導航:首頁 > 裝置知識 > 溫度感測器報警裝置設計公式

溫度感測器報警裝置設計公式

發布時間:2022-06-01 08:15:21

❶ 使用溫度感測器DS18B20設計一溫控系統,當溫度超過35度或低於20度時,LED紅燈閃爍,蜂鳴器發出報警聲。

//這是我曾經做的一個溫度控制系統,可以調節上下限溫度,低於下限溫度啟動加熱,高於上限停止加熱。

//溫控系統控製程序
//版本號:V1.0;2015.6.19
//溫度感測器:DS18B20
//顯示方式:LED
#include <reg51.h>
#define uchar unsigned char
sbit keyup=P1^0;
sbit keydn=P1^1;
sbit keymd=P1^2;
sbit out=P3^7;//接控制繼電器
sbit DQ = P3^4;//接溫度感測器18B20
uchar t[2],number=0,*pt;//溫度值
uchar TempBuffer1[4]={0,0,0,0};
uchar Tmax=18,Tmin=8;
uchar distab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0xff,0xfe,0xf7};
uchar dismod=0,xiaodou1=0,xiaodou2=0,currtemp;
bit flag;
void t0isr() interrupt 1
{
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
switch(number)
{
case 0:
P2=0x08;
P0=distab[TempBuffer1[0]];
break;
case 1:
P2=0x04;
P0=distab[TempBuffer1[1]];
break;
case 2:
P2=0x02;
P0=distab[TempBuffer1[2]]&0x7f;
break;
case 3:
P2=0x01;
P0=distab[TempBuffer1[3]];
break;
default:
break;
}
number++;
if(number>3)number=0;
}

void delay_18B20(unsigned int i)
{
while(i--);
}

/**********ds18b20初始化函數**********************/

void Init_DS18B20(void)
{
bit x=0;
do{
DQ=1;
delay_18B20(8);
DQ = 0; //單片機將DQ拉低
delay_18B20(90); //精確延時 大於 480us
DQ = 1; //拉高匯流排
delay_18B20(14);
x=DQ; //稍做延時後 如果x=0則初始化成功 x=1則初始化失敗,繼續初始化
}while(x);
delay_18B20(20);
}

/***********ds18b20讀一個位元組**************/

unsigned char ReadOneChar(void)
{
unsigned char i=0;
unsigned char dat = 0;
for (i=8;i>0;i--)
{
DQ = 0; // 給脈沖信號
dat>>=1;
DQ = 1; // 給脈沖信號
if(DQ)
dat|=0x80;
delay_18B20(4);
}
return(dat);
}

/*************ds18b20寫一個位元組****************/

void WriteOneChar(unsigned char dat)
{
unsigned char i=0;
for (i=8; i>0; i--)
{
DQ = 0;
DQ = dat&0x01;
delay_18B20(5);
DQ = 1;
dat>>=1;
}
}

/**************讀取ds18b20當前溫度************/

unsigned char *ReadTemperature(unsigned char rs)
{
unsigned char tt[2];
delay_18B20(80);
Init_DS18B20();
WriteOneChar(0xCC); //跳過讀序號列號的操作
WriteOneChar(0x44); //啟動溫度轉換
delay_18B20(80);
Init_DS18B20();
WriteOneChar(0xCC); //跳過讀序號列號的操作
WriteOneChar(0xBE); //讀取溫度寄存器等(共可讀9個寄存器)前兩個就是溫度
tt[0]=ReadOneChar(); //讀取溫度值低位
tt[1]=ReadOneChar(); //讀取溫度值高位
return(tt);
}

void covert1(void)//將溫度轉換為LED顯示的數據
{
uchar x=0x00,y=0x00;
t[0]=*pt;
pt++;
t[1]=*pt;
if(t[1]&0x080) //判斷正負溫度
{
TempBuffer1[0]=0x0c; //c代表負
t[1]=~t[1]; /*下面幾句把負數的補碼*/
t[0]=~t[0]; /*換算成絕對值*********/
x=t[0]+1;
t[0]=x;
if(x==0x00)t[1]++;
}
else TempBuffer1[0]=0x0a;//A代表正
t[1]<<=4;//將高位元組左移4位
t[1]=t[1]&0xf0;
x=t[0];//將t[0]暫存到X,因為取小數部分還要用到它
x>>=4;//右移4位
x=x&0x0f;//和前面兩句就是取出t[0]的高四位
y=t[1]|x;//將高低位元組的有效值的整數部分拼成一個位元組
TempBuffer1[1]=(y%100)/10;
TempBuffer1[2]=(y%100)%10;
t[0]=t[0]&0x0f;//小數部分
TempBuffer1[3]=t[0]*10/16;
//以下程序段消去隨機誤檢查造成的誤判,只有連續12次檢測到溫度超出限制才切換加熱裝置
if(currtemp>Tmin)xiaodou1=0;
if(y<Tmin)
{
xiaodou1++;
currtemp=y;
xiaodou2=0;
}
if(xiaodou1>12)
{
out=0;
flag=1;
xiaodou1=0;
}
if(currtemp<Tmax)xiaodou2=0;
if(y>Tmax)
{
xiaodou2++;
currtemp=y;
xiaodou1=0;
}
if(xiaodou2>12)
{
out=1;
flag=0;
xiaodou2=0;
}
out=flag;
}
void convert(char tmp)
{
uchar a;
if(tmp<0)
{
TempBuffer1[0]=0x0c;
a=~tmp+1;
}
else
{
TempBuffer1[0]=0x0a;
a=tmp;
}
TempBuffer1[1]=(a%100)/10;
TempBuffer1[2]=(a%100)%10;
}
void keyscan( )
{
uchar keyin;
keyin=P1&0x07;
if(keyin==0x07)return;
else if(keymd==0)
{
dismod++;
dismod%=3;
while(keymd==0);
switch(dismod)
{
case 1:
convert(Tmax);
TempBuffer1[3]=0x11;
break;
case 2:
convert(Tmin);
TempBuffer1[3]=0x12;
break;
default:
break;
}
}
else if((keyup==0)&&(dismod==1))
{
Tmax++;
convert(Tmax);
while(keyup==0);
}
else if((keydn==0)&&(dismod==1))
{
Tmax--;
convert(Tmax);
while(keydn==0);
}
else if((keyup==0)&&(dismod==2))
{
Tmin++;
convert(Tmin);
while(keyup==0);
}
else if((keydn==0)&&(dismod==2))
{
Tmin--;
convert(Tmin);
while(keydn==0);
}
xiaodou1=0;
xiaodou2=0;
}
main()
{
TMOD=0x01;
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
TR0=1;
ET0=1;
EA=1;
out=1;
flag=0;
ReadTemperature(0x3f);
delay_18B20(50000);//延時等待18B20數據穩定
while(1)
{
pt=ReadTemperature(0x7f); //讀取溫度,溫度值存放在一個兩個位元組的數組中
if(dismod==0)covert1();
keyscan();
delay_18B20(30000);
}
}

❷ 詳解 PWM溫度感測器設計原理

DS18B20是DALLAS公司生產的一線式數字溫度感測器,具有3引腳TO-92小體積封裝形式;溫度測量范圍為-55℃~+125℃,可編程為9位~12位A/D轉換精度,測溫解析度可達0.0625℃,被測溫度用符號擴展的16位數字量方式串列輸出,支持3V~5.5V的電壓范圍,使系統設計更靈活、方便;其工作電源既可在遠端引入,也可採用寄生電源方式產生;多個DS18B20可以並聯到3根或2根線上,CPU只需一根埠線就能與諸多DS18B20通信,佔用微處理器的埠較少,可節省大量的引線和邏輯電路。以上特點使DS18B20非常適用於遠距離多點溫度檢測系統。解析度設定,及用戶設定的報警溫度存儲在EEPROM中,掉電後依然保存。DS18B20使電壓、特性有更多的選擇,讓我們可以構建適合自己的經濟的測溫系統。

❸ 求教,溫度感測器溫度的計算

電控發動機與化油器式發動機最大的不同在燃油供給系。電控發動機的燃油供給系取消了化油器,卻增加了不少電子自動控制裝置。其中包括許多感測器,執行元件和ECU。

電控發動機不僅要完成化油器所要完成的任務,而且要完成化油器難以完成的任務。例如,使可燃混合氣的空燃比濃度能控制在所需要的范圍內。化油器式發動機油路和電路劃分的非常清楚,互相影響不大。而電控發動機燃油供給系統增加了電子控制部分,這就使得油路和電路相互聯系,它不僅影響發動機燃油系的工作,而且還影響發動機的正常運行。由於電控發動機電子控制裝置的增加,這就使發動機的整個結構(包括電控系)更為復雜。

快速
導航

結構組成

 

工作原理

 

待測參數

 

優點

基本思想

在初期,是以電子技術替代機械控制技術實現系統的功能,並對其功能進行擴展,使性能得到大幅度提高;發展到一定程度後,電子技術可以促使系統原理發生本質變化,從而可以突破局限,使發動機性能得以大幅度提高。



電控發動機

結構組成

電子控制單元

電控單元(ECU)是發動機電子控制系統的核心。它完成發動機各種參數的採集和噴油量、噴油定時的控制,決定整個電控系統的功能。

感測器

感測器(Sensor)將發動機工況與環境的信息通過各種信號即時、真實的傳遞到ECU。

換句話說,ECU所了解到的只是一個由諸多信號所構成的發動機。所以,感測器信息的准確性、再現性與即時性就直接決定控制的好壞。

執行器

電控系統要完成的各種控制功能,是靠各種執行器來實現的。

在控制過程中,執行器將ECU傳來的控制信號轉換成某種機械運動或電器的運動,從而引起發動機運行參數的改變,完成控制功能。

工作原理

以發動機轉速和負荷作為反映發動機實際工況的基本信號,參照由試驗得出的發動機各工況相對應的噴油量和噴油定時脈譜圖來確定基本的噴油量和噴油定時,然後根據各種因素(如水溫、油溫、、大氣壓力等)對其進行各種補償,從而得到最佳的噴油量和噴油正時或點火定時,然後通過執行器進行控制輸出。

❹ 怎麼設計一個溫度感測器

集成溫度感測器AD590及其應用
摘 要:AD590是AD公司利用PN結構正向電流與溫度的關系製成的電流輸出型兩端溫度感測器,文中介紹了AD590的功能和特性,分析了AD590的工作原理,給出了採用AD590設計的...
www.bjx.com.cn/files/wx/gwdzyqj/2002-7/8.htm

2 電子技術文章-技術資料
集成溫度感測器AD590及其應用
集成溫度感測器AD590及其應用
瀏覽次數 1978
添加日期 2004-06-26 相關評論
主題: 有沒有數字電流表製作圖 ( 發布人:發布時間:2005-8-22 21:21:37 )
評論內容: 有沒有數字電流表製作圖 請問...
www.guangdongdz.com/special_column/techar ...

3 技術論壇 C++,VC...
集成溫度感測器AD590及其應用[
標題:集成溫度感測器AD590及其應用 htkj
等級:超級版主 文章:199 積分:2698 門派:無門無派
注冊:2005年...集成溫度感測器AD590及其應用集成溫度感測器AD590及其應用點擊瀏覽該文件

溫度感測器,使用范圍廣,數量多,居各種感測器之首。溫度感測器的發展大致經歷了以下3個階段:
1.傳統的分立式溫度感測器(含敏感元件),主要是能夠進行非電量和電量之間轉換。2.模擬集成溫度感測器/控制器。
3.智能溫度感測器。目前,國際上新型溫度感測器正從模擬式想數字式、集成化向智能化及網路化的方向發展。
溫度感測器的分類
溫度感測器按感測器與被測介質的接觸方式可分為兩大類:一類是接觸式溫度感測器,一類是非接觸式溫度感測器。
接觸式溫度感測器的測溫元件與被測對象要有良好的熱接觸,通過熱傳導及對流原理達到熱平衡,這是的示值即為被測對象的溫度。這種測溫方法精度比較高,並可測量物體內部的溫度分布。但對於運動的、熱容量比較小的及對感溫元件有腐蝕作用的對象,這種方法將會產生很大的誤差。
非接觸測溫的測溫元件與被測對象互不接觸。常用的是輻射熱交換原理。此種測穩方法的主要特點是可測量運動狀態的小目標及熱容量小或變化迅速的對象,也可測量溫度場的溫度分布,但受環境的影響比較大。
溫度感測器的發展
1.傳統的分立式溫度感測器——熱電偶感測器
熱電偶感測器是工業測量中應用最廣泛的一種溫度感測器,它與被測對象直接接觸,不受中間介質的影響,具有較高的精度;測量范圍廣,可從-50~1600℃進行連續測量,特殊的熱電偶如金鐵——鎳鉻,最低可測到-269℃,鎢——錸最高可達2800℃。

2.模擬集成溫度感測器
集成感測器是採用硅半導體集成工藝製成的,因此亦稱硅感測器或單片集成溫度感測器。模擬集成溫度感測器是在20世紀80年代問世的,它將溫度感測器集成在一個晶元上、可完成溫度測量及模擬信號輸出等功能。
模擬集成溫度感測器的主要特點是功能單一(僅測量溫度)、測溫誤差小、價格低、響應速度快、傳輸距離遠、體積小、微功耗等,適合遠距離測溫,不需要進行非線性校準,外圍電路簡單。

2.1光纖感測器

光纖式測溫原理
光纖測溫技術可分為兩類:一是利用輻射式測量原理,光纖作為傳輸光通量的導體,配合光敏元件構成結構型感測器;二是光纖本身就是感溫部件同時又是傳輸光通量的功能型感測器。光纖撓性好、透光譜段寬、傳輸損耗低,無論是就地使用或遠傳均十分方便而且光纖直徑小,可以單根、成束、Y型或陣列方式使用,結構布置簡單且體積小。因此,作為溫度計,適用的檢測對象幾乎無所不包,可用於其他溫度計難以應用的特殊場合,如密封、高電壓、強磁場、核輻射、嚴格防爆、防水、防腐、特小空間或特小工件等等。目前,光纖測溫技術主要有全輻射測溫法、單輻射測溫法、雙波長測溫法及多波長測溫等
2.1.1 全輻射測溫法
全輻射測溫法是測量全波段的輻射能量,由普朗克定律:

測量中由於周圍背景的輻射、測試距離、介質的吸收、發射及透過率等的變化都會嚴重影響准確度。同時輻射率也很難預知。但因該高溫計的結構簡單,使用操作方便,而且自動測量,測溫范圍寬,故在工業中一般作為固定目標的監控溫度裝置。該類光纖溫度計測量范圍一般在600~3000℃,最大誤差為16℃。
2.1.2 單輻射測溫法
由黑體輻射定律可知,物體在某溫度下的單色輻射度是溫度的單值函數,而且單色輻射度的增長速度較溫度升高快得多,可以通過對於單輻射亮度的測量獲得溫度信息。在常用溫度與波長范圍內,單色輻射亮度用維恩公式表示:

2.1.3 雙波長測溫法
雙波長測溫法是利用不同工作波長的兩路信號比值與溫度的單值關系確定物體溫度。兩路信號的比值由下式給出:

際應用時,測得R(T)後,通過查表獲知溫度T。同時,恰當地選擇λ1和λ2,使被測物體在這兩特定波段內,ε(λ1,T)與ε(λ2,T)近似相等,就可得到與輻射率無關的目標真實溫度。這種方法響應快,不受電磁感應影響,抗干擾能力強。特別在有灰塵,煙霧等惡劣環境下,對目標不充滿視場的運動或振動物體測溫,優越性顯著。但是,由於它假設兩波段的發射率相等,這只有灰體才滿足,因此在實際應用中受到了限制。該類儀器測溫范圍一般在600~3000℃,准確度可達2℃。

2.1.4 多波長輻射測溫法
多波長輻射測溫法是利用目標的多光譜輻射測量信息,經過數據處理得到真溫和材料光譜發射率。考慮到多波長高溫計有n個通道,其中第i個通道的輸出信號Si可表示為:

將式(9)~(13)中的任何一式與式(8)聯合,便可通過擬合或解方程的方法求得溫度T和光譜發射率。Coates[8,9]在1988年討論了式(9)、(10)假設下多波長高溫計數據擬合方法和精度問題。1991年Mansoor[10]等總結了多波長高溫計數據擬合方法和精度問題。 該方法有很高的精度,目前歐共體及美國聯合課題組的Hiernaut等人已研究出亞毫米級的6波長高溫計(圖4),用於2000~5000K真溫的測量[11]。哈爾濱工業大學研製成了棱鏡分光的35波長高溫計,並用於燒蝕材料的真溫測量。多波長高溫計在輻射真溫測量中已顯出很大潛力,在高溫,甚高溫,特別是瞬變高溫對象的真溫測量方面,多波長高溫計量是很有前途的儀器。該類儀器測溫范圍廣,可用於600~5000℃溫度區真溫的測量,准確度可達±1%。

2.1.5 結 論
光纖技術的發展,為非接觸式測溫在生產中的應用提供了非常有利的條件。光纖測溫技術解決了許多熱電偶和常規紅外測溫儀無法解決的問題。而在高溫領域,光纖測溫技術越來越顯示出強大的生命力。全輻射測溫法是測量全波段的輻射能量而得到溫度,周圍背景的輻射、介質吸收率的變化和輻射率εT的預測都會給測量帶來困難,因此難於實現較高的精度。單輻射測溫法所選波段越窄越好,可是帶寬過窄會使探測器接收的能量變得太小,從而影響其測量准確度。多波長輻射測溫法是一種很精確的方法,但工藝比較復雜,且造價高,推廣應用有一定困難。雙波長測溫法採用波長窄帶比較技術,克服了上述方法的諸多不足,在非常惡劣的條件下,如有煙霧、灰塵、蒸汽和顆粒的環境中,目標表面發射率變化的條件下,仍可獲得較高的精度
2.2半導體吸收式光纖溫度感測器是一種傳光型光纖溫度感測器。所謂傳光型光纖溫度感測器是指在光纖感測系統中,光纖僅作為光波的傳輸通路,而利用其它如光學式或機械式的敏感元件來感受被測溫度的變化。這種類型主要使用數值孔徑和芯徑大的階躍型多模光纖。由於它利用光纖來傳輸信號,因此它也具有光纖感測器的電絕緣、抗電磁干擾和安全防爆等優點,適用於傳統感測器所不能勝任的測量場所。在這類感測器中,半導體吸收式光纖溫度感測器是研究得比較深入的一種。
半導體吸收式光纖溫度感測器由一個半導體吸收器、光纖、光發射器和包括光探測器的信號處理系統等組成。它體積小,靈敏度高,工作可靠,容易製作,而且沒有雜散光損耗。因此應用於象高壓電力裝置中的溫度測量等一些特別場合中,是十分有價值的。
B 半導體吸收式光纖溫度感測器的測溫原理
半導體吸收式光纖溫度感測器是利用了半導體材料的吸收光譜隨溫度變化的特性實現的。根據 的研究,在 20~972K 溫度范圍內,半導體的禁帶寬度能量Eg 與
溫度T 的關系為
"

3.智能溫度感測器
智能溫度感測器(亦稱數字溫度感測器)是在20世紀90年代中期問世的。它是微電子技術、計算機技術和自動測試技術(ATE_)的結晶。目前,國際上已開發出多種智能溫度感測器系列產品。智能溫度感測器內部包含溫度感測器、A/D感測器、信號處理器、存儲器(或寄存器)和介面電路。有的產品還帶多路選擇器、中央控制器(CPU)、隨機存取存儲器(RAM)和只讀存儲器(ROM)。
智能溫度感測器能輸出溫度數據及相關的溫度控制量,適配各種微控制器(MCU),並且可通過軟體來實現測試功能,即智能化取決於軟體的開發水平。

3.1數字溫度感測器。
隨著科學技術的不斷進步與發展,溫度感測器的種類日益繁多,數字溫度感測器更因適用於各種微處理器介面組成的自動溫度控制系統具有可以克服模擬感測器與微處理器介面時需要信號調理電路和A/D轉換器的弊端等優點,被廣泛應用於工業控制、電子測溫計、醫療儀器等各種溫度控制系統中。其中,比較有代表性的數字溫度感測器有DS1820、MAX6575、DS1722、MAX6635等。
一、DS1722的工作原理
1 、DS1722的主要特點
DS1722是一種低價位、低功耗的三匯流排式數字溫度感測器,其主要特點如表1所示。
2、DS1722的內部結構
數字溫度感測器DS1722有8管腳m-SOP封裝和8管腳SOIC封裝兩種,其引腳排列如圖1所示。它由四個主要部分組成:精密溫度感測器、模數轉換器、SPI/三線介面電子器件和數據寄存器,其內部結構如圖2所示。

開始供電時,DS1722處於能量關閉狀態,供電之後用戶通過改變寄存器解析度使其處於連續轉換溫度模式或者單一轉換模式。在連續轉換模式下,DS1722連續轉換溫度並將結果存於溫度寄存器中,讀溫度寄存器中的內容不影響其溫度轉換;在單一轉換模式,DS1722執行一次溫度轉換,結果存於溫度寄存器中,然後回到關閉模式,這種轉換模式適用於對溫度敏感的應用場合。在應用中,用戶可以通過程序設置解析度寄存器來實現不同的溫度解析度,其解析度有8位、9位、10位、11位或12位五種,對應溫度解析度分別為1.0℃、0.5℃、0.25℃、0.125℃或0.0625℃,溫度轉換結果的默認解析度為9位。DS1722有摩托羅拉串列介面和標准三線介面兩種通信介面,用戶可以通過SERMODE管腳選擇通信標准。
3、DS1722溫度操作方法
感測器DS1722將溫度轉換成數字量後以二進制的補碼格式存儲於溫度寄存器中,通過SPI或者三線介面,溫度寄存器中地址01H和02H中的數據可以被讀出。輸出數據的地址如表2所示,輸出數據的二進制形式與十六進制形式的精確關系如表3所示。在表3中,假定DS1722 配置為12位解析度。數據通過數字介面連續傳送,MSB(最高有效位)首先通過SPI傳輸,LSB(最低有效位)首先通過三線傳輸。
4、DS1722的工作程序
DS1722的所有的工作程序由SPI介面或者三匯流排通信介面通過選擇狀態寄存器位置適合的地址來完成。表4為寄存器的地址表格,說明了DS1722兩個寄存器(狀態和溫度)的地址。
1SHOT是單步溫度轉換位,SD是關閉斷路位。如果SD位為「1」,則不進行連續溫度轉換,1SHOT位寫入「1」時,DS1722執行一次溫度轉換並且把結果存在溫度寄存器的地址位01h(LSB)和02h(MSB)中,完成溫度轉換後1SHOT自動清「0」。如果SD位是「0」,則進入連續轉換模式,DS1722將連續執行溫度轉換並且將全部的結果存入溫度寄存器中。雖然寫到1SHOT位的數據被忽略,但是用戶還是對這一位有讀/寫訪問許可權。如果把SD改為「1」,進行中的轉換將繼續進行直至完成並且存儲結果,然後裝置將進入低功率關閉模式。
感測器上電時默認1SHOT位為「0」。R0,R1,R2為溫度解析度位,如表5所示(x=任意值)。用戶可以讀寫訪問R2,R1和R0位,上電默認狀態時R2=「0」,R1=「0」,R0=「1」(9位轉換)。此時,通信口保持有效,用戶對SD位有讀/寫訪問許可權,並且其默認值是「1」(關閉模式)。
二、智能溫度感測器DS18B20的原理與應用
DS18B20是美國DALLAS半導體公司繼DS1820之後最新推出的一種改進型智能溫度感測器。與傳統的熱敏電阻相比,他能夠直接讀出被測溫度並且可根據實際要求通過簡單的編程實現9~12位的數字值讀數方式。可以分別在93.75 ms和750 ms內完成9位和12位的數字量,並且從DS18B20讀出的信息或寫入DS18B20的信息僅需要一根口線(單線介面)讀寫,溫度變換功率來源於數據匯流排,匯流排本身也可以向所掛接的DS18B20供電,而無需額外電源。因而使用DS18B20可使系統結構更趨簡單,可靠性更高。他在測溫精度、轉換時間、傳輸距離、解析度等方面較DS1820有了很大的改進,給用戶帶來了更方便的使用和更令人滿意的效果。
2DS18B20的內部結構
DS18B20採用3腳PR35封裝或8腳SOIC封裝,其內部結構框圖如圖1所示。

(1) 64 b閃速ROM的結構如下:

❺ 設計一個溫度測量及超限報警電路

我給你提供方法吧 你自己去實現

一個溫度感測器 一個比較器 當你設定的值超過 比較器設定的80度時的值,就輸出驅動蜂鳴器工作 就這么簡單

❻ 溫度報警器,用單片機實現,溫度范圍有用戶設定,要顯現出來並與實時溫度相比較進行報警, 怎麼實現呢

用18b20溫濕度檢測溫度的值,,然後和你設定的溫度值比較,如果超出了范圍就用給蜂鳴器賦值,觸發報警。。。

❼ 溫度自動報警器的報警原理

基於單片機語音數字聯網火災報警器設計

摘 要:使用AT89C51單片機,選用集成溫度感測器AD590和氣體感測器TGS202作為敏感元件,利用多感測器信息融合技術,開發了可用於小型單位火災報警的語音數字聯網報警器。 關鍵詞:單片機;感測器;信號處理;火災報警器 1 引 言 我國的火災自動報警控制系統經歷了從無到有、從簡單到復雜的發展過程,其智能化程度也越來越高。目前國內廠家多偏重用於大型倉庫、商場、高級寫字樓、賓館等場所大型火災報警系統的研發,他們採用集中區域報警控制方式,其系統復雜、成本較高。而在居民住宅區、機房、辦公室等小型防火單位,需要設置一種單一或區域聯網、廉價實用的火災自動探測報警裝置,因此,研製一種結構簡單、價格低廉的語音數字聯網火災報警器是非常必要的。 一般小型防火單位火災報警系統如圖1所示。現場火災報警器通過對感測器火情信息的檢測,使用智能識別演算法實現對火災的監測。當報警器監測到火情信息後,直接通過Modem經公用電話交換網迅速向消防指揮中心報告火情信息(包括火災單位編碼、單位名稱、火情級別以及報警時間等),同時產生聲光報警信號,並按事先預留的電話號碼自動撥號通知單位有關負責人。消防指揮中心根據接收到的火警信息,立即在消防信息資料庫中查詢單位位置、周圍道路、交通、水源情況等基本信息,根據所獲得的信息迅速確定最佳救火方案,通過網路將出警命令直接下達各消防中隊。本文將詳細介紹小型防火單位語音數字聯網報警器的設計與實現。 2 報警器硬體設計 2.1 硬體組成 如圖2所示,報警器硬體由溫度煙霧信號採集模塊、聲光報警模塊以及單片機與Modem通信模塊組成。圖中1,2,3組成數據採集模塊,4,5組成聲光報警模塊,5,6,7組成與Modem通信模塊。其中,1為感測器(包括煙感和溫感),將現場溫度、煙霧等非電信號轉化為電信號;2為信號調理電路,將感測器輸出的電信號進行調理(放大、濾波等),使之滿足A/D轉換的要求;3為A/D轉換電路,完成將溫度感測器和煙霧感測器輸出的模擬信號到數字信號的轉換。聲光報警模塊由單片機和報警電路組成,由單片機控制實現不同的聲光報警(異常報警、故障報警、火災報警)功能。單片機與Modem通信模塊由單片機、GM16C550串列埠擴展晶元和RS232電平轉換電路組成,實現報警器經Modem與消防指揮中心的通信。下面對上述各模塊進行簡要介紹。 2.2 溫度煙霧信號採集模塊 要准確地進行火災報警,選擇合適的溫度和煙霧感測器是准確報警的前提。綜合考慮各因素,本文選擇集成溫度感測器AD590和氣體感測器TGS202用作採集系統的敏感元件。 AD590是美國Analog Devices公司生產的一種電流型二端溫度感測器。電路如圖3所示。由於AD590是電流型溫度感測器,他的輸出同絕對溫度成正比,即1μA/k,而數模轉換晶元ADC0809的輸入要求是電壓量,所以在AD590的負極接出一個10 kΩ的電阻R1和一個100Ω的可調電阻W,將電流量變為電壓量送入ADC0809。通過調節可調電阻,便可在輸出端VT獲得與絕對溫度成正比的電壓量,即10 mV/K。 火災中氣體煙霧主要是CO2和CO。TGS202氣體感測器能探測CO2,CO,甲烷、煤氣等多種氣體,他靈敏度高,穩定性好,適合於火災中氣體的探測。如圖4所示,當TGS202探測到CO2或CO時,感測器的內阻變小,VA迅速上升。選擇適當的電阻阻值,使得當氣體濃度達到一定程度(如CO濃度達到0.06%)時,VA端獲得適當的電壓(設為3 V)。 A/D轉換電路採用了常用的8位8通道數模轉換專用晶元ADC0809,電路如圖5所示。溫度、煙霧感測器的輸出分別接到ADC0809的IN0和IN1。ADC0809的通道選擇地址A,B,C分別由89C51的P0.0~P0.2經地址鎖存器74LS373輸出提供。當P2.7=0時,與寫信號WR共同選通ADC0809。圖中ALE信號與ST信號連在一起,在WR信 號的前沿寫入地址信號,在其後沿啟動轉換。例如,輸出地址7FF8H可選通通道IN0,實現對溫度感測器輸出的模擬量進行轉換;輸出地址7FF9H可選通通道IN1,實現對煙霧感測器輸出的模擬量進行轉換。圖中ADC0809的轉換結束狀態信號EOC接到89C51的INT1引腳,當A/D轉換完成後,EOC變為高電平,表示轉換結束,產生中斷。在中斷服務程序中,將轉換好的數據送到指定的存儲單元。 2.3 聲光報警模塊 聲光報警電路在單片機P1口的控制下,可以根據不同情況(火災、異常、故障)發出不同的聲光報警信號。聲音信號由專用語音晶元提供。通過給語音晶元的S1和S2端輸入不同的邏輯電平(00,01,10,11),便可以獲得4種不同的聲音信號。由單片機的P1.0和P1.1控制。另外該晶元還需要一個選通信號,由P1.3提供。只有當該信號為高電平時,晶元才會根據S1和S2端的控制信號發出不同的報警聲,否則不會發聲報警。 由P1口的P1.4~P1.7分別控制4個發光二極體,予以光報警,如圖6所示。P1.4~P1.7控制的燈依次為綠色(正常信號燈)、黃色(故障信號燈)、紅色(異常信號燈)和紅色(火災信號燈)。當這些輸出端輸出低電平時,對應的信號燈便會發光報警。 2.4 單片機與Modem通信模塊 當報警器監測到火災信息後,除了在火災現場產生聲光報警信號外,還需要將火災信息按事先預留的電話號碼自動撥號通知單位有關人員,並迅速上報消防指揮中心,為此,系統設計了單片機與Modem通訊模塊,該模塊由單片機、GM16C550串列埠擴展晶元和RS232電平轉換電路組成。限於篇幅,對通訊模塊的硬體電路及編程不做詳細論述。 3 報警器監控程序設計 監控程序流程圖如圖7所示。系統復位後,首先要進行初始化,包括對各個控制用寄存器的初始化、設置中斷服務程序的入口地址、設置堆棧等。 為了便於系統維護和功能擴充,採用了模塊化程序設計方法,系統各個模塊的具體功能都是通過子程序調用實現的。本系統主要包括數據採集子程序、火災判斷與報警子程序以及Modem通訊子程序等。 3.1 數據採集子程序 數據採集部分的程序設計包括:驅動ADC0809的IN0和IN1進行A/D轉換,分別由子程序ADC1(溫度轉換)和ADC2(煙霧濃度轉換)完成;單片機接收轉換好的數據,存入指定內存單元,由INT1中斷服務程序完成。每次驅動A/D轉換後等待外部中斷1,中斷到來說明A/D轉換已經完成,通過中斷服務程序讀取轉換得到的數據。 3.2 火災判斷與報警程序 為了降低誤報率,系統採用了多次採集、多次判斷的方法。每次數據採集後根據得到的數據對現場情況進行判斷:00H表示正常、01H表示異常、02H表示火災;然後綜合多次判斷結果做出最終的火情判斷。數據在內部RAM存儲單元中的存放情況如表1所示。具體判斷方法如下: (1)對溫度和煙霧進行了兩次數據採集與判斷 溫度≥100℃,溫度異常,置標志位為1,否則為0;煙霧(CO,CO2)濃度≥0.06%,煙霧濃度異常,置標志位為1,否則為0。 (2)根據溫度和煙霧的異常標志位判斷現場情況 2個標志位均為0,表示情況正常,給53H或56H單元送00H;2個中僅有1個為1,表示情況異常,送01H;2個均為1,表示有火災發生,送02H。 (3)綜合兩次情況做最後判斷,並予以報警 若53H和56H中數據不相同,說明是誤報,調故障報警子程序;否則按該單元中的數據調相應的報警子程序。 00H為情況正常,返回。 01H為情況異常,調異常報警子程序。 02H為現場有火災,調火災報警子程序,並向消防中心報告火情。 4 結 語 本文研製的用於小型防火單位的語音數字聯網火災報警器具有以下特點: (1)能對室內煙霧(CO2,CO)及溫度突變進行報警(聲光報警)。 (2)如果出現硬體故障(如感測器遺落、內部元器件損壞等),能發出故障報警。 (3)如果只有一種參數出現異常(如煙霧濃度過大或是溫度較高),能發出異常報警信號,令值班人員到現場處理。 (4)如果煙霧和溫度同時出現異常,則說明有火災,發出火災警報,並及時將火災信息上報消防指揮中心。 現場模擬實驗表明,本系統安全可靠,誤報率低。且由於其體積小、操作維護方便、成本低廉等,具有廣闊的應用前景。
http://..com/question/4525751.html

❽ 請問PT100溫度感測器是怎麼計算成溫度的啊

PT100溫度感測器有個測量范圍,假設PT100溫度感測器的溫度是100度,你說是0-150度,那麼0度時設上去的值時0,150度時對應設上去的值就是32000,這么一種對應關系。溫度感測器檢測到的溫度是0度的話,它會送到PLC裡面去,PLC裡面對應的模擬量通道上就會產生一個數據,這個數據是0,如果是150度時,它會產生一個數據是32000,它們之間是線性變化的,成比例的換算。具體的你可以上技成去看看。

❾ 溫度自動報警器工作原理

【1】溫度自動報警器工作原理是根據單片機語音數字聯網火災報警器設計的。

【2】主要是使用AT89C51單片機,選用集成溫度感測器AD590和氣體感測器TGS202作為敏感元件,利用多感測器信息融合技術,開發了可用於小型單位火災報警的語音數字聯網報警器。 關鍵詞:單片機;感測器;信號處理;火災報警器 1 引 言 我國的火災自動報警控制。如下圖所示:

❿ 利用LM339設計一個溫度控制系統簡單電路

用四比較器的恆溫控制器 使用一個負溫度系數(NTC)的熱敏電阻,用如圖1a的電路可以用最少的元件、成本和復雜性將溫度控制到1℃或更好的精度。該電路含有保護以防止溫度感測器短路或開路,且所有的元器件都是常用件。 該控制器是PWM類型的,但它有指數的傳遞特性,而不是線性的。這個設計是基於一個LM339(四比較器),並包含了溫度補償。由於比較器的溫漂會產生的Vos的變化,並導致了振盪器輸出改變。然而,在產生工作周期的比較器上,也發生了同樣的變化,兩者相抵消從而消除了控制器的溫漂。 該控制器的核心是由IC1a、IC1b和相關元件組成的振盪器。振盪器輸出的電壓峰值和最小電壓值是決定控制器精度的主要因素。關於這個振盪器有以下一些公式: PERIOD=[R5×R6/(R5+R6)+R4]×C1×Ln[(Vas-Vmin)/(Vas-Vmax)] seconds DutyCycle=Ln[(Vas-Vtemp)/(Vas-Vmax)] / Ln[(Vas-Vmax)/(Vas-Vmin)] Vmax=Vcc×R3/(R1+R3) Vmin=Vcc×R2×R3/[R2×R3+R1×(R2+R3)] Vas=Vcc×R6/(R5+R6) Vtemp=Vcc×(R7+R8)/(Rtherm+R7+R8) 振盪器的輸出直接接到產生工作周期的比較器IC1c的輸入端。R8決定溫度的設置點。R8到Rtherm的分壓為產生工作周期的比較器提供比較電壓,比較的輸出驅動一個光隔離的雙向可控硅驅動器。 圖1所示出的元件參數值的溫度系列是25~115℃

閱讀全文

與溫度感測器報警裝置設計公式相關的資料

熱點內容
天然氣熱水器用過之後用不用關閉燃氣閥門 瀏覽:189
中華v3儀表盤怎麼設置自檢 瀏覽:818
軸承精車刀具怎麼檢驗 瀏覽:581
牆壁上的閥門怎麼更換 瀏覽:830
甲基橙制備實驗裝置 瀏覽:743
固體自動加料計量裝置 瀏覽:345
實驗裝置的安裝 瀏覽:10
平開窗五金件價格 瀏覽:825
摩擦軸承怎麼分 瀏覽:958
機械裝置及原理圖 瀏覽:646
天籟地暖的閥門怎麼開 瀏覽:353
電飯鍋老牌子機械有什麼 瀏覽:533
自噴管道濕報閥後閥門均加鎖具至開啟位置 瀏覽:336
做醫療器械的用什麼數控機床 瀏覽:404
空調製冷好使制熱不好使怎麼導線 瀏覽:906
北方五金機電公司物業電話 瀏覽:889
自動化設備生產什麼產品好 瀏覽:302
汽車前輪羊頭裡面軸承怎麼拆 瀏覽:979
機械制圖100j7什麼意思 瀏覽:510
河北油墨廢水處理設備哪裡賣 瀏覽:707