
5.3.3 密封裝置的摩擦阻力 28
5.4 液壓缸工作壓力和結構的確定 28
第六章 機身的設計計算 30
6.1 機身的整體設計 30
6.2 機身回轉機構的設計計算 30
6.3 機身升降機構的計算 33
6.3.1 手臂偏重力矩的計算 33
6.3.2 手臂做升降運動的液壓缸驅動力的計算 34
6.4 軸承的選擇分析 35
第七章 液壓系統設計 37
第八章 支撐角鐵的加工工藝 39
總結 40
參考文獻 41
致謝 42
⑷ 搬運機器人由哪些結構組成
搬運機器人涉及到了力學,機械學,電器液壓氣壓技術,自動控制技術,感測器技術,單片回機技術答和計算機技術等學科領域,已成為現代機械製造生產體系中的一項重要組成部分。
它的優點是可以通過編程完成各種預期的任務,在自身結構和性能上有了人和機器的各自優勢,尤其體現出了人工智慧和適應性。
(4)小型搬運裝置驅動單元設計擴展閱讀:
搬運機器人由執行機構、驅動機構和控制機構三部分組成。
手部既直接與工件接觸的部分,一般是回轉型或平動型(多為回轉型,因其結構簡單)。手部多為兩指(也有多指),根據需要分為外抓式和內抓式兩種。
也可以用負壓式或真空式的空氣吸盤(主要用於可吸附的,光滑表面的零件或薄板零件)和電磁吸盤。
⑸ 搬運機械手畢業設計
畢業設計 搬運送料機械手設計及Solidworks運動模擬,正文共37頁,12065字,附機械手CAD圖、機械手動作模擬、機械手造型設計
目錄
摘要 1
第一章 機械手設計任務書 1
1.1畢業設計目的 1
1.2本課題的內容和要求 2
第二章 抓取機構設計 4
2.1手部設計計算 4
2.2腕部設計計算 7
2.3臂伸縮機構設計 8
第三章 液壓系統原理設計及草圖 11
3.1手部抓取缸 11
3.2腕部擺動液壓迴路 12
3.3小臂伸縮缸液壓迴路 13
3.4總體系統圖 14
第四章 機身機座的結構設計 15
4.1電機的選擇 16
4.2減速器的選擇 17
4.3螺柱的設計與校核 17
第五章 機械手的定位與平穩性 19
5.1常用的定位方式 19
5.2影響平穩性和定位精度的因素 19
5.3機械手運動的緩沖裝置 20
第六章 機械手的控制 21
第七章 機械手的組成與分類 22
7.1機械手組成 22
7.2機械手分類 24
第八章 機械手Solidworks三維造型 25
8.1上手爪造型 26
8.2螺栓的繪制 30
畢業設計感想 35
參考資料 36
摘要
本課題是為普通車床配套而設計的上料機械手。工業機械手是工業生產的必然產物,它是一種模仿人體上肢的部分功能,按照預定要求輸送工件或握持工具進行操作的自動化技術設備,對實現工業生產自動化,推動工業生產的進一步發展起著重要作用。因而具有強大的生命力受到人們的廣泛重視和歡迎。實踐證明,工業機械手可以代替人手的繁重勞動,顯著減輕工人的勞動強度,改善勞動條件,提高勞動生產率和自動化水平。工業生產中經常出現的笨重工件的搬運和長期頻繁、單調的操作,採用機械手是有效的。此外,它能在高溫、低溫、深水、宇宙、放射性和其他有毒、污染環境條件下進行操作,更顯示其優越性,有著廣闊的發展前途。
本課題通過應用AutoCAD 技術對機械手進行結構設計和液壓傳動原理設計,運用Solidworks技術對上料機械手進行三維實體造型,並進行了運動模擬,使其能將基本的運動更具體的展現在人們面前。它能實行自動上料運動;在安裝工件時,將工件送入卡盤中的夾緊運動等。上料機械手的運動速度是按著滿足生產率的要求來設定。
關鍵字 機械手,AutoCAD,Solidworks
⑹ 求一份設計用於皮帶輪運輸機的傳動裝置設計任務書
僅供參考
一種傳輸編程
第二組數據:一個圓柱形的齒輪減速器的設計帶式輸送機齒輪
(1)工作環境:可使用年限為10年,每年300天,兩班倒的工作負載順利。
(2)的原始數據:滾筒圓周力F = 1.7KN;帶速度V = 1.4米/秒;
滾筒直徑D = 220mm的
?運動圖
其次,選擇的電機
1,電機類??型和結構類型的選擇:已知的工作要求和條件,選擇Y系列三相非同步電動機。
2,確定電機功率:
總有效率的發送裝置(1):
聯軸器總η=η×η2軸承×η齒輪×η×η鼓
= 0.96×0.992×0.97×0.99×0.95
= 0.86
(2)電機功率:
PD =FV/1000η總
= 1700×1.4/1000×0.86
= 2.76KW
如圖3所??示,確定電機轉速:
輥軸速度的工作:
NW = 60×1000V/πD的
= 60×1000×1.4 /π×220
= 121.5r/min
根據[2]表2.2推薦合理的,考慮一個V型皮帶傳動的傳動比范圍內的單級的圓筒狀的齒輪比的范圍比IV = 2?4,集成電路= 3?5,合理的總的傳動比的范圍內的i = 6?20,所以電機的可選擇的范圍的速度是第二=×凈重=(6?20)×121.5 = 729?2430r/min
符合此范圍內的同步轉速為960 r / min和1420r/min。表8.1 [2]確定了三種適用的電機模型,如下表所示
傳動比的傳輸方案電機型號額定功率電機的轉速(轉/分)
?KW轉整圈的整體齒輪與齒輪比
1 Y132S-6 3 1000 960 7.9 3 2.63
2 Y100L2 4 3 1500 1420 11.68 3 3.89
考慮到電機和齒輪的尺寸,重量,價格和皮帶傳動,減速器的傳動比,比較這兩個方案被稱為:方案1,由於電機的轉速,齒輪尺寸較大的價格較高。方案2是溫和的。被選為電機型號Y100L2-4。
確定電機型號
根據上述選擇電機的類型,所需的額定功率和同步速度,所選擇的電動機型號
Y100L2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩的2.2。
第三,計算的總的傳動比,在輸電和配電水平比
1,總傳動比:我總= N電/ N桶= 1420/121.5 = 11.68
如圖2所示,在所有各級的傳動比分配
(1)我= 3
(2)∵,共i =齒×我與π
∴我的牙齒= I / I = 11.68 / 3 = 3.89
的運動參數和動態參數
1,計算的軸的轉速(轉/分鍾)的
NI = NM / I = 1420/3 = 473.33(轉/分)
NII = NI / I牙= 473.33/3.89 = 121.67(轉/分)
鼓NW =凈利息收入= 473.33/3.89 = 121.67(轉/分)
2,計算每個軸功率(KW)
PI = PD×η= 2.76×0.96 = 2.64KW
PII = PI×η軸承×η齒輪= 2.64×0.99×0.97 = 2.53KW
如圖3所??示,計算各軸的轉矩
TD = 9.55Pd/nm = 9550×2.76/1420 = 18.56N?中號
???TI = 9.55p2到/ N1 = 9550x2.64/473.33 = 53.26N?中號
???
??TII = 9.55p2到/ N2 = 9550x2.53/121.67 = 198.58N?中號
???
傳動部件的設計和計算
1輪驅動設計
(1)選擇普通V帶類型
教科書[1] P189表10-8為:Ka = 1.2,P = 2.76KW
PC = KAP = 1.2×2.76 = 3.3KW
PC = 3.3KW和n1 = 473.33r/min的的
教科書[1] P189圖10-12是可選的V型皮帶A型
(2)確定的帶輪的基準直徑,並檢查磁帶速度
[1]教材P190表10-9,採取其所=95毫米> dmin的= 75
DD2 = i與其所(1-ε)= 3×95×(1-0.02)=279.30毫米
通過教科書[1] P190表10-9,採取DD2 = 280
帶速V:V =πdd1n1/60×1000
=Π×95×1420/60×1000
=7.06米/ s的??????
5?25m / s的范圍內,適當的速度。
(3)確定帶子的長度和中心距
暫定中心距離a0 =500毫米
Ld為= 2A0 +π(其所+ DD2)/ 2 +(DD2-DD1)2/4a0
= 2×500 3.14(95 280)+(280-95)2/4×450
=1605.8毫米
據的教科書[1]表(10-6),以選擇一個類似的Ld為=1600毫米
確定中心距a≈a0的+(Ld為 - LD0)/ 2 = 500 +(1600-1605.8)/ 2
=497毫米
??(四)檢查小滑輪包角
α1= 1800-57.30×(DD2-DD1)/
= 1800-57.30×(280-95)/ 497
= 158.670> 1200(適用)
?(5),以確定的數目根
V帶傳動額定功率的單。根據DD1和N1,檢查課本圖10-9為:P1 = 1.4KW
I≠1時,單根增量的額定功率的V形皮帶。根據帶型,我檢查[1]表10-2△P1 = 0.17KW
檢查[1]表10-3 5月Kα= 0.94;調查[1]表10-4 KL = 0.99
Z = PC / [(P1 +△P1)KαKL]
= 3.3 /(1.4 +0.17)×0.94×0.99]
= 2.26(坐3)
??(6)計算軸壓力
通過教科書[1]表10-5調查q = 0.1公斤/米的教科書(10-20)初始張力的V型皮帶單位根:
F0 = 500PC/ZV [(2.5/Kα)-1] + qV2 = 500x3.3 / 3x7.06(2.5/0.94-1),+0.10 x7.062 = 134.3kN
根據軸承的壓力FQ
FQ = 2ZF0sin(α1/ 2)= 2×3×134.3sin(158.67o / 2)
= 791.9N
2,齒輪的設計計算
(1)選擇齒輪材料及熱處理的齒輪傳動裝置的設計被關閉的傳輸,通常
製成的軟齒面齒輪。查找表[1]表6-8,易於製造的材料選擇價格便宜的小齒輪材料為45鋼,淬火和回火齒面硬度260HBS,大齒輪材料45鋼,正火硬度215HBS;
精度等級:運輸機通用機械,高速,8位精度。
(2)所述的齒面接觸疲勞強度設計
D1≥(6712×KT1(U +1)/φ[σH] 2)1/3
確定的參數如下:傳動比i齒= 3.89
舉一個小齒輪Z1 = 20。大齒輪Z2 = IZ1 =×20 = 77.8 Z2 = 78
從教科書表6-12φD= 1.1
(3)的轉矩T1
T1 = 9.55×106×P1/n1 = 9.55×106×2.61/473.33 = 52660N?毫米
(4)負荷系數K:K = 1.2
(5)允許的接觸應力[σH]
[ΣH=σHlimZN / SHmin的教科書[1]圖6-37理查德:
σHlim1= 610MpaσHlim2= 500MPa級
聯系疲勞壽命系數鋅:一年300天,每天16小時計算公式N = 60njtn
N1 = 60×473.33×10×300×18 = 1.36x109
N2 = N / I = 1.36x109 / 3.89 = 3.4×108
檢查[1]圖6-38,ZN1的教科書中曲線1 = 1 ZN2 = 1.05
按要求選擇可靠性的的安全系數SHmin = 1.0
[ΣH] 1 =σHlim1ZN1/SHmin= 610x1 / 1 = 610兆帕
[ΣH] 2 =σHlim2ZN2/SHmin= 500x1.05 / 1 = 525Mpa
因此,它可以是:
D1≥(6712×KT1(U +1)/φ[σH] 2)1/3
=49.04毫米
模數:M = d1/Z1 = 49.04/20 =2.45毫米
以教科書[1]值的P79標准模數第一系列,M = 2.5
(6)檢查齒根彎曲疲勞強度
σBB = 2KT1YFS/bmd1
確定有關參數和系數
的節圓直徑為d1 =就是MZ1 = 2.5×20mm的= 50毫米
?????????D2 = MZ2 = 2.5×78毫米=195毫米
齒寬:B =φdd1= 1.1×50毫米=55毫米
以B2 =55毫米B1 =60毫米
(7)復合齒因素的YFS教科書[1]圖6-40:YFS1 = 4.35,YFS2,3.95
(8)容許彎曲應力[σbb]
根據教科書[1] P116:
[Σbb=σbblimYN / SFmin的
教科書[1]圖6-41彎曲疲勞極限σbblim的,應該:σbblim1= 490MPa級σbblim2= 410Mpa
教科書[1]圖6-42的彎曲疲勞壽命系數YN:YN1 = 1 YN2 = 1
最小安全系數的彎曲疲勞SFmin:一般可靠性的要求,採取SFmin = 1
計算彎曲應力疲勞許
[Σbb1σbblim1YN1/SFmin = 490×1/1 = 490MPa級
[Σbb2] =σbblim2YN2/SFmin = 410×1/1 = 410Mpa
校核計算
σbb1= 2kT1YFS1 / b1md1 = 71.86pa [σbb1]
σbb22kT1YFS2 / b2md1 = 72.61Mpa <[σbb2]
齒根彎曲疲勞強度足夠
(9)中的一個齒輪的中心矩
=(D1 + D2)/ 2 =(50 +195)/ 2 =122.5毫米
(10)的圓周速度的齒輪五
計算的圓周速度V =πn1d1/60×1000 = 3.14×473.33×50/60×1000 =1.23米/ s的
由於V <6米/秒,所以他們選擇適當的8位精度。
?
軸的設計計算
??從動軸的設計
?1中,選擇的材料的軸線,以確定允許的應力
???選擇軸的材料為45鋼,淬火和回火。調查[2]表13-1中我們可以看到:
????σB= 650MPa以下,強度σs= 360Mpa調查[2]表13-6所示:[ΣB+1] BB = 215Mpa
????[Σ0] BB = 102Mpa,[σ-1] BB = 60Mpa
?2,根據估計的抗扭強度軸的最小直徑
???單級的低速軸的齒輪減速器的軸,輸出耦合階段,
考慮從結構的要求,輸出端子軸應最小,最小直徑為:
????????D≥C
????調查[2]表13-5可用45鋼取C = 118
????D≥118×(2.53/121.67)1/3mm =32.44毫米
???考慮鍵槽影響的耦合孔系列標準的,取D = 35毫米
??3,齒輪受力計算
???齒輪扭矩:T = 9.55×106P / N = 9.55×106×2.53/121.67 = 198 582?
???齒輪力:
?????????圓周力:FT = 2T / D = 2×198582/195N = 2036N
?????????徑向力:FR = Fttan200 = 2036×tan200 = 741N
??4,軸的結構設計
???需要考慮固定的大小相匹配的部分軸結構的設計,軸類零件軸,軸按比例繪制的結構示意圖。
???(1),選擇的耦合
???????可用於彈性柱銷聯軸器,檢查[2]表9.4耦合模型HL3耦合:35×82 GB5014-85
???(2)確定軸類零件的位置和固定方式
???單級減速齒輪,你可以安排中央齒輪箱軸承對稱布置
??論齒輪兩側。依靠客戶端安裝軸伸聯軸器,齒輪油環和套筒
固定的軸向位置,並與實現的星期依靠平鍵和干擾來固定,該軸的兩端
承套筒的軸向定位的實現,依靠的干擾符合環固定軸
兩端的軸承蓋的軸向定位聯軸器依靠軸肩平,關鍵盈
軸向定位和周向定位
(3),以確定的直徑的軸的每個段
將估計的軸D = 35毫米比賽(如圖),作為外伸端直徑d1和接頭
考慮耦合軸向定位軸肩,在第二個段落的直徑為D2 = 40mm的
負載從左側的左端的齒輪和軸承,考慮要求易於裝配,拆卸,和零件固定安裝的軸在d3上應該是大於d2,d3上= 4毫米,容易齒輪組件與該部和拆卸與齒輪軸直徑d4應該是大於d3,採取d4上= 50毫米。帶齒輪的時間用的套筒固定左端,右端的凸緣定位頸直徑d5上
滿足齒輪的位置的同時,還應該滿足安裝要求的右側的軸承確定根據選定軸承模型的右軸承軸承模型相同的左端,採取D6 =45毫米。
????????(4)選擇[1] P270初選深溝球軸承,代號為6209的軸承型號,手動可供選擇:軸承寬度B = 19,安裝尺寸D = 52,所以領子直徑D5 =52毫米的。
????????(5)確定的軸的直徑,每個區段的長度
Ⅰ段:D1 = 35mm長度L1 = 50
第二部分:D2 = 40mm的
6209深溝球軸承,內徑45毫米的主,
的寬度為19mm。考慮到齒輪的端面和殼體壁,軸承的端面和殼體的內壁有一定的距離。以袖子的長度為20mm,長度應根據密封帽軸部分的密封帽的寬度,並考慮聯軸器和櫃外壁應該是某一時刻,段長度為55mm,安裝齒輪段長度應較小的寬度比輪子2毫米,這是一個很長的段落II:
L2 =(2 20 19 55)=96毫米
III段直徑d3 =45毫米
L3 = L1-L = 50-2 =48毫米
Ⅳ段直徑d4 = 50
相同的長度和在套筒到右側,即L4 = 20mm的
Ⅴ段直徑D5 =52毫米的長度L5 =19毫米
可被視為由長度的軸的軸線支撐跨距L =96毫米
(6)矩復合材料強度
(1)要求的節圓直徑:已知D1 =195毫米
(2)尋找扭矩:T2 = 198.58N?中號
③求圓周力:FT
根據課本P127(6-34)
尺= 2T2/d2 = 2×198.58/195 = 2.03N
④求徑向力Fr
根據課本P127(6-35)
= FT神父?若tanα= 2.03×tan200 = 0.741N
(5)由於該軸的兩個軸承的對稱性,所以:= LB =48毫米
(1)繪制軸力圖(圖一)
(2)畫一條垂直的平面的彎矩圖(圖二)
支座反力:
FAY = FBY = FR / 2 = 0.74 / 2 = 0.37N
FAZ = FBZ = FT / 2 = 2.03 / 2 = 1.01N
的兩側左右對稱的,它是已知的交叉C節對稱的彎矩。在垂直平面內的時刻的C節
MC1 = FAyL / 2 = 0.37×96÷2 = 17.76N?中號
的彎曲力矩,在水平面中的C節:
MC2 = FAZL / 2 = 1.01×96÷2 = 48.48N?中號
(4)繪制的彎矩圖(圖d)
MC =(MC12 + MC22)1/2 =(17.762 48.482)1/2 = 51.63N?中號
(5)繪制一個的轉矩圖(圖e)
扭矩:T = 9.55×(P2/n2)×106 = 198.58N?中號
(6)繪制的等效彎矩圖(圖f)
扭矩產生的扭轉剪切文治武功力的脈動周期的變化,取α= 0.2,在等效力矩的截面C:
MEC = [MC2 +(αT)2] 1/2
= [51.632 +(0.2×198.58)2] 1/2 = 65.13N?中號
(7)檢查強度的危險C節
由式(6-3)中
?
ΣE= 65.13/0.1d33 = 65.13x1000/0.1×453
= 7.14MPa <[σ-1] = 60MPa
∴,軸具有足夠的強度。
?
傳動軸設計????
???1,選擇軸的材料,以確定許用應力
???選擇軸的材料為45鋼,淬火和回火。調查[2]表13-1中我們可以看到:
????σB= 650MPa以下,強度σs= 360Mpa調查[2]表13-6所示:[ΣB+1] BB = 215Mpa
????[Σ0] BB = 102Mpa,[σ-1] BB = 60Mpa
?2,根據估計的抗扭強度軸的最小直徑
???單級的低速軸的齒輪減速器的軸,輸出耦合階段,
考慮從結構的要求,輸出端子軸應最小,最小直徑為:
????????D≥C
????調查[2]表13-5可用45鋼取C = 118
????D≥118×(2.64/473.33)1/3mm =20.92毫米
???考慮鍵槽一系列標準的影響,採取e=22毫米
??3,齒輪受力計算
???收到的齒輪扭矩:T = 9.55×106P / N = 9.55×106×2.64/473.33 = 53265?
???齒輪力:
?????????圓周力:FT = 2T / D = 2×53265/50N = 2130N
?????????徑向力:FR = Fttan200 = 2130×tan200 = 775N
??????確定軸類零件的位置和固定方式
???單級減速齒輪,你可以安排中央齒輪箱軸承對稱布置
??論齒輪兩側。齒輪依靠油環和軸向定位並固定在套筒上
依靠平鍵和周向固定的干擾,該軸的兩端
承套筒的軸向定位的實現,依靠的干擾符合環固定軸
兩端的軸承蓋來實現軸向定位,
的第4段,以確定軸的直徑和長度
6206深溝球軸承,內徑30毫米的主,
的寬度為16mm。考慮齒輪的端面和殼體壁,軸承的端面和殼體的內壁有一定的時刻,然後採取套筒長度20mm,那麼段的長度36毫米安裝輪轂寬度的齒輪部的長度2毫米。
(2)復合材料的彎曲和扭轉強度計算
(1)要求已知的節圓直徑:D2 = 50
(2)向已知扭矩:T = 53.26N?中號
(3)向圓周力Ft:根據課本P127(6-34)
尺= 2T3/d2 = 2×53.26/50 = 2.13N
④求徑向力Fr的課本P127(6-35)
= FT神父?若tanα= 2.13×0.36379 = 0.76N
⑤∵兩軸承對稱
∴LA = LB = 50
(1)求支座反力FAX,FBY,FAZ,FBZ
FAX = FBY = FR / 2 = 0.76 / 2 = 0.38N
FAZ = FBZ = FT / 2 = 2.13 / 2 = 1.065N
(2)橫截面在垂直平面矩
MC1 = FAxL / 2 = 0.38×100/2 = 19N?中號
(3)的橫截面中的C的水平的彎曲力矩
MC2 = FAZL / 2 = 1.065×100/2 = 52.5N?中號
(4)計算的合成的矩
MC =(MC12 + MC22)1/2
=(192 52.52)1/2
= 55.83N?中號
(5)計算的等效彎矩:根據課本P235α= 0.4
MEC = [MC2 +(αT)2] 1/2 = [55.832 +(0.4×53.26)2] 1/2
= 59.74N?中號
(6)檢查的力度危險的C節
由式(10-3)中
ΣE= MEC /(0.1d3)= 59.74x1000 /(0.1×303)
= 22.12Mpa <[σ-1] = 60Mpa
∴此軸具有足夠的強度
(7)滾動選擇和檢查計算
????從動軸的軸承
預期壽命的條件下,軸承
L'H = 10×300×16 = 48000h
(1)初選軸承型號:6209,
???檢查[1]表14-19所示:D = 55毫米,外徑D = 85毫米,寬度B = 19MM,基本額定動負荷C = 31.5KN基本額定靜負荷CO = 20.5KN
???調查[2]表10.1極限轉速9000r/min
??????
????(1)已知NII = 121.67(轉/分)
兩軸承的徑向反作用力:FR1 = FR2 = 1083N
根據教科書的P265(11-12)軸承內部的軸向力
FS = 0.63FR那麼FS1 = FS2 = 0.63FR1 = 0.63x1083 = 682N
(2)∵FS1 + FA = FS2 FA = 0
因此,應採取按任何一端,現在就按結束結束
FA1 = FS1 = 682N FA2 = FS2 = 682N
(3)求系數X,Y
FA1/FR1 = 682N/1038N = 0.63
FA2/FR2 = 682N/1038N = 0.63
根據課本P265表(14-14)= 0.68
FA1/FR1 E X1 = 1 FA2/FR2 <E x2 = 1
Y1 = 0 Y2 = 0
(4)計算的等效載荷P1,P2
根據教材P264表(14-12)取f P = 1.5
(14-7)風格的基礎上課本P264
P1 = FP(x1FR1 + y1FA1)= 1.5×(1×1083 +0)= 1624N
P2 = FP(x2FR1 + y2FA2)= 1.5×(1×1083 +0)= 1624N
(5)的軸承壽命的計算
∵P1 = P2,所以他們選擇了P = 1624N
∵深溝球軸承ε= 3
根據手冊6209-CR = 31500N
我們獲得課本P264(14-5)
LH = 106(ftCr / P),ε/60n
= 106(1×1624分之31500)3/60X121.67 = 998953h> 48000h
∴預期壽命是足夠的
??????????
??????主動軸軸承:
???(1)軸承初選型號:6206
??查[1]表14-19,:D = 30毫米,外徑D =62毫米,寬度B = 16毫米,
基本額定動載荷C = 19.5KN基本的靜載荷CO = 111.5KN
????調查[2]表10.1極限轉速13000r/min
??????預期壽命的條件,對軸承
L'H = 10×300×16 = 48000h
????(1)已知NI = 473.33(轉/分)
兩軸承的徑向反作用力:FR1 = FR2 = 1129N
根據教科書的P265(11-12)軸承內部的軸向力
FS = 0.63FR那麼FS1 = FS2 = 0.63FR1 = 0.63x1129 = 711.8N
(2)∵FS1 + FA = FS2 FA = 0
因此,應採取按任何一端,現在就按結束結束
FA1 = FS1 = 711.8N FA2 = FS2 = 711.8N
(3)求系數X,Y
FA1/FR1 = 711.8N/711.8N = 0.63
FA2/FR2 = 711.8N/711.8N = 0.63
根據課本P265表(14-14)= 0.68
FA1/FR1 E X1 = 1 FA2/FR2 <E x2 = 1
Y1 = 0 Y2 = 0
(4)計算的等效載荷P1,P2
根據教材P264表(14-12)取f P = 1.5
(14-7)風格的基礎上課本P264
P1 = FP(x1FR1 + y1FA1)= 1.5×(1×1129 +0)= 1693.5N
P2 = FP(x2FR1 + y2FA2)= 1.5×(1×1129 +0)= 1693.5N
(5)的軸承壽命的計算
∵P1 = P2,所以他們選擇了P = 1693.5N
∵深溝球軸承ε= 3
根據手冊是6206-CR = 19500N
我們獲得課本P264(14-5)
LH = 106(ftCr / P),ε/60n
= 106(1×19500/1693.5)3/60X473.33 = 53713h> 48000h
∴預期壽命是足夠的
?
七鍵連接的選擇,並且檢查計算
1。據的長軸直徑的大小,由[1]表12-6中
高速軸(驅動軸),V型皮帶輪聯軸器鍵:鍵8×36,GB1096-79
大齒輪和軸連接鍵:的鑰匙14×45 GB1096-79
聯軸器鍵:鍵10×40 GB1096-79
2。關鍵的強度校核
?大齒輪和軸的關鍵:關鍵14×45 GB1096-79
B×H = 14×9,L = 45,LS = L - B =31毫米
圓周力:FR = 2TII / D = 2×198五十零分之五百八十零= 7943.2N
擠壓強度:= 56.93 <125?150MPA = [ΣP]
因此,擠壓強度足夠
剪切強度:= 36.60 <120MPA = []
因此,剪切強度是足夠的
8×36的關鍵GB1096-79和鍵10×40 GB1096-79檢查,根據上述步驟,並符合要求。
八,減速齒輪箱,蓋子及配飾設計
1,減速機附件
曝氣機
室內使用時,選擇通風(一次過濾),採用M18×1.5
油位指示器
選擇游標M12的
起重設備
採用蓋耳片箱座。
放油塞
選擇外六角油塞和墊片M18×1.5
根據「機械設計課程設計表5.3選擇合適的型號:
從蓋螺絲型號:GB/T5780 M18×30,材質Q235
高速軸軸承蓋螺栓:GB5783?86 M8X12,材質Q235
低速軸軸承蓋螺栓:GB5783?86 M8×20,材質Q235
博爾特:GB5782?86 M14×100,材質Q235
案例的主要尺寸:
:
???(1)箱座壁厚Z = 0.025A +1 = 0.025×122.5 +1 = 4.0625 Z = 8
?????????(2)油箱蓋和牆壁厚度Z1 = 0.02A +1 = 0.02×122.5 +1 = 3.45
????????????????????????? ???????以Z1 = 8
?????????(3)蓋法蘭厚度B1 = 1.5z1 = 1.5×8 = 12
?????????(4)箱座法蘭厚度B = 1.5z = 1.5×8 = 12
????????(5)的厚度的框座底部凸緣B2 = 2.5z = 2.5×8 = 20
?????????(6)接地螺釘直徑df = 0.036a +12 =
????????????????????0.036×122.5 +12 = 16.41(共18個)
?????????(7)數的接地螺釘N = 4(<250)
????????(8)的軸承旁的連接螺栓直徑d1 = 0.75df = 0.75×18 = 13.5(一個14)
????????蓋(9)和所述座椅連接的螺栓直徑d2 =(0.5-0.6)自由度= 0.55×18 = 9.9(二,10)
?????????(10)連??接螺栓D2的間距L = 150?200
?????????(11)軸承蓋螺栓直D3 =(0.4?0.5),DF = 0.4×18 = 7.2(N = 8)
?????????(12)檢查孔蓋螺絲D4 =(0.3-0.4),DF = 0.3×18 = 5.4(6)
????????的定位銷(13)的直徑D =(0.7-0.8)d2的= 0.8×10 = 8
????????(14)df.d1.d2的方塊距離C1的外壁上的
?????????(15)Df.d2
?????????
????????(16)凸台高度:確定在根據與低速的軸承座的外徑,以扳手操作為准。
外槽壁(17)從端面的軋輥軸承座C1 + C2 +(5?10)的距離
(18)齒輪的齒頂圓與內箱壁間距離:> 9.6毫米
(19)的齒輪內盒的端壁間的距離:= 12毫米
(20)蓋,箱座肋厚:M1 = 8毫米,M2 = 8毫米
(21)的軸承蓋的外徑(D)+(5?5.??5)d3上
????????D?軸承外徑
(22)軸承:盡可能靠近旁邊的連接螺栓距離,遵守不幹涉對方的MD1和MD3一般取S = D2。
九,潤滑與密封
1齒輪的潤滑
使用浸油潤滑,單級圓柱齒輪減速機,速度ν<12米/秒,當m <20時,浸油深度h牙齒的高度,但不小於10毫米,所以油浸泡過的高度約36毫米。
2滾動軸承的潤滑
軸承圓周速度,所以應該開設油溝,飛濺潤滑。
3。潤滑油的選擇
與同種潤滑油的齒輪和軸承是更方便的小型設備,考慮到設備,選擇GB443-89損耗系統用油L-AN15潤滑油。
4的密封方法的選擇
可選法蘭端蓋調整方便,悶蓋安裝在框架旋轉軸唇形密封的密封。密封模型由組件GB894.1-86-25的軸承蓋的結構的大小是由軸承位置的外徑的軸直徑確定的。
10,設計總結
課程設計的經驗
課程設計需要勤奮和努力鑽研的精神。步驟一步克服的事情會在第一時間,第一,似乎沒有人有感情的挫折,遇到困難,可能需要持續幾個小時,十幾個小時的不停工作,研究的最終結果的那一刻快樂是很容易的,嘆了口氣!
課程設計過程中,幾乎所有在過去所學的知識不扎實,很多計算方法,公式都忘了,不斷地把信息,閱讀,和同學們互相探討。雖然過程很辛苦,有時不得不打消了這個念頭,但一直堅持了下來,完成了設計,也學會了要回很多以前沒學好的知識,並同時鞏固這方面的知識,提高運用所學知識的能力。
11,參考的數據目錄
[1]「機械設計基礎課程設計,高等教育出版社,陳立德主編,第二版,2004年7月;
[2]「機械設計基礎,機械工業出版社的編輯胡甲秀2007年7月第一版
⑺ 物料搬運系統的設計原則
·1、確定方針原則:了解現有方法和問題,實體上和經濟上的限制,徹底了解問題所在,以設定未來的需求和目標。
◦應用場合:系統需求定位不明,如物料搬運設備的功能和顧客需求內容不合。
·2、規劃原則:建立一個計劃,包括基本需求和所有物料搬運和儲存活動的應變計劃。
◦應用場合:缺乏物料搬運的中長期計劃,未排定物料搬運設備的短期使用日程。
·3、系統原則:整合搬運和儲存活動,使得系統和活動經濟有效,包括進貨、檢驗、儲存、生產、組合、包裝、倉儲、出貨、運送等。
·應用場合:物料搬運中發生延遲,物料流程中有障礙,因物料短缺導致停機,作業順序不平衡,設備及車輛停滯未使用,物料運錯地點,到貨期不準時,多項定單同時出貨,在製品控制不良。
·
◦4、單元負載原則:在實務上,合並貨品使成單元負載。
·應用場合:缺乏使負載單元化及穩定化的設備,未使用托盤搬運的單元負載,內部使用物料未實施單元化。
·5、空間利用原則:充分有效地利用空間。
◦應用場合:存儲空間過度浪費,物料直接堆積在地板上,通道太多,存放空間不足,接受及運送時物料堆放在地板上,不善於使用立體空間。
·6.標准化原則:盡可能把搬運方法和設備標准化。
◦應用場合:廠內容器缺乏標准化,缺乏單元負載的標准,作業途程未標准化,物料搬運設備缺乏標准化,物料搬運系統未模塊化,工作站未模塊化,托板架的規格不一致,未按ABC分類存放,未依零件編號順序儲放,零件編號缺乏標准化。
·7、工效原則:了解人類的能力和限制以設計物料搬運設備和程序,使得使用系統的人和系統能有效互動。
◦應用場合:人工裝載技術欠佳,操作者為取物料而移動,用手舉升的危險性。
·8、能源原則:考慮物料搬運系統和物料搬運程序的能源消耗。
◦應用場合:物料搬運設備空轉,自動物料搬運設備使用率低,工業機器人使用率低,缺乏能源使用安排以及避免尖峰負荷,電池充電次數太多,照明能源的效率差。
·9、生態原則:使用對環境不良作用最少的物料搬運系統和物料搬運程序。
◦應用場合:充電區通風不良,環境控制區域隔絕設計不良。
·10、機械化原則:物料搬運過程機械化,以增進效率。
◦應用場合:利用直接勞動力搬運,搬運設備不足,物料供應的移動技術不合格,用人工裝卸托板,缺乏吊車及牽引車。
·11、彈性原則:所使用的方法和設備可以在不同的狀況下做不同的工作。
◦應用場合:固定路徑的搬運工作使用可變路徑的搬運設備,現有系統無法擴充或轉換
·12、簡單原則:通過消除減少和合並不需要的移動和設備,以簡化搬運。
◦應用場合:重復搬運,物料流程倒退,存儲規劃太煩瑣。
·13、重力原則:在考慮安全損壞遺失等因素下,盡可能使用重力移動物料。
◦應用場合:物料由低層往高層移動。
·14、安全原則:遵循安全原則,使用安全的物料搬運系統和方法。
◦應用場合:簡陋,危險的自製搬運設施,工作人員未預先訓練,物料搬運設備操作者未受正式訓練,沒有警衛保護物料,用托板懸吊負載,負載超過地板、貨架及結構負荷,設備運作超速,貨架未標明正反面,缺乏自動撒水裝置及火警警報器,危險性及易燃性的物料未給予明確標示和隔離,消防設備不完整,出入口不安全,沒有火災的應變計劃。
·15、電腦化原則:在物料搬運和儲存系統使用電腦,以增進物料搬運系統和物料搬運程序對物料和信息的控制。
◦應用場合:引導式通道軌道缺乏指示記錄,出貨單未按出貨順序列印,累計的定單以人工分類。
·16、系統流原則:處理物料搬運和儲存時,整合數據流動和物流流動。
◦應用場合:未及時分派設備,物料因書面作業而等待,未使用自動辨識系統,製造前未預先准備零件,接受工作沒有事先告知。
·17、布局原則:對所有可行的方案,准備操作順序和設備設計,接著選擇最有效的效果的方案。
◦應用場合:搬運距離很長,途徑交叉,工作場所布置不良,服務區配置不當,檢驗點位置不當,通道及存儲位置未標示,通道長度未規劃,缺乏窄道及特窄道存儲存儲設備,物料搬運設備與出口未配合,停車站沒有升降平台,停車站沒有圍籬,停車站門的數目不恰當,未適度分散接受及運送作業,燈光、加熱器及風扇擺設不當,物料存放的通風、空調及溫度不適當,物料、人員或設備移動距離過長,牆及天花板隔離不合理。
·18、成本原則:比較不同解決方案的每單位物料搬運成本。
◦應用場合:掌握過多的物料,搬運設備閑置,過多的承運費用,間接費用很高
·19、維修原則:對所有物料搬運設備,准備預防維修和定期維修的計劃。
◦應用場合:物料搬運設備維修成本過高,未清除過多的廢品,負荷梁下垂或貨架扭曲,沒有預防保養計劃。
·20、淘汰原則:考慮產品的生命周期,對過期的設備更新有長期且經濟的合理政策。
◦應用場合:搬運設備不適合,沒有設備更新計劃,搬運設備老舊。其他,物料搬運人員未設獎勵制度。
⑻ 搬運系統設計基礎分析方法有哪些
物料搬運系統(Material Handling System,MHS) 物料搬運系統是指一系列的相關設備和裝置,用於一個過程或邏輯動版作系統中,協調、合權理地對物料進行移動、儲存或控制。能進行物料搬運系統和設備、容器的設計、布置。
⑼ 想設計一個小型升降裝置,要求能精確控制升降高度,用線性步進電機還是用電動推桿更容易實現
升降高度是多少?一般用步進電機帶動絲桿就可以了。步進電機控制器、驅動器都有買。
⑽ 設計已螺旋輸送機的驅動裝置設計說明書
計算內容 計算結果
一, 設計任務書
設計題目:傳送設備的傳動裝置
(一)方案設計要求:
具有過載保護性能(有帶傳動)
含有二級展開式圓柱齒輪減速器
傳送帶鼓輪方向與減速器輸出軸方向平行
(二)工作機原始數據:
傳送帶鼓輪直徑___ mm,傳送帶帶速___m/s
傳送帶主動軸所需扭矩T為___N.m
使用年限___年,___班制
工作載荷(平穩,微振,沖擊)
(三)數據:
鼓輪D 278mm,扭矩T 248N.m
帶速V 0.98m/s,年限 9年
班制 2 ,載荷 微振
二.電機的選擇計算
1. 選擇電機的轉速:
a. 計算傳動滾筒的轉速
nw= 60V/πd=60×0.98/3.14×0.278=67.326 r/min
b.計算工作機功率
pw= nw/9.55×10³=248×67.326/9.55×10³=1.748Kw
2. 工作機的有效功率
a. 傳動裝置的總效率
帶傳動的效率η1= 0.96
彈性聯軸器的效率η2= 0.99
滾筒的轉速
nw=67.326 r/min
工作機功率
pw=1.748Kw
計算內容 計算結果
滾動軸承的效率 η3=0.99
滾筒效率 η4=0.96
齒輪嚙合效率 η5=0.97
總效率 η=η1×η2×η34×η4×η5²=
0.95×0.99×0.994×0.96×0.97²=0.816
c. 所需電動機輸出功率Pr=Pw/η=1.748/0.816=2.142kw
3. 選擇電動機的型號:
查參考文獻[10] 表16-1-28得 表1.1
方案
號 電機
型號 電機
質量
(Kg) 額定
功率
(Kw) 同步
轉速(r/min) 滿載
轉速
(r/min) 總傳
動比
1 Y100L1-4 34 2.2 1500 1420 21.091
2 Y112M-6 45 2.2 1000 940 13.962
根據以上兩種可行同步轉速電機對比可見,方案2傳動比小且質量價格也比較合理,所以選擇Y112M-6型電動機。
三.運動和動力參數的計算
1. 分配傳動比取i帶=2.5
總傳動比 i=13.962
i減=i/i帶=13.962/2.5=5.585
減速器高速級傳動比i1= =2.746
減速器低速級傳動比i2= i減/ i1=2.034
2. 運動和動力參數計算:
總效率
η=0.816
電動機輸出功率
Pr=2.142kw
選用三相非同步電動機Y112M-6
p=2.2 kw
n=940r/min
中心高H=1112mm,外伸軸段D×E=28×60
i=13.962
i12=2.746
i23=2.034
P0=2.142Kw
計算內容 計算結果
0軸(電動機軸):
p0=pr=2.142Kw
n0=940r/min
T0=9.55103P0/n0=9.551032.119/940=21.762N.m
Ⅰ軸(減速器高速軸):
p1=p.η1=2.1420.95=2.035Kw
n1= n0/i01=940/2.5=376
T1=9.55103P1/n1=51.687 N.m
Ⅱ軸(減速器中間軸):
p2=p1η12=p1η5η3=2.0350.970.99
=1.954 Kw
n2= n1/i12=376/2.746=136.926 r/min
T2=9.55103 P2/n2=136.283N.m
Ⅲ軸(減速器低速軸):
p3=p2η23= p2η5η3=1.876 Kw
n3= n2/i23=67.319 r/min
T3=9.55103 P3/n3=266.133 N.m
Ⅳ軸(鼓輪軸):
p4=p3η34=1.839 Kw
n4= n3=67.319 r/min
T4=9.55103 P4/n4=260.884 N.m
四.傳動零件的設計計算
(一)減速器以外的傳動零件
1.普通V帶的設計計算
(1) 工況系數取KA=1.2
確定dd1, dd2:設計功率pc=KAp=1.22.2=2.64Kw n0=940r/min
T0=21.762N.m
p1=2.035Kw
n1=376r/min
T1=51.687N.m
p2=1.954Kw
n2=136.926 r/min
T2=136.283 N.m
p3=1.876Kw
n3=67.319 r/min
T3=266.133N.m
p4=1.839 Kw
n4=67.319r/min
T4=260.884 N.m
小帶輪轉速n1= n0=940 r/min
選取A型V帶 取dd1=118mm
dd2=(n1/n2)dd1=(940/376) 118=295mm
取標准值dd2=315mm
實際傳動i=dd1/ dd2=315/118=2.669
所以n2= n1/i=940/2.669=352.192r/min(誤差為6.3%>5%)
重取 dd1=125mm,
dd2=(n1/n2)dd1=(940/376)125=312.5mm
取標准值dd2=315mm
實際傳動比i= dd1/ dd2=315/125=2.52
n2= n1/i=940/2.52=373.016
(誤差為8% 允許)
所選V帶帶速v=πdd1 n1/(601000)=3.14
125940/(601000)=6.152m/s
在5 ~25m/s之間 所選V帶符合
(2)確定中心距
①初定a0 :0.7(dd1 +dd2)≤a0≤ 2(dd1 +dd2)
308≤a0≤880 取a0=550mm
②Lc=2 a0+(π/2)( dd1 +dd2)+( dd2 -dd1)²/4 a0
=2550+(3.14/2) (315+125)+(315-125)²/4550=1807.559
③取標准值:Ld=1800mm
④中心距:a=a0+ (LdLc)/2=550+(1800-1807.559)/2
計算內容 計算結果
=546.221mm
取a=547mm,a的調整范圍為:
amax=a+0.03 Ld=601mm
amin=a-0.015Ld=520mm
(2)驗算包角:
α≈180°-(dd2-dd1) 60° /a=180°-(315-125) 60°/547=159°>120°,符合要求。
(3)確定根數:z≥pc/p0』
p0』=Kα(p0+Δp1+Δp2)
Kα=1.25(1- )=0.948
對於A型帶:c1=3.7810-4,c2=9.8110-3,
c3=9.610-15,c4=4.6510-5
L0=1700mm
ω1= = =98.437rad/s
p0= dd1ω1[c1- - c3 (dd1ω1)²- c4lg(dd1ω1)]
=12598.437[3.7810-4- -9.6
10-15 (12598.437)²- 4.6510-5
lg(12598.437)]=1.327
Δp1= c4dd1ω1 =0.148
Δp2=c4dd1ω1 =0.0142
p0』=0.948 (1.327+0.149+0.0142)=1.413 Kw
確定根數:z≥ ≤Zmax
z= = 取z=2
(4)確定初拉力F0
F0=500 =500×
=175.633KN
(5)帶對軸的壓力Q
Q=2 F0zsin =2 =690.768KN
(二)減速器以內的零件的設計計算
1.齒輪傳動設計
(1)高速級用斜齒輪
① 選擇材料
小齒輪選用40Cr鋼,調質處理,齒面硬度250~280HBS大齒輪選用ZG340~ 640,正火處理,齒面硬度170 ~ 220HBS
應力循環次數N:
N1=60n1jLh=60×376×(9×300×16)=9.74×108
N2= N1/i1=9.74×108 ÷2.746=3.549×108
查文獻[2]圖5-17得:ZN1=1.02 Z N2=1.11(允許有一點蝕)
由文獻[2]式(5-29)得:ZX1 = ZX2=1.0,取SHmin=1.0,Zw=1.0,ZLVR=0.92
按齒面硬度250HBS和170HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=450 Mpa
許用接觸應力[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=647.496 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=459.540 Mpa
因[σH]2〈[σH]1,所以計算中取[σH]= [σH]2 =459.540 Mpa
②按接觸強度確定中心距
初定螺旋角β=12° Zβ= =0.989
初取KtZεt2=1.12 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i1 =2.746,取Φa=0.4
端面壓力角αt=arctan(tanαn/cosβ)=arctan(tan20°/cos12°)=20.4103°
基圓螺旋角βb= arctan(tanβ×cosαt)= arctan(tan12°×cos20.4103°)=11.2665°
ZH= = =2.450
計算中心距a:
計算內容 計算結果
a≥
=
=111.178mm
取中心距 a=112mm
估算模數mn=(0.007~0.02)a=(0.007~0.02)×=
0.784~2.24
取標准模數mn=2
小齒輪齒數
實際傳動比: 傳動比誤差 在允許范圍之內
修正螺旋角β=
10°50′39〃
與初選β=12°相近,Zβ,ZH可不修正。
齒輪分度圓直徑
圓周速度
由文獻[2]表5-6 取齒輪精度為8級
③驗算齒面接觸疲勞強度
按電機驅動,載荷平穩,由文獻[2]表5-3 取 KA=1.25
由文獻[2]圖5-4(b),按8級精度和
取KV=1.023
齒寬 ,取標准b=45mm
由文獻[2]圖5-7(a)按b/d1=45/61.091=0.737,取Kβ=1.051
由文獻[2]表5-4,Kα=1.2
載荷系數K= KAKVKβKα=
計算重合度:
齒頂圓直徑
端面壓力角:
齒輪基圓直徑: mm
mm
端面齒頂壓力角:
高速級斜齒輪主要參數:
mn=2
z1=30, z2=80
β=
10°50′39〃
mt= mn/cosβ=2.036mm
d1=61.091mm
d2=162.909mm
da1=65.091mm
da2=166.909mm
df1= d1-2(ha*+ c*) mn=56.091mm
df2= d2-2(ha*+ c*) mn=157.909mm
中心距a=1/2(d1+d2)=112mm
齒寬b2=b=
45mm
b1= b2+(5~10)=50mm
計算內容 計算結果
齒面接觸應力
安全
④驗算齒根彎曲疲勞強度
由文獻[2]圖5-18(b)得:
由文獻[2]圖5-19得:
由文獻[2]式5-23:
取
計算許用彎曲應力:
計算內容
計算結果
由文獻[2]圖5-14得:
由文獻[2]圖5-15得:
由文獻[2]式5-47得計算
由式5-48: 計算齒根彎曲應力:
均安全。
⑵低速級直齒輪的設計
①選擇材料
小齒輪材料選用40Cr鋼,齒面硬度250—280HBS,大齒輪材料選用ZG310-570,正火處理,齒面硬度162—185HBS
計算應力循環次數N:同高速級斜齒輪的計算 N1=60 n1jL h=1.748×108
N2= N1/i1=0.858×108
計算內容
計算結果
查文獻[2]圖5-17得:ZN1=1.12 Z N2=1.14
按齒面硬度250HBS和162HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=440 Mpa
由文獻[2]式5-28計算許用接觸應力:
[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=710.976 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=461.472 Mpa
因[σH]2〈[σH]1,所以取[σH]= [σH]2 =461.472 Mpa
②按接觸強度確定中心距
小輪轉距T1=136.283N.m=136283N.m
初取KtZεt2=1.1 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i23=2.034,取Φa=0.35
計算中心距a: a≥
=145.294mm
取中心距 a=150mm估算模數m=(0.007~0.02)a=(0.007~0.02)×150=
1.05~3
取標准模數m=2
小齒輪齒數
齒輪分度圓直徑
齒輪齒頂圓直徑:
齒輪基圓直徑: mm
mm
圓周速度
由文獻[2]表5-6 取齒輪精度為8級
按電機驅動,載荷平穩,而工作機載荷微振,由文獻[2]表5-3 取 KA=1.25
按8級精度和 取KV=1.02
齒寬 b= ,取標准b=53mm
由文獻[2]圖5-7(a)按b/d1=53/100=0.53,取Kβ=1.03
由文獻[2]表5-4,Kα=1.1
載荷系數K= KAKVKβKα=
計算端面重合度:
安全。
③校核齒根彎曲疲勞強度
按z1=50, z2=100,由文獻[2]圖5-14得YFa1=2.36 ,YFa2=2.22
由文獻[2]圖5-15得YSa1= 1.71,YSa2=1.80。
Yε=0.25+0.75/ εα=0.25+0.75/1.804=0.666
由文獻[2]圖5-18(b),σFlim1=290Mp, σFlim2=152Mp
由文獻[2]圖5-19,YN1= YN2=1.0,因為m=4〈5mm,YX1= YX2=1.0。
取YST=2.0,SFmin=1.4。
計算許用彎曲應力:
[σF1]= σFlim1YST YN1 YX1/SFmin=414Mp
[σF2]= σFlim2YST YN2 YX2/SFmin=217Mp
計算齒根彎曲應力:
σF1=2KT1YFa1YSa1Yε/bd1m=2×1.445×136283×2.36×1.71×0.666/53×100×2=99.866Mp〈[σF1]
σF2=σF1 YFa2YSa2/ YFa1YSa1=98.866Mp〈[σF2]
均安全。
五.軸的結構設計和軸承的選擇
a1=112mm, a2=150mm,
bh2=45mm, bh1= bh2+(5~10)=50mm
bl2=53mm, bl1= bl2+(5~10)=60mm
(h----高速軸,l----低速軸)
考慮相鄰齒輪沿軸向不發生干涉,計入尺寸s=10mm,考慮齒輪與箱體內壁沿軸向不發生干涉,計入尺寸k=10mm,為保證滾動軸承放入箱體軸承座孔內,計入尺寸c=5mm,初取軸承寬度分別為n1=20mm,n2=22,n3=22mm,3根軸的支撐跨距分別為:
計算內容
低速級直齒輪主要參數:
m=2
z1=50, z1=50 z2=100
u=2.034
d1=100mm
d2=200mm
da1=104mm
da2=204mm
df1=
d1-2(ha*+ c*) m=95mm
df2=
d2-2(ha*+ c*) m=195mm
a=1/2(d2+ d1)=150mm
齒寬b2 =b=53mm
b1=b2+
(5~10)=60mm
計算結果
l1=2(c+k)+bh1+s+bl1+n1=2×(5+10)+50+10+60+20=170mm
l2=2(c+k)+bh1+s+bl1+n2=2×(5+10)+50+10+60+20=
172mm
l3=2(c+k)+bh1+s+bl1+n3=2×(5+10)+50+10+60+20=172mm
(2)高速軸的設計:
①選擇軸的材料及熱處理
由於高速軸小齒輪直徑較小,所以採用齒輪軸,選用40r鋼,
②軸的受力分析:
如圖1軸的受力分析:
lAB=l1=170mm,
lAC=n1/2+c+k+bh1/2=20/2+5+10+50/2=50mm
lBC= lAB- lAC=170-50=120mm
(a) 計算齒輪嚙合力:
Ft1=2000T1/d1=2000×51.687/61.091=162.131N
Fr1=Ft1tanαn/cosβ1692.13×tan20°/cos10.8441°=627.083N
Fa1= Ft1tanβ×tan10.8441°=324.141N
(b) 求水平面內支承反力,軸在水平面內和垂直面的受力簡圖如下圖:
RAx= Ft1 lBC/ lAB=1692.131×120/170=1194.445N
RBx= Ft1-RAx=1692.131-1194.445=497.686N
RAy=(Fr1lBC+Fa1d1/2)/lAB=(627.083×120+324.141×
61.091/2)/170=500.888N
RBy= Fr1-RAy=627.083-500.888=126.195N
(c) 支承反力
彎矩MA= MB=0,MC1= RA lAC=64760.85N.mm
MC2= RB lBC=61612.32N.mm
轉矩T= Ft1 d1/2=51686.987N.mm
計算內容
計算結果
d≥ ③軸的結構設計
按經驗公式,減速器輸入端軸徑A0 由文獻[2]表8-2,取A0=100
則d≥100 ,由於外伸端軸開一鍵槽,
d=17.557(1+5%)=18.435取d=20mm,由於da1<2d,用齒輪軸,根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:
高速軸上軸承選擇:選擇軸承30205 GB/T297-94。
(2)中間軸(2軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:
計算內容
計算結果
lAB=l2=172mm,
lAC=n2/2+c+k+bh1/2=22/2+5+10+50/2=51mm
lBC= lAB- lAC=172-51=121mm
lBD=n2/2+c+k+bl1/2=22/2+5+10+60/2=56mm
(a) 計算齒輪嚙合力:
Ft2=2000T2/d2=2000×136.283/162.909=1673.118N
Fr2=Ft2tanαn/cosβ=1673.118×tan20°/cos10.8441°=620.037N
Fa2=Ft2tanβ=1673.118×tan10.8441°=320.499N
Ft3=2000T2/d3=2000×136.283/100=2725.660N
Fr3=Ft3tanα=2725.660×tan20°=992.059N
(b)求水平面內和垂直面內的支反力
RAx=(Ft2lBC+Ft3lBD )/lAB=(1673.118×121+2725.660×56)/172=2064.443N
RBx=Ft2+Ft3-RAX=1673.118+2725.660-2064.443=2334.35N
RAY=(Fa2d2/2-Fr2lBC+Fr3lBD)/lAB=(320.449×162.909/2-620.037×121+992.059×56)=190.336N
RBY=Fr3-Fr2-RAY=992.059-620.037-190.336=
計算內容
計算結果
181.656N
RA=2073.191N, RB=2341.392N
③軸的結構設計
按經驗公式, d≥A0 由文獻[2]表8-2,取A0=110
則d≥110 ,取開鍵槽處d=35mm
根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:
中間軸上軸承選擇:選擇軸承6206 GB/T276-94。
(3)低速軸(3軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:
計算內容
計算結果
初估軸徑:
d≥A0 =110
聯接聯軸器的軸端有一鍵槽,dmin=33.5(1+3%)=34.351mm,取標准d=35mm
軸上危險截面軸徑計算:d=(0.3~0.4)a=(0.3~0.4)×150=45~60mm 最小值dmin =45×(1+3%)=46.35mm,取標准
計算內容 計算結果
50mm
初選6207GB/T276-94軸承,其內徑,外徑,寬度為40×80×18
軸上各軸徑及長度初步安排如下圖:
③低速級軸及軸上軸承的強度校核
a、 低速級軸的強度校核
①按彎扭合成強度校核:
轉矩按脈動循環變化,α≈0.6
Mca1= Mc=106962.324N.mm
Mca2=
Mca3=αT=159679.800N.mm
計算彎矩圖如下圖:
計算內容
計算結果
Ⅱ剖面直徑最小,而計算彎矩較大,Ⅷ剖面計算彎矩最大,所以校核Ⅱ,Ⅷ剖面。
Ⅱ剖面:σca= Mca3/W=159679.8/0.1×35³=37.243Mp
Ⅷ剖面:σca= Mca2/W=192194.114/0.1×50³=15.376Mp
對於45號綱,σB=637Mp,查文獻[2]表8-3得
[σb] -1=59
Mp,σca<[σb] -1,安全。
②精確校核低速軸的疲勞強度
a、 判斷危險截面:
各個剖面均有可能有危險剖面。其中,Ⅱ,Ⅲ,Ⅳ剖面為過度圓角引起應力集中,只算Ⅱ剖面即可。Ⅰ剖面與Ⅱ剖面比較,只是應力集中影響不同,可取應力集中系數較大者進行驗算。Ⅸ--Ⅹ面比較,它們直徑均相同,Ⅸ與Ⅹ剖面計算彎矩值小,Ⅷ剖面雖然計算彎矩值最大,但應力集中影響較小(過盈配合及鍵槽引起的應力集中均在兩端),所以Ⅵ與Ⅶ剖面危險,Ⅵ與Ⅶ剖面的距離較接近(可取5mm左右),承載情況也很接近,可取應力集中系數較大值進行驗算。
計算內容
計算結果
b.較核Ⅰ、Ⅱ剖面疲勞強度:Ⅰ剖面因鍵槽引
起的應力集中系數由文獻[2]附表1-1查得:kσ=1.76, kτ=1.54
Ⅱ剖面配合按H7/K6,引起的應力集中系數由文獻[2]附表1-1得:kσ=1.97, kτ=1.51。Ⅱ剖面因過渡圓角引起的應力集中系數查文獻[2]附表1-2(用插入法): (過渡圓角半徑根據D-d由文獻[1]表4.2-13查取) kτ=1.419,故應按過渡圓角引起的應力集中系數驗算Ⅱ剖面
Ⅱ剖面產生的扭應力、應力幅、平均應力為:
τmax =T/ WT=266.133/0.2×35³=31.036Mp,
τa=τm =τmax /2=15.52Mp
絕對尺寸影響系數查文獻[2]附表1-4得:εσ =0.88,ετ =0.81,表面質量系數查文獻[2]附表1-5:βσ =0.92,βτ =0.92
Ⅱ剖面安全系數為:
S=Sτ=
取[S]=1.5~1.8,S>[S] Ⅱ剖面安全。
b、 校核Ⅵ,Ⅶ剖面:
Ⅵ剖面按H7/K6配合,引起的應力集中系數查附表1-1,kσ=1.97, kτ=1.51
Ⅵ剖面因過渡圓角引起的應力集中系數查附表1-2, ,kσ=1.612,kτ=1.43
Ⅶ剖面因鍵槽引起的應力集中系數查文獻[2]附表1-1得:kσ=1.82, kτ=1.62。故應按過渡圓角引起
計算內容
計算結果
的應力集中系數來驗算Ⅵ剖面
MVⅠ=113 RA=922.089×113=104196.057N.mm, TVⅠ=266133N.mm
Ⅵ剖面產生的正應力及其應力幅、平均應力:
σmax= MVⅠ/W=104196.057/0.1×50³=8.336Mp
σa=σmax=8.366 σm=0
Ⅵ剖面產生的扭應力及其應力幅,平均應力為:
τmax =TⅥ/ WT=266133/0.2×50³
絕對尺寸影響系數由文獻[2]附表1-4得:εσ =0.84,ετ
=0.78
表面質量系數由文獻[2]附表1-5查得:βσ =0.92,βτ =0.92
Ⅵ剖面的安全系數:
Sσ =
Sτ=
S=
取[S]= 1.5~1.8,S>[S] Ⅵ剖面安全。
六.各個軸上鍵的選擇及校核
1.高速軸上鍵的選擇:
初選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp,σp= 滿足要求;
計算內容
高速軸上
選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm
中間軸
選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm,
計算結果
2.中間軸鍵的選擇:
A處:初選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm, [σp]=110Mp
σp= 滿足要求;
B處:初選A型10×45 GB1095-79:
b=10mm,h=8mm,L=32mm,l=22mm,[σp]=110Mp
σp= 滿足要求.
3. 低速軸上鍵的選擇:
a.聯軸器處選A型普通平鍵
初選A型10×50 GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp
σp= 滿足要求.
b. 齒輪處初選A型14×40 GB1096-79:b=14mm,h=9mm,L=40mm,l=26mm, [σp]=110Mp
σp= 滿足要求.
七.聯軸器的選擇
根據設計題目的要求,減速器只有低速軸上放置一聯軸器。
查表取工作情況系數K=1.25~1.5 取K=1.5
計算轉矩 Tc=KT=1.5×266.133=399.200Mp
選用HL3型聯軸器:J40×84GB5014-85,[T]=630N.m, Tc<[T],n<[n],所選聯軸器合適。
低速軸
聯軸器處選A型10×50GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm
低速軸
齒輪處初選A型14×40GB1096-79:
b=14mm,h=9mm,L=40mm,l=26mm
選用HL3型聯軸器:J40×84GB5014-85
參考資料:機械課程設計,理論力學