導航:首頁 > 裝置知識 > 設計某膠帶輸送機的傳動裝置外齒輪傳動及二級展開式圓柱齒輪減速器

設計某膠帶輸送機的傳動裝置外齒輪傳動及二級展開式圓柱齒輪減速器

發布時間:2022-04-16 11:19:57

機械設計題目:帶式運輸機傳動系統中的展開式二級圓柱齒輪減速器

給你一份我以前做的:
摘 要

齒輪箱作為一種基礎設備,被廣泛應用,其性能優劣直接影響著機械設備的運行狀況。而目前許多工廠尚不具備製造高精度齒輪箱的加工設備。另一方面,再好的設備加工出的零件也存在誤差,其累積誤差仍會影響齒輪箱裝配後的傳動性能。本文提出的無側隙傳動技術,從新的角度提出了在設備條件不足的情況下,利用主副齒輪來實現飛剪機的無側隙傳動。
「零側間隙嚙合」是:在盡量周到地考慮飛剪機工作條件下,將齒輪加工成在某一特定狀態(例如溫度,軸承游隙等)為「零側間隙嚙合」,事實上並非沒有側隙,只能說齒輪嚙合的齒側間隙是很小的。
常消除齒隙有很多方法,如提高加工精度,利用圓錐齒輪,四個齒輪串聯布置機構,利用主副齒輪。本設計就是採用主副齒輪。在某些飛剪機上,為了改善上下滾筒同步齒輪的工作性能,被動軸上的齒輪往往採用主副齒輪結構,以便齒輪在無側隙情況下工作,減少和消除沖擊負荷。利用主副齒輪則能有效消除齒側間隙,並且在減速器突然制動時,仍然能實現無間隙傳動。

關鍵詞: 飛剪機;減速器;間隙;主副齒輪

Abstract

Recer is widely used as a basic facility. It』s performance which is excellent or inferior has an impact on the running state of the mechanical equipment. But many factories don』t have machining equipment for manufacturing high-precision recer at present . On the other hand, even though the part is manufactured by the best equipment, it also has error. And their accumulative errors still affect on the transmission performance of recer after assembled.No lateral gap technology in this article put forward using main-second gear to achieve no lateral gap transmission of the flying shears at the state of having no adequate equipment by a new way.
「No lateral gap ingear」 is processing gear to a particular state(such as temperature, bearing clearance, etc.),considering the working conditions as much as possible. But in fact,it』s impossible that the gears have no lateral gap.The laterl gap of the gear is very small.
Usually there are many ways to eliminate lateral gap,such as improving the processing accuracy,using bevel gear, using four tandem gears and using main-second gear.This design has used the main-second gear. In some flying shears the running performance of the top and bottom selsyn roller usually can be improved by using main-second gear on the gear of the driven shaft.It can make the gear working at no lateral gap and eliminate shock load. The use of the main-second gear can eliminate lateral gap,and it still can achieve no lateral gap transmission when the recer is suddenly braked.

Key words:Flying shears; Recer; Lateral gap; Main-second gear

目 錄
1 前言 1
2 研究內容 2
3 傳動方案的分析與擬定 2
4 電動機的選擇 2
5 傳動裝置的運動及動力參數的選擇和計算 2
5.1 傳動裝備的總效率為 2
5.2 傳動比的分配 2
5.3 傳動裝置的運動和動力參數計算 2
5.3.1 各軸的轉速計算: 2
5.3.2 各軸的輸入功率計算: 3
5.3.3 各軸輸入轉矩的計算: 3
6 齒輪的計算 3
6.1 第一對斜齒輪的計算 3
6.1.1 材料選擇 3
6.1.2 初選齒輪齒數 3
6.1.3 按齒面接觸強度設計 3
6.1.4 按齒根彎曲疲勞強度設計 5
6.1.5 幾何尺寸計算 7
6.1.6 齒輪的尺寸計算 7
6.1.7 傳動驗算 8
6.2 第二對斜齒輪的計算 8
6.2.1 材料選擇 8
6.2.2 初選齒數 8
6.2.3 按齒面接觸強度設計 9
6.2.4 按齒根彎曲疲勞強度設計 10
6.2.5 幾何尺寸計算 12
6.3 按標准修正齒輪 12
6.3.1 修正中心距 12
6.3.2 對第二對齒輪修正螺旋角: 13
6.3.3 第二對齒輪的分度圓和中心距: 13
6.3.4 計算齒寬: 13
6.3.5 齒輪的尺寸計算 13
6.3.6 傳動驗算 14
7 軸的設計 15
7.1 高速軸的設計 15
7.1.1 初步確定軸的最小直徑: 15
7.1.2 根據軸向定位要求確定軸各段的直徑和長度 15
7.2 中速軸的設計 16
7.2.1 初步確定軸的最小直徑: 17
7.2.2 初步選擇滾動軸承 17
7.2.4 軸承端蓋 18
7.2.5 鍵的選擇 18
7.3 低速軸的計算 18
7.3.1 初步確定軸的最小直徑 18
7.3.2 根據軸向定位要求確定軸各段的直徑和長度 19
8 軸的校核 19
8.1 高速軸的校核 20
8.1.1 各支點間的距離 20
8.1.2 求軸上的載荷: 20
8.2 中速軸的校核 21
8.2.1 各支點間的距離 22
8.2.2 求軸上的載荷: 22
8.3 低速軸的校核 24
8.3.1 各軸段的距離 24
8.3.2 求軸上的載荷: 24
9 軸承的壽命計算 26
9.1 高速軸上軸承的壽命計算 26
9.1.1 求兩軸承受到的徑向載荷 和 26
9.1.2 求兩軸承的軸向力 和 27
9.1.3 求軸承當量重載荷P1和P2 27
9.2 中速軸上軸承的壽命計算 27
9.2.1 求兩軸承的軸向力 和 28
9.2.2 求軸承當量重載荷P1和P2 28
9.3 低速軸上軸承的壽命計算 28
9.3.1 求兩軸承受到的徑向載荷 和 28
9.3.2 求兩軸承的軸向力 和 29
9.3.3 求軸承當量重載荷P1和P2 29
10 鍵的校核 30
10.1 高速軸上和聯軸器相配處的鍵: 30
10.2 中速軸上和齒輪相配處的鍵: 30
10.3 低速軸上和齒輪相配處的鍵: 30
11 主副齒輪的設計 31
11.1 第一對主副齒輪的設計 31
11.2 第二對主副齒輪的設計 32
12 減速器箱體的設計 33
12.1 箱蓋各鋼板的尺寸: 34
12.1.1 箱蓋左側鋼板的尺寸如圖: 34
12.1.2 箱蓋軸承座的尺寸如圖: 34
12.1.3 箱蓋吊耳環下鋼板尺寸 34
12.1.4 吊耳環的尺寸 35
12.1.5 高速上肋板的尺寸 35
12.1.6 中速軸上的肋板的尺寸 35
12.1.7 視孔蓋的尺寸 36
12.1.9 箱蓋頂鋼板的尺寸 37
12.1.10 箱蓋凸緣鋼板尺寸 37
12.1.11 箱蓋前後側面的尺寸 38
12.2 箱座上各鋼板的尺寸 38
12.2.1 箱座底座的尺寸 38
12.2.2 箱座左側面的尺寸 39
12.2.3 軸承座的尺寸 39
12.2.4 吊鉤的尺寸 39
12.2.5 箱座凸緣的尺寸 39
12.2.6 低速端肋板鋼板尺寸 40
12.2.7 高速軸端肋板的尺寸 40
12.2.8 中速端肋板的尺寸 41
12.2.9 箱座右側面鋼板的尺寸 41
12.2.10 箱座前後端面的尺寸 42
12.2.11 箱座底板 42
13 結束語 42
參考文獻: 43
致謝: 43

1 前言
齒輪箱作為一種基礎設備,被廣泛應用,其性能優劣直接影響著機械設備的運行狀況。而目前許多工廠尚不具備製造高精度齒輪箱的加工設備。另一方面,再好的設備加工出的零件也存在誤差,其累積誤差仍會影響齒輪箱裝配後的傳動性能。本文提出的無側隙傳動技術,從新的角度提出了在設備條件不足的情況下,利用主副齒輪來實現飛剪機的無側隙傳動。
「零側間隙嚙合」是:在盡量周到地考慮飛剪機工作條件下,將齒輪加工成在某一特定狀態(例如溫度,軸承游隙等)為「零側間隙嚙合」,事實上並非沒有側隙,只能說齒輪嚙合的齒側間隙是很小的。
常消除齒隙有很多方法,如提高加工精度,利用圓錐齒輪,四個齒輪串聯布置機構,利用主副齒輪。本設計就是採用主副齒輪(圖1)。在某些飛剪機上,為了改善上下滾筒同步齒輪的工作性能,被動軸上的齒輪往往採用主副齒輪結構,以便齒輪在無側隙情況下工作,減少和消除沖擊負荷。利用主副齒輪則能有效消除齒側間隙,並且在減速器突然制動時,仍然能實現無間隙傳動。

圖1.1 飛剪機同步齒輪傳動的主副齒輪結構 a)結構簡圖 b)嚙合關系
1—從動軸的主齒輪 2—從動軸的副齒輪 3—主動軸上的齒輪 4—彈簧 5,6—銷釘
從動軸上的主齒輪1與軸用鍵固定,而副齒輪2則與主齒輪1的輪轂滑動配合(亦可直接空套在從動軸上)。主副齒輪通過壓裝在主齒輪輪轂上的銷釘5及裝在副齒輪上的銷釘6與彈簧4相聯,主副齒輪1和2同時與裝在主動軸上的齒輪3嚙合。在彈簧4的作用下,副齒輪始終越前主齒輪一個角度,這就保證了上下滾筒的同步齒輪在無側隙下工作。彈簧4的設計應能克服飛剪機制動時所產生的慣性力。這種齒輪側隙消除裝通常用在低速大載荷飛剪機上,例如在設計FL—60型曲柄連桿飛剪機的同步齒輪時就採用了這種結構。

2 研究內容
本設計對象為飛剪齒輪減速器,總傳動比i=16,實際輸入功率N=120KW;輸入轉速n1=1500rpm,輸出轉速n2≈85rpm,技術要求為滿足上述功率及速比要求,減速器啟動頻繁,工作時一般不逆轉,設計一台能消除傳動時的齒輪側間隙的減速器,要求減速器箱體為焊接結構件。合理公配速比,設計計算齒輪,軸及各零部件的強度,剛度。分析無側間隙傳動的基本理論及保證措施。

3 傳動方案的分析與擬定
減速器採用雙級圓柱展開式齒輪減速器。

4 電動機的選擇

5 傳動裝置的運動及動力參數的選擇和計算
5.1 傳動裝備的總效率為
η=η12η22η33η4=0.992 0.972 0.993 0.96=0.872 (5.1)
η1為聯軸器的效率,取0.99,
η2為齒輪傳動的效率,取0.97,
η3為滾動軸承的效率,取0.99,
η4為滾筒的效率,取0.96。
5.2 傳動比的分配
i1= (5.2)
取系數1.35 i=16 則,
i1=4.6476
i2=i/i1=16/4.6476=3.4426 (5.3)
5.3 傳動裝置的運動和動力參數計算
5.3.1 各軸的轉速計算:
n1=1500r/min
n2=n1/i1=1500/4.6476r/min=322.747r/min (5.4)
n3=n2/i2=322.747/3.4426r/min=93.751r/min (5.5)
n4=n3=93.751r/min (5.6)
5.3.2 各軸的輸入功率計算:
P1=N η1=120 0.99kW=118.8kW (5.7)
P2=P1 η2 η3=118.8 0.97 0.99kW=114.0836kW (5.8)
P3=P2 η2 η3=114.0836 0.97 0.99kW=109.5545kW (5.9)
P4=P3 η3 η1=109.5545 0.99 0.99kW=106.3744kW (5.10)
5.3.3 各軸輸入轉矩的計算:
T1=9550P1/n1=9550 118.8 1500N m=756.36 N m (5.11)
T2=9550P2/n2=9550 114.0836 322.7472 N m =3375.702N m (5.12)
T3=9550P3/n3=9550 109.5545 93.751 N m =11159.8327N m (5.13)
T4=9550P4/n4=9550 106.3744 93.751 N m=10937.7555 N m (5.14)
各軸的運動及動力參數:
軸號 轉速n r/min 功率P kw 轉矩T N m 傳動比
1 1500 118.8 756.36 4.6476
2 322.75 114.08 3375.7 3.4426
3 93.75 109.55 11159.83 1
4 93.75 106.37 10937.76

6 齒輪的計算
6.1 第一對斜齒輪的計算
6.1.1 材料選擇
選大小齒輪材料均為40Cr,並經調質及表面淬火,齒面硬度為48~55HRC,齒輪精度等級選擇6級,初選螺選角β=14°。由參考文獻《機械設計》(表10-6)查得材料的彈性影響系數 。
6.1.2 初選齒輪齒數
選小齒輪齒數Z1=24,Z2=Z1 =24 4.6476=111.54 取Z2=112
6.1.3 按齒面接觸強度設計
d1t (6.1)
6.1.3.1 確定載荷系數
因大小齒輪均為硬齒面,故宜選取稍小的齒寬系數,取 d=0.8,試選Kt=1.6。
由參考文獻《機械設計》查得
Hlim1= Hlim2=1100Mp
6.1.3.2 計算應力循環系數。
N1=60n1jLh=60 1500 1 (2 8 300 15)=6.48 109 (6.2)
N2=N1/i1=6.48 109/4.6476=1.39 109 (6.3)
由參考文獻《機械設計》(圖10-19)查得接觸疲勞強度
KHN1=0.88 KHN2=0.95
6.1.3.3 計算接觸疲勞許用應力
失效率取1%,安全系數S=1。
1= = Mp=968Mp (6.4)
2= = Mp=1045Mp (6.5)
=( 1+ 2)/2=(968+1045)/2Mp=1006.5Mp (6.6)
6.1.3.4 小齒分度圓的直徑
d1t =77.54mm (6.7)
6.1.3.5 計算圓周速度
= = m/s=6.09m/s (6.8)
6.1.3.6 計算齒寬b及模數mnt
b= =0.8 77.54mm=62.032mm (6.9)
mnt= = mm=3.135mm (6.10)
h=2.25mnt=7.053mm
b/h=62.032/7.053=8.795 (6.11)
6.1.3.7 計算縱向重合度
=0.318 =0.318 0.8 24 =1.522 (6.12)
6.1.3.8 計算載荷系數K
根據 =6.09m/s,6級精度,由參考資料《機械設計》(圖10-8)查得動載系數K =1.08,由參考資料《機械設計》(表10-3)查得
K =1.1,由由參考資料《機械設計》(表10-4)硬齒面齒輪一欄查得小齒輪相對支承非對稱布置,6級精度,K 時
K =1.05+0.31 (1+0.6 ) +0.19 (6.13)
故K =1.05+0.31 (6.14)
考慮到齒輪為6級精度,所以取K =1.43
故 =1 (6.15)
由參考資料《機械設計》(圖10-13)查得 =1.29
6.1.3.9 按實際的載荷系數校正所算得的分度圓直徑
(6.16)
6.1.3.10 計算模數mn
(6.17)
6.1.4 按齒根彎曲疲勞強度設計
(6.18)
6.1.4.1 計算載荷系數
=1 (6.18)
6.1.4.2 計算彎曲疲勞強度極限
由參考資料《機械設計》(圖10-20d)查得齒輪的彎曲疲勞強度極限
6.1.4.3 彎曲疲勞壽命系數
由參考資料《機械設計》(圖10-18)查得彎曲疲勞壽命系數 0,
6.1.4.4 計算彎曲疲勞許用應力
取彎曲疲勞安全系數S=1.4
(6.19)
(6.20)
6.1.4.5 計算大小齒輪的 並加以比較
由參考文獻《機械設計》(表10-5)查取齒形系數

查取應力校正系數

則 (6.21)
(6.22)
比較可得,小齒輪的數值較大,取小齒輪的值。
6.1.4.6 計算螺旋角影響系數
根據 =1.522,由參考資料《機械設計》(圖10-28)查得 =0.88
6.1.4.7 計算重合度
由參考資料《機械設計》(圖10-26)查得 , 。
則 (6.23)
則有, (6.24)
對比計算結果,齒面接觸強度得出的模數為mn=3.198mm,由齒根彎曲疲勞強度得出的模數為mn=3.082mm。由於齒輪模數m的大小主要取決於彎曲疲勞強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力僅與齒輪直徑有關,所以取標准值mn=3.5mm,取分度圓直徑d1=79.11mm。
(6.25)
取Z1=22
則Z2=uZ1=4.6476 22=102.24,取Z2=102 (6.26)
6.1.5 幾何尺寸計算
6.1.5.1 計算中心距
(6.27)
圓整後,取a=224mm
6.1.5.2 按圓整後的中心距修正螺旋角
(6.28)
因 值改變不多,故參數 , ,ZH 等不必修正。
6.1.5.3 計算分度圓直徑
(6.29)
(6.30)
6.1.5.4 計算齒輪寬度
(6.31)
圓整後取B1=75mm,B2=64mm
6.1.6 齒輪的尺寸計算
6.1.6.1 基圓直徑
(6.32)
(6.33)
6.1.6.2 分度圓齒厚
(6.34)

6.1.6.3 齒高
齒頂高 (6.35)
齒根高 (6.36)
齒全高 (6.37)
6.1.6.4 齒頂圓直徑
(6.38)
(6.39)
6.1.6.5 齒根圓直徑
(6.40)
(6.41)
6.1.6.6 分度圓齒槽寬和齒距
(6.42)
(6.43)
6.1.7 傳動驗算
6.1.6.1 按齒面接觸強度驗算:
其中
6.1.6.2 按齒根彎曲強度驗算
取YFa中較大者YFa1進行計算。
(6.44)
其中
6.2 第二對斜齒輪的計算
6.2.1 材料選擇
選大小齒輪材料均為40Cr,並經調質及表面淬火,齒面硬度為48~55HRC,齒輪精度等級選擇6級,初選螺選角β=14°。
6.2.2 初選齒數
選小齒輪齒數Z1=30,Z2=Z1 =30 3.4426=103.28 取Z2=104
6.2.3 按齒面接觸強度設計
d1t (6.45)
6.2.3.1 各項系數
因大小齒輪均為硬齒面,故宜選取稍小的齒寬系數,取 d=0.8,試選Kt=1.6。由參考文獻《機械設計》(表10-6)查得材料的彈性影響系數 。
6.2.3.2 Hlim值
由參考文獻《機械設計》查得
Hlim1= Hlim2=1100Mp
6.2.3.3 計算應力循環系數。
N1=60n1jLh=60 322.75 1 (2 8 300 15)=1.394 109 (6.46)
N2=N1/i1=1.394 109/3.4426=4.05 108 (6.47)
由參考文獻《機械設計》(圖10-19)查得接觸疲勞強度
KHN1=0.89 KHN2=0.94
6.2.3.4 計算接觸疲勞許用應力
失效率取1%,安全系數S=1。
1= = Mp=979Mp (6.48)
2= = Mp=1034Mp (6.49)
=( 1+ 2)/2=(979+1034)/2Mp=1006.5Mp (6.50)
6.2.3.5 小齒分度圓的直徑
d1t =130.25mm (6.51)
6.2.3.6 計算圓周速度
= = m/s=2.201m/s (6.52)
6.2.3.7 計算齒寬b及模數
b= =0.8 130.25mm=104.2mm
= = mm=4.213mm (6.53)
h=2.25mnt=9.479mm
b/h=104.2/9.479=8.795
6.2.3.8 計算縱向重合度
=0.318 =0.318 0.8 30 =1.903 (6.54)
6.2.3.9 計算載荷系數K
根據 =2.201m/s,6級精度,由參考資料《機械設計》(圖10-8)查得動載系數K =1.04,由參考資料《機械設計》(表10-3)查得
K =1.1,由由參考資料《機械設計》(表10-4)硬齒面齒輪一欄查得小齒輪相對支承非對稱布置,6級精度,K 時
K =1.0+0.31 (1+0.6 ) +0.19
故K =1.0+0.31 (6.55)
考慮到齒輪為6級精度,所以取K =1.35
故 =1 (6.66)
由參考資料《機械設計》(圖10-13)查得 =1.29
6.2.3.10 按實際的載荷系數校正所算得的分度圓直徑
(6.67)
6.2.3.11 計算模數mn
(6.68)
6.2.4 按齒根彎曲疲勞強度設計
(6.69)
6.2.4.1 計算載荷系數
=1 (6.70)
6.2.4.2 值
由參考資料《機械設計》(圖10-20d)查得齒輪的彎曲疲勞強度極限
6.2.4.3 彎曲疲勞壽命系數
由參考資料《機械設計》(圖10-18)查得彎曲疲勞壽命系數 0,
6.2.4.4 計算彎曲疲勞許用應力
取彎曲疲勞安全系數S=1.4
(6.71)
(6.72)
6.2.4.5 計算大小齒輪的 並加以比較
由參考文獻《機械設計》(表10-5)查取齒形系數:

查取應力校正系數:

則 (6.73)
(6.74)
比較可得,大齒輪的數值較大,取大齒輪的值。
6.2.4.6 計算螺旋角影響系數
根據 =1.903,由參考資料《機械設計》(圖10-28)查得 =0.88
6.2.4.7 計算重合度
由參考資料《機械設計》(圖10-26)查得 , 。

則有, (6.75)
對比計算結果,齒面接觸強度得出的模數為mn=4.21mm,由齒根彎曲疲勞強度得出的模數為mn=4.31mm。由於齒輪模數m的大小主要取決於彎曲疲勞強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力僅與齒輪直徑有關,所以取標准值mn=4.5mm,取分度圓直徑d1=130.25mm。
,取Z1=28
則Z2=uZ1=3.4426 28=96.39,取Z2=96
6.2.5 幾何尺寸計算
6.2.5.1 計算中心距
(6.76)
圓整後,取a=288mm
6.2.5.2 按圓整後的中心距修正螺旋角
(6.77)
因 值改變不多,故參數 , ,ZH 等不必修正。
6.2.5.3 計算分度圓直徑

6.2.5.4 計算齒輪寬度

圓整後取B1=120mm,B2=103mm
6.3 按標准修正齒輪
6.3.1 修正中心距
中心距之和為 ,查得標准中心距為a=539mm, , 。由於第一個中心距和標准相同,所以只需將第二個中心距修改為 即可。由於模數取的標准值所以不作變化,只更改第二對齒輪的齒數。
由於 所以
而 ,則有 , 。
中心距 ,改變不大,所以仍取 。
6.3.2 對第二對齒輪修正螺旋角:
(6.78)
因為改變不多,故 , , 等不必修正。
6.3.3 第二對齒輪的分度圓和中心距:

6.3.4 計算齒寬:

圓整後取 ,
6.3.5 齒輪的尺寸計算
6.3.5.1 基圓直徑

6.3.5.2 分度圓齒厚

6.3.5.3 齒高
齒頂高
齒根高
齒全高
6.3.5.4 齒頂圓直徑

7.3.5.5 齒根圓直徑

6.3.5.6 分度圓齒槽寬和齒距

6.3.6 傳動驗算
6.3.6.1 按齒面接觸強度驗算:
其中
6.3.6.2 按齒根彎曲強度驗算
取 中較大者 進行計算。
其中
所以滿足。

還是發你郵箱吧

⑵ 二級直齒展開式圓柱齒輪減速器課程設計的課程設計及實驗報告書

械設計課程設計任務書

班 級 姓 名

設計題目:帶式運輸機傳動裝置設計

布置形式:設計用於帶式運輸機的一級直齒圓柱齒輪減速器(Ⅰ)

傳動簡圖

原始數據:

數據編號 1 2 3 4 5 6

運輸帶工作拉力F/N 800 850 900 950 1100 1150

運輸帶工作速度v/(m/s) 1.5 1.6 1.7 1.5 1.55 1.6

捲筒直徑D/mm 250 260 270 240 250 260

工作條件:一班制,連續單向運轉。載荷平穩,室內工作,有粉塵。

使用期限:10 年

生產批量:10 套

動力來源:三相交流電(220V/380V )

運輸帶速度允許誤差:±5% 。
提問者: 浪人5 - 試用期 一級 其他回答 共 1 條
這個是我好不容易才找到的,一個東東啊,你可以自己看看啊,就差不多能自己理解了。。。給我你的郵箱發給你啊!我的是[email protected]

目 錄
設計任務書…………………………………………………2
第一部分 傳動裝置總體設計……………………………4
第二部分 V帶設計………………………………………6
第三部分 各齒輪的設計計算……………………………9
第四部分 軸的設計………………………………………13
第五部分 校核……………………………………………19
第六部分 主要尺寸及數據………………………………21

設 計 任 務 書

一、 課程設計題目:
設計帶式運輸機傳動裝置(簡圖如下)

原始數據:
數據編號 3 5 7 10
運輸機工作轉矩T/(N.m) 690 630 760 620
運輸機帶速V/(m/s) 0.8 0.9 0.75 0.9
捲筒直徑D/mm 320 380 320 360

工作條件:
連續單向運轉,工作時有輕微振動,使用期限為10年,小批量生產,單班制工作(8小時/天)。運輸速度允許誤差為 。
二、 課程設計內容
1)傳動裝置的總體設計。
2)傳動件及支承的設計計算。
3)減速器裝配圖及零件工作圖。
4)設計計算說明書編寫。

每個學生應完成:
1) 部件裝配圖一張(A1)。
2) 零件工作圖兩張(A3)
3) 設計說明書一份(6000~8000字)。

本組設計數據:
第三組數據:運輸機工作軸轉矩T/(N.m) 690 。
運輸機帶速V/(m/s) 0.8 。
捲筒直徑D/mm 320 。

已給方案:外傳動機構為V帶傳動。
減速器為兩級展開式圓柱齒輪減速器。

第一部分 傳動裝置總體設計

一、 傳動方案(已給定)
1) 外傳動為V帶傳動。
2) 減速器為兩級展開式圓柱齒輪減速器。
3) 方案簡圖如下:
二、該方案的優缺點:
該工作機有輕微振動,由於V帶有緩沖吸振能力,採用V帶傳動能減小振動帶來的影響,並且該工作機屬於小功率、載荷變化不大,可以採用V帶這種簡單的結構,並且價格便宜,標准化程度高,大幅降低了成本。減速器部分兩級展開式圓柱齒輪減速,這是兩級減速器中應用最廣泛的一種。齒輪相對於軸承不對稱,要求軸具有較大的剛度。高速級齒輪常布置在遠離扭矩輸入端的一邊,以減小因彎曲變形所引起的載荷沿齒寬分布不均現象。原動機部分為Y系列三相交流 非同步電動機。
總體來講,該傳動方案滿足工作機的性能要求,適應工作條件、工作可靠,此外還結構簡單、尺寸緊湊、成本低傳動效率高。
計 算 與 說 明 結果
三、原動機選擇(Y系列三相交流非同步電動機)
工作機所需功率: =0.96 (見課設P9)

傳動裝置總效率: (見課設式2-4)

(見課設表12-8)

電動機的輸出功率: (見課設式2-1)

選擇電動機為Y132M1-6 m型 (見課設表19-1)
技術數據:額定功率( ) 4 滿載轉矩( ) 960
額定轉矩( ) 2.0 最大轉矩( ) 2.0
Y132M1-6電動機的外型尺寸(mm): (見課設表19-3)
A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:270 AD:210 HD:315 BB:238 L:235
四、傳動裝置總體傳動比的確定及各級傳動比的分配
1、 總傳動比: (見課設式2-6)

2、 各級傳動比分配: (見課設式2-7)

初定

第二部分 V帶設計

外傳動帶選為 普通V帶傳動
1、 確定計算功率:
1)、由表5-9查得工作情況系數
2)、由式5-23(機設)
2、選擇V帶型號
查圖5-12a(機設)選A型V帶。
3.確定帶輪直徑
(1)、參考圖5-12a(機設)及表5-3(機設)選取小帶輪直徑
(電機中心高符合要求)
(2)、驗算帶速 由式5-7(機設)

(3)、從動帶輪直徑

查表5-4(機設) 取
(4)、傳動比 i

(5)、從動輪轉速

4.確定中心距 和帶長
(1)、按式(5-23機設)初選中心距


(2)、按式(5-24機設)求帶的計算基礎准長度L0

查圖.5-7(機設)取帶的基準長度Ld=2000mm
(3)、按式(5-25機設)計算中心距:a

(4)、按式(5-26機設)確定中心距調整范圍

5.驗算小帶輪包角α1
由式(5-11機設)

6.確定V帶根數Z
(1)、由表(5-7機設)查得dd1=112 n1=800r/min及n1=980r/min時,單根V帶的額定功率分呷為1.00Kw和1.18Kw,用線性插值法求n1=980r/min時的額定功率P0值。

(2)、由表(5-10機設)查得△P0=0.11Kw
(3)、由表查得(5-12機設)查得包角系數
(4)、由表(5-13機設)查得長度系數KL=1.03
(5)、計算V帶根數Z,由式(5-28機設)

取Z=5根
7.計算單根V帶初拉力F0,由式(5-29)機設。

q由表5-5機設查得
8.計算對軸的壓力FQ,由式(5-30機設)得

9.確定帶輪的結構尺寸,給制帶輪工作圖
小帶輪基準直徑dd1=112mm採用實心式結構。大帶輪基準直徑dd2=280mm,採用孔板式結構,基準圖見零件工作圖。

第三部分 各齒輪的設計計算

一、高速級減速齒輪設計(直齒圓柱齒輪)
1.齒輪的材料,精度和齒數選擇,因傳遞功率不大,轉速不高,材料按表7-1選取,都採用45號鋼,鍛選項毛坯,大齒輪、正火處理,小齒輪調質,均用軟齒面。齒輪精度用8級,輪齒表面精糙度為Ra1.6,軟齒面閉式傳動,失效形式為占蝕,考慮傳動平穩性,齒數宜取多些,取Z1=34 則Z2=Z1i=34×2.62=89
2.設計計算。
(1)設計准則,按齒面接觸疲勞強度計算,再按齒根彎曲疲勞強度校核。
(2)按齒面接觸疲勞強度設計,由式(7-9)

T1=9.55×106×P/n=9.55×106×5.42/384=134794 N?mm
由圖(7-6)選取材料的接觸疲勞,極限應力為
бHILim=580 бHILin=560
由圖 7-7選取材料彎曲疲勞極限應力
бHILim=230 бHILin=210
應力循環次數N由式(7-3)計算
N1=60n, at=60×(8×360×10)=6.64×109
N2= N1/u=6.64×109/2.62=2.53×109
由圖7-8查得接觸疲勞壽命系數;ZN1=1.1 ZN2=1.04
由圖7-9查得彎曲 ;YN1=1 YN2=1
由圖7-2查得接觸疲勞安全系數:SFmin=1.4 又YST=2.0 試選Kt=1.3
由式(7-1)(7-2)求許用接觸應力和許用彎曲應力

將有關值代入式(7-9)得

則V1=(πd1tn1/60×1000)=1.3m/s
( Z1 V1/100)=1.3×(34/100)m/s=0.44m/s
查圖7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.則KH=KAKVKβKα=1.42 ,修正
M=d1/Z1=1.96mm
由表7-6取標准模數:m=2mm
(3) 計算幾何尺寸
d1=mz1=2×34=68mm
d2=mz2=2×89=178mm
a=m(z1+z2)/2=123mm
b=φddt=1×68=68mm
取b2=65mm b1=b2+10=75
3.校核齒根彎曲疲勞強度
由圖7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強度.

二、低速級減速齒輪設計(直齒圓柱齒輪)
1.齒輪的材料,精度和齒數選擇,因傳遞功率不大,轉速不高,材料按表7-1選取,都採用45號鋼,鍛選項毛坯,大齒輪、正火處理,小齒輪調質,均用軟齒面。齒輪精度用8級,輪齒表面精糙度為Ra1.6,軟齒面閉式傳動,失效形式為點蝕,考慮傳動平穩性,齒數宜取多些,取Z1=34
則Z2=Z1i=34×3.7=104
2.設計計算。
(1) 設計准則,按齒面接觸疲勞強度計算,再按齒根彎曲疲勞強度校核。
(2)按齒面接觸疲勞強度設計,由式(7-9)

T1=9.55×106×P/n=9.55×106×5.20/148=335540 N?mm
由圖(7-6)選取材料的接觸疲勞,極限應力為
бHILim=580 бHILin=560
由圖 7-7選取材料彎曲疲勞極陰應力
бHILim=230 бHILin=210
應力循環次數N由式(7-3)計算
N1=60n at=60×148×(8×360×10)=2.55×109
N2= N1/u=2.55×109/3.07=8.33×108
由圖7-8查得接觸疲勞壽命系數;ZN1=1.1 ZN2=1.04
由圖7-9查得彎曲 ;YN1=1 YN2=1
由圖7-2查得接觸疲勞安全系數:SFmin=1.4 又YST=2.0 試選Kt=1.3
由式(7-1)(7-2)求許用接觸應力和許用彎曲應力

將有關值代入式(7-9)得

則V1=(πd1tn1/60×1000)=0.55m/s
( Z1 V1/100)=0.55×(34/100)m/s=0.19m/s
查圖7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.則KH=KAKVKβKα=1.377 ,修正
M=d1/Z1=2.11mm
由表7-6取標准模數:m=2.5mm
(3) 計算幾何尺寸
d1=mz1=2.5×34=85mm
d2=mz2=2.5×104=260mm
a=m(z1+z2)/2=172.5mm
b=φddt=1×85=85mm
取b2=85mm b1=b2+10=95
3.校核齒根彎曲疲勞強度
由圖7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強度.

總結:高速級 z1=34 z2=89 m=2
低速級 z1=34 z2=104 m=2.5

第四部分 軸的設計
高速軸的設計
1.選擇軸的材料及熱處理
由於減速器傳遞的功率不大,對其重量和尺寸也無特殊要求故選擇常用材料45鋼,調質處理.
2.初估軸徑
按扭矩初估軸的直徑,查表10-2,得c=106至117,考慮到安裝聯軸器的軸段僅受扭矩作用.取c=110則:
D1min=
D2min=
D3min=
3.初選軸承
1軸選軸承為6008
2軸選軸承為6009
3軸選軸承為6012
根據軸承確定各軸安裝軸承的直徑為:
D1=40mm
D2=45mm
D3=60mm
4.結構設計(現只對高速軸作設計,其它兩軸設計略,結構詳見圖)為了拆裝方便,減速器殼體用剖分式,軸的結構形狀如圖所示.
(1).各軸直徑的確定
初估軸徑後,即可按軸上零件的安裝順序,從左端開始確定直徑.該軸軸段1安裝軸承6008,故該段直徑為40mm。2段裝齒輪,為了便於安裝,取2段為44mm。齒輪右端用軸肩固定,計算得軸肩的高度為4.5mm,取3段為53mm。5段裝軸承,直徑和1段一樣為40mm。4段不裝任何零件,但考慮到軸承的軸向定位,及軸承的安裝,取4段為42mm。6段應與密封毛氈的尺寸同時確定,查機械設計手冊,選用JB/ZQ4606-1986中d=36mm的毛氈圈,故取6段36mm。7段裝大帶輪,取為32mm>dmin 。
(2)各軸段長度的確定
軸段1的長度為軸承6008的寬度和軸承到箱體內壁的距離加上箱體內壁到齒輪端面的距離加上2mm,l1=32mm。2段應比齒輪寬略小2mm,為l2=73mm。3段的長度按軸肩寬度公式計算l3=1.4h;去l3=6mm,4段:l4=109mm。l5和軸承6008同寬取l5=15mm。l6=55mm,7段同大帶輪同寬,取l7=90mm。其中l4,l6是在確定其它段長度和箱體內壁寬後確定的。
於是,可得軸的支點上受力點間的跨距L1=52.5mm,L2=159mm,L3=107.5mm。
(3).軸上零件的周向固定
為了保證良好的對中性,齒輪與軸選用過盈配合H7/r6。與軸承內圈配合軸勁選用k6,齒輪與大帶輪均採用A型普通平鍵聯接,分別為16*63 GB1096-1979及鍵10*80 GB1096-1979。
(4).軸上倒角與圓角
為保證6008軸承內圈端面緊靠定位軸肩的端面,根據軸承手冊的推薦,取軸肩圓角半徑為1mm。其他軸肩圓角半徑均為2mm。根據標准GB6403.4-1986,軸的左右端倒角均為1*45。。
5.軸的受力分析
(1) 畫軸的受力簡圖。
(2) 計算支座反力。
Ft=2T1/d1=
Fr=Fttg20。=3784
FQ=1588N
在水平面上
FR1H=
FR2H=Fr-FR1H=1377-966=411N
在垂直面上
FR1V=
Fr2V=Ft- FR1V=1377-352=1025N
(3) 畫彎矩圖
在水平面上,a-a剖面左側
MAh=FR1Hl3=966 52.5=50.715N?m
a-a剖面右側
M』Ah=FR2Hl2=411 153=62.88 N?m
在垂直面上
MAv=M』AV=FR1Vl2=352×153=53.856 N?m
合成彎矩,a-a剖面左側

a-a剖面右側

畫轉矩圖
轉矩 3784×(68/2)=128.7N?m
6.判斷危險截面
顯然,如圖所示,a-a剖面左側合成彎矩最大、扭矩為T,該截面左側可能是危險截面;b-b截面處合成灣矩雖不是最大,但該截面左側也可能是危險截面。若從疲勞強度考慮,a-a,b-b截面右側均有應力集中,且b-b截面處應力集中更嚴重,故a-a截面左側和b-b截面左、右側又均有可能是疲勞破壞危險截面。
7.軸的彎扭合成強度校核
由表10-1查得

(1)a-a剖面左側
3=0.1×443=8.5184m3
=14.57
(2)b-b截面左側
3=0.1×423=7.41m3
b-b截面處合成彎矩Mb:
=174 N?m
=27
8.軸的安全系數校核:由表10-1查得 (1)在a-a截面左側
WT=0.2d3=0.2×443=17036.8mm3
由附表10-1查得 由附表10-4查得絕對尺寸系數 ;軸經磨削加工, 由附表10-5查得質量系數 .則
彎曲應力
應力幅
平均應力
切應力

安全系數

查表10-6得許用安全系數 =1.3~1.5,顯然S> ,故a-a剖面安全.
(2)b-b截面右側
抗彎截面系數 3=0.1×533=14.887m3
抗扭截面系數WT=0.2d3=0.2×533=29.775 m3
又Mb=174 N?m,故彎曲應力

切應力

由附表10-1查得過盈配合引起的有效應力集中系數 。 則

顯然S> ,故b-b截面右側安全。
(3)b-b截面左側
WT=0.2d3=0.2×423=14.82 m3
b-b截面左右側的彎矩、扭矩相同。
彎曲應力

切應力

(D-d)/r=1 r/d=0.05,由附表10-2查得圓角引起的有效應力集中系數 。由附表10-4查得絕對尺寸系數 。又 。則

顯然S> ,故b-b截面左側安全。

第五部分 校 核
高速軸軸承

FR2H=Fr-FR1H=1377-966=411N

Fr2V=Ft- FR1V=1377-352=1025N
軸承的型號為6008,Cr=16.2 kN
1) FA/COr=0
2) 計算當量動載荷

查表得fP=1.2徑向載荷系數X和軸向載荷系數Y為X=1,Y=0
=1.2×(1×352)=422.4 N
3) 驗算6008的壽命

驗算右邊軸承

鍵的校核
鍵1 10×8 L=80 GB1096-79
則強度條件為

查表許用擠壓應力
所以鍵的強度足夠
鍵2 12×8 L=63 GB1096-79
則強度條件為

查表許用擠壓應力
所以鍵的強度足夠

聯軸器的選擇
聯軸器選擇為TL8型彈性聯軸器 GB4323-84
減速器的潤滑
1.齒輪的潤滑
因齒輪的圓周速度<12 m/s,所以才用浸油潤滑的潤滑方式。
高速齒輪浸入油里約0.7個齒高,但不小於10mm,低速級齒輪浸入油高度約為1個齒高(不小於10mm),1/6齒輪。
2.滾動軸承的潤滑
因潤滑油中的傳動零件(齒輪)的圓周速度V≥1.5~2m/s所以採用飛濺潤滑,

第六部分 主要尺寸及數據
箱體尺寸:
箱體壁厚
箱蓋壁厚
箱座凸緣厚度b=15mm
箱蓋凸緣厚度b1=15mm
箱座底凸緣厚度b2=25mm
地腳螺栓直徑df=M16
地腳螺栓數目n=4
軸承旁聯接螺栓直徑d1=M12
聯接螺栓d2的間距l=150mm
軸承端蓋螺釘直徑d3=M8
定位銷直徑d=6mm
df 、d1 、d2至外箱壁的距離C1=18mm、18 mm、13 mm
df、d2至凸緣邊緣的距離C2=16mm、11 mm
軸承旁凸台半徑R1=11mm
凸台高度根據低速軸承座外半徑確定
外箱壁至軸承座端面距離L1=40mm
大齒輪頂圓與內箱壁距離△1=10mm
齒輪端面與內箱壁距離△2=10mm
箱蓋,箱座肋厚m1=m=7mm
軸承端蓋外徑D2 :凸緣式端蓋:D+(5~5.5)d3
以上尺寸參考機械設計課程設計P17~P21
傳動比
原始分配傳動比為:i1=2.62 i2=3.07 i3=2.5
修正後 :i1=2.5 i2=2.62 i3=3.07
各軸新的轉速為 :n1=960/2.5=3.84
n2=384/2.61=147
n3=147/3.07=48
各軸的輸入功率
P1=pdη8η7 =5.5×0.95×0.99=5.42
P2=p1η6η5=5.42×0.97×0.99=5.20
P3=p2η4η3=5.20×0.97×0.99=5.00
P4=p3η2η1=5.00×0.99×0.99=4.90
各軸的輸入轉矩
T1=9550Pdi1η8η7/nm=9550×5.5×2.5×0.95×0.99=128.65
T2= T1 i2η6η5=128.65×2.62×0.97×0.99=323.68
T3= T2 i3η4η3=323.68×3.07×0.97×0.99=954.25
T4= T3 η2η1=954.23×0.99×0.99=935.26
軸號 功率p 轉矩T 轉速n 傳動比i 效率η
電機軸 5.5 2.0 960 1 1
1 5.42 128.65 384 2.5 0.94
2 5.20 323.68 148 2.62 0.96
3 5.00 954.25 48 3.07 0.96
工作機軸 4.90 935.26 48 1 0.98

齒輪的結構尺寸
兩小齒輪採用實心結構
兩大齒輪採用復板式結構
齒輪z1尺寸
z=34 d1=68 m=2 d=44 b=75
d1=68
ha=ha*m=1×2=2mm
hf=( ha*+c*)m=(1+0.25)×2=2.5mm
h=ha+hf=2+2.5=4.5mm
da=d1+2ha=68+2×2=72mm
df=d1-2hf=68-2×2.5=63
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
齒輪z2的尺寸
由軸可 得d2=178 z2=89 m=2 b=65 d4=49
ha=ha*m=1×2=2mm
h=ha+hf=2+2.5=4.5mm
hf=(1+0.5)×2=2.5mm
da=d2+2ha=178+2×2=182
df=d1-2hf=178-2×2.5=173
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
DT≈
D3≈1.6D4=1.6×49=78.4
D0≈da-10mn=182-10×2=162
D2≈0.25(D0-D3)=0.25(162-78.4)=20
R=5 c=0.2b=0.2×65=13

齒輪3尺寸
由軸可得, d=49 d3=85 z3=34 m=2.5 b=95
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.125=5.625
hf=(ha*+c*)m=(1+0.25)×2.5=3.125
da=d3+2ha=85+2×2.5=90
df=d1-2hf=85-2×3.125=78.75
p=πm=3.14×2.5=7.85
s=πm/2=3.14×2.5/2=3.925
e=s c=c*m=0.25×2.5=0.625
齒輪4寸
由軸可得 d=64 d4=260 z4=104 m=2.5 b=85
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.25=5.625
hf=(ha*+c*)m=(1+0.25)×0.25=3.125
da=d4+2ha=260+2×2.5=265
df=d1-2hf=260-2×3.125=253.75
p=πm=3.14×2.5=7.85
s=e=πm/2=3.14×2.5/2=3.925
c=c*m=0.25×2.5=0.625
D0≈da-10m=260-10×2.5=235
D3≈1.6×64=102.4

D2=0.25(D0-D3)=0.25×(235-102.4)=33.15
r=5 c=0.2b=0.2×85=17

參考文獻:
《機械設計》徐錦康 主編 機械工業出版社
《機械設計課程設計》陸玉 何在洲 佟延偉 主編
第3版 機械工業出版社
《機械設計手冊》
設計心得
機械設計課程設計是機械課程當中一個重要環節通過了3周的課程設計使我從各個方面都受到了機械設計的訓練,對機械的有關各個零部件有機的結合在一起得到了深刻的認識。
由於在設計方面我們沒有經驗,理論知識學的不牢固,在設計中難免會出現這樣那樣的問題,如:在選擇計算標准件是可能會出現誤差,如果是聯系緊密或者循序漸進的計算誤差會更大,在查表和計算上精度不夠准
在設計的過程中,培養了我綜合應用機械設計課程及其他課程的理論知識和應用生產實際知識解決工程實際問題的能力,在設計的過程中還培養出了我們的團隊精神,大家共同解決了許多個人無法解決的問題,在這些過程中我們深刻地認識到了自己在知識的理解和接受應用方面的不足,在今後的學習過程中我們會更加努力和團結。
由於本次設計是分組的,自己獨立設計的東西不多,但在通過這次設計之後,我想會對以後自己獨立設計打下一個良好的基礎。
參考資料:機械設計基礎

⑶ 設計題目:帶式運輸機傳動系統中的展開式二級圓柱齒輪減速器 工作條件:單向運轉,有輕微振動,經常滿載,

首先,計算輸送機滿載工作時的軸功率;
按計算出的軸功率的1.2~1.5倍選擇電動機;
電動機選定後,計算電動機的最大輸出扭矩;
按該輸出扭矩來計算減速機輸入軸的最小承載能力,主要是抗彎曲強度及疲勞強度;
有了輸入軸的參數,那麼順理成章,一級齒輪以及軸的相關參數及尺寸就解決了;
二級參數的取得,在按一級的計算結果為計算基礎的同時,要參考你最初計算的輸送機滿載時的最大軸功率,該功率就是減速機輸出軸的輸出功率。
如果還有不明白的,可以直接問我好了,今天早晨我突然很想為人師表。

⑷ 急求帶式輸送機傳動裝置中的二級圓柱齒輪減速器運動簡圖

http://blog.sina.com.cn/s/blog_67f1a2e40100rn7c.html
我博客裡面抄收集了一些網襲上下載的減速器設計說明書
你可以去參考一下,應該對你設計有幫助的。

⑸ 帶式輸送機傳動裝置中的展開式二級圓柱齒輪減速器設計

哈哈哈哈哈哈和華盛頓分公司的會告訴你精華素各式各樣閃光燈富華大廈廣泛的山東省倒也餓死孤兒時他
《》

⑹ 急求帶式輸送機傳動裝置中的二級圓柱齒輪減速器畢業設計

前 言

機械設計綜合課程設計在機械工程學科中佔有重要地位,它是理論應用於實際的重要實踐環節。本課程設計培養了我們機械設計中的總體設計能力,將機械設計系列課程設計中所學的有關機構原理方案設計、運動和動力學分析、機械零部件設計理論、方法、結構及工藝設計等內容有機地結合進行綜合設計實踐訓練,使課程設計與機械設計實際的聯系更為緊密。此外,它還培養了我們機械繫統創新設計的能力,增強了機械構思設計和創新設計。
本課程設計的設計任務是展開式二級圓柱齒輪減速器的設計。減速器是一種將由電動機輸出的高轉速降至要求的轉速比較典型的機械裝置,可以廣泛地應用於礦山、冶金、石油、化工、起重運輸、紡織印染、制葯、造船、機械、環保及食品輕工等領域。
本次設計綜合運用機械設計及其他先修課的知識,進行機械設計訓練,使已學知識得以鞏固、加深和擴展;學習和掌握通用機械零件、部件、機械傳動及一般機械的基本設計方法和步驟,培養學生工程設計能力和分析問題,解決問題的能力;提高我們在計算、制圖、運用設計資料(手冊、 圖冊)進行經驗估算及考慮技術決策等機械設計方面的基本技能,同時給了我們練習電腦繪圖的機會。
最後藉此機會,對本次課程設計的各位指導老師以及參與校對、幫助的同學表示衷心的感謝。
由於缺乏經驗、水平有限,設計中難免有不妥之處,懇請各位老師及同學提出寶貴意見。

帶式輸送機概論

帶式輸送機是一種摩擦驅動以連續方式運輸燃料的機械。應用它可以將物料在一定的輸送線上,從最初的供料點到最終的卸料點間形成一種物料的輸送流程。它既可以進行碎散物料的輸送,也可以進行成件物品的輸送。除進行純粹的物料輸送外,還可以與各工業企業生產流程中的工藝過程的要求相配合,形成有節奏的流水作業運輸線。所以帶式輸送機廣泛應用於現代化的各種工業企業中。在礦山的井下巷道、礦井地面運輸系統、露天采礦場及選礦廠中,廣泛應用帶式輸送機。它用於水平運輸或傾斜運輸。使用非常方便。
輸送機發展歷史
中國古代的高轉筒車和提水的翻車,是現代斗式提升機和刮板輸送機的雛形;17世紀中,開始應用架
空索道輸送散狀物料;19世紀中葉,各種現代結構的輸送機相繼出現。
1868年,在英國出現了帶式輸送機;1887年,在美國出現了螺旋輸送機;1905年,在瑞士出現了鋼帶式輸送機;1906年,在英國和德國出現了慣性輸送機。此後,輸送機受到機械製造、電機、化工和冶金工業技術進步的影響,不斷完善,逐步由完成車間內部的輸送,發展到完成在企業內部、企業之間甚至城市之間的物料搬運,成為材料搬運系統機械化和自動化不可缺少的組成部分。
輸送機的特點
帶式輸送機是煤礦最理想的高效連續運輸設備,與其他運輸設備(如機車類)相比具有輸送距離長、運量大、連續輸送等優點,而且運行可靠,易於實現自動化和集中化控制,尤其對高產高效礦井,帶式輸送機已成為煤炭開采機電一體化技術與裝備的關鍵設備。
帶式輸送機主要特點是機身可以很方便的伸縮,設有儲帶倉,機尾可隨採煤工作面的推進伸長或縮短,結構緊湊,可不設基礎,直接在巷道底板上鋪設,機架輕巧,拆裝十分方便。當輸送能力和運距較大時,可配中間驅動裝置來滿足要求。根據輸送工藝的要求,可以單機輸送,也可多機組合成水平或傾斜的運輸系統來輸送物料。
帶式輸送機廣泛地應用在冶金、煤炭、交通、水電、化工等部門,是因為它具有輸送量大、結構簡單、維修方便、成本低、通用性強等優點。
帶式輸送機還應用於建材、電力、輕工、糧食、港口、船舶等部門。
一、 設計任務書
設計一用於帶式運輸機上同軸式二級圓柱齒輪減速器
1. 總體布置簡圖

2. 工作情況
工作平穩、單向運轉
3. 原始數據
運輸機捲筒扭矩(N•m) 運輸帶速度(m/s) 捲筒直徑(mm) 使用年限(年) 工作制度(班/日)
350 0.85 380 10 1
4. 設計內容
(1) 電動機的選擇與參數計算
(2) 斜齒輪傳動設計計算
(3) 軸的設計
(4) 滾動軸承的選擇
(5) 鍵和聯軸器的選擇與校核
(6) 裝配圖、零件圖的繪制
(7) 設計計算說明書的編寫
5. 設計任務
(1) 減速器總裝配圖1張(0號或1號圖紙)
(2) 齒輪、軸、軸承零件圖各1張(2號或3號圖紙)
(3) 設計計算說明書一份
二、 傳動方案的擬定及說明
為了估計傳動裝置的總傳動比范圍,以便選擇合適的傳動機構和擬定傳動:方案,可由已知條件計算其驅動捲筒的轉速nw:

三. 電動機的選擇
1. 電動機類型選:Y行三相非同步電動機
2. 電動機容量
(1) 捲筒軸的輸出功率

(2) 電動機的輸出功率

傳動裝置的總效率
式中, 為從電動機至捲筒軸之間的各傳動機構和軸承的效率。由《機械設計課程設計》(以下未作說明皆為此書中查得)表2-4查得:V帶傳動 ;滾動軸承 ;圓柱齒輪傳動 ;彈性聯軸器 ;捲筒軸滑動軸承 ,則


(3) 電動機額定功率
由第二十章表20-1選取電動機額定功率
由表2-1查得V帶傳動常用傳動比范圍 ,由表2-2查得兩級展開式圓柱齒輪減速器傳動比范圍 ,則電動機轉速可選范圍為

可選符合這一范圍的同步轉速的電動3000 。

根據電動機所需容量和轉速,由有關手冊查出只有一種使用的電動機型號,此種傳動比方案如下表:
電動機型號 額定功率
電動機轉速
傳動裝置傳動比
Y100L-2 3 同步 滿載 總傳動比 V帶 減速器
3000 2880 62.06 2

三、 計算傳動裝置總傳動比和分配各級傳動比
1. 傳動裝置總傳動比

2. 分配各級傳動比
取V帶傳動的傳動比 ,則兩級圓柱齒輪減速器的傳動比為

按展開式布置考慮潤滑條件,為使兩級大齒輪直徑相近由圖12展開式曲線的
則i
所得 符合一般圓柱齒輪傳動和兩級圓柱齒輪減速器傳動比的常用范圍。
四、計算傳動裝置的運動和動力參數:

按電動機軸至工作機運動傳遞路線推算,得到各軸的運動和動力參數
1.各軸轉速:

2.各軸輸入功率:

Ⅰ~Ⅲ軸的輸出功率分別為輸入功率乘軸承效率0.99,捲筒軸輸出功率則為輸入功率乘捲筒的傳動效率0.96,計算結果見下表。

3. 各軸輸入轉矩:

Ⅰ~Ⅲ軸的輸出轉矩分別為輸入轉矩乘軸承效率0.99,捲筒軸輸出轉矩則為輸入轉矩乘捲筒的傳動效率0.96,計算結果見下表。

綜上,傳動裝置的運動和動力參數計算結果整理於下表:

軸名 功率
轉矩
轉速

傳動比

效率

輸入 輸出 輸入 輸出
電機軸 2.3 7.63 2880 2
0.96
I軸 2.21 14.65 1440
7.13
0.95
II軸 2.1 99.29 201. 96
4.35 0.95
III軸
2.0 410.58 46.43
1.00 0.98
捲筒軸 1.94 398.34

第三章 主要零部件的設計計算
§3.1 展開式二級圓柱齒輪減速器齒輪傳動設計

§3.1.1 高速級齒輪傳動設計
1. 選定齒輪類型、精度等級、材料及齒數
1)按以上的傳動方案,選用直齒圓柱齒輪傳動。
2)運輸機為一般工作,速度不高,故選用8級精度(GB 10095-88)。
3) 材料選擇。考慮到製造的方便及小齒輪容易磨損並兼顧到經濟性,兩級圓柱齒輪的大、小齒輪材料均用45鋼,大齒輪為正火處理,小齒輪熱處理均為調質處理且大、小齒輪的齒面硬度分別為260HBS,215HBS。
4)選小齒輪的齒數 ,大齒輪的齒數為 。
2. 按齒面接觸強度設計
由設計公式進行試算,即

(1) 確定公式內的各計算數值
1) 試選載荷系數
2) 由以上計算得小齒輪的轉矩:
3) 查6-12(機械設計基礎)表選取齒寬系數 ,查圖6-37(機械設計基礎)按齒面硬度的小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 。
計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1

4)計算應力循環次數

5) 按接觸疲勞壽命系數

(2) 計算:

1) 帶入 中較小的值,求得小齒輪分度圓直徑 的最小值為

3) 計算齒寬: 取 ,
4) 計算分度圓直徑與模數、中心距:
模數: 取第一系列標准值m=1.5
分度圓直徑:

中心距:
5) 校核彎曲疲勞強度:
符合齒形因數 由圖6-40得 =4.35, =3.98
彎曲疲勞需用應力:
1) 查圖6-41得彎曲疲勞強度極限 : ;
2) 查圖6-42取彎曲疲勞壽命系數
3) 計算彎曲疲勞許用應力.
取彎曲疲勞安全系數S=1,得

4) 校核計算:
<
<
故彎曲疲勞強度足夠
確定齒輪傳動精度:
圓周速度:
對照表6-9(機械設計基礎)根據一般通用機械精度等級范圍為6~8級可知,齒輪精度等級應選8級

§3.1.2 低速級齒輪傳動設計
1. 選定齒輪類型、精度等級、材料及齒數
1)按以上的傳動方案,選用直齒圓柱齒輪傳動。
2)運輸機為一般工作,速度不高,故選用8級精度(GB 10095-88)。
3) 材料選擇。考慮到製造的方便及小齒輪容易磨損並兼顧到經濟性,兩級圓柱齒輪的大、小齒輪材料均用45鋼,熱處理均為正火調質處理且大、小齒輪的齒面硬度分別為200HBS,250HBS,二者材料硬度差為40HBS。
4)選小齒輪的齒數 ,大齒輪的齒數為 ,取 。
2. 按齒面接觸強度設計
由設計公式進行試算,即

2) 確定公式內的各計算數值
1) 試選載荷系數
2) 由以上計算得小齒輪的轉矩
3) 查表及其圖選取齒寬系數 ,由圖6-37按齒面硬度的小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 。
4) 計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1

5) 查圖6-42取彎曲疲勞壽命系數

按接觸疲勞壽命系數

模數: 由表6-2取第一系列標准模數
分度圓直徑:
中心距:
齒寬:
校核彎曲疲勞強度:
復合齒形因數 由圖6-40得
6)計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1

校核計算: <
<
故彎曲疲勞強度足夠
確定齒輪傳動精度:
圓周速度:
對照表6-9(機械設計基礎)根據一般通用機械精度等級范圍為6~8級可知,齒輪精度等級應選8級
對各個軸齒輪相關計算尺寸
表6-3高速軸齒輪各個參數計算列表
名稱 代號 計算公式
齒數 Z

模數

壓力角

齒高系數

頂隙系數

齒距 P

齒槽寬 e

齒厚 s

齒頂高

齒根高

齒高 h

分度圓直徑 d

基圓直徑

齒頂圓直徑

齒根圓直徑

中心距

表6-3低速軸齒輪各個參數計算列表
名稱 代號 計算公式
齒數 Z

模數

壓力角

齒高系數

頂隙系數

齒距 P

齒槽寬 e

齒厚 s

齒頂高

齒根高

齒高 h

分度圓直徑 d

基圓直徑

齒頂圓直徑

齒根圓直徑

中心距

V帶的設計
1)計算功率

2)選擇帶型
據 和 =2880由圖10-12<械設計基礎>選取z型帶
3)確定帶輪基準直徑
由表10-9確定 <械設計基礎>

1) 驗算帶速
因為 故符合要求
2) 驗算帶長
初定中心距

由表10-6選取相近
3) 確定中心距

4) 驗算小帶輪包角
故符合要求
5) 單根V帶傳遞額定功率
據 和 查圖10-9得
8) 時單根V帶的額定功率增量:據帶型及 查表10-2<械設計基礎>得
10)確定帶根數
查表10-3 查表10-4 <械設計基礎>

11) 單根V帶的初拉力
查表10-5

12)用的軸上的力

13帶輪的結構和尺寸
以小帶輪為例確定其結構和尺寸,由圖10-11<械設計基礎>帶輪寬
§3.3 軸系結構設計
§3.3.1 高速軸的軸系結構設計
一、軸的結構尺寸設計
根據結構及使用要求,把該軸設計成階梯軸且為齒輪軸,共分七段,其中第5段為齒輪,如圖2所示:

圖2
由於結構及工作需要將該軸定為齒輪軸,因此其材料須與齒輪材料相同,均為合金鋼,熱處理為調制處理, 材料系數C為118。
所以,有該軸的最小軸徑為:
考慮到該段開鍵槽的影響,軸徑增大6%,於是有:
標准化取
其他各段軸徑、長度的設計計算依據和過程見下表:
表6 高速軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
(考慮鍵槽影響)

13.6

16

60
第2段
(由唇形密封圈尺寸確定)

20(18.88)

50
第3段 由軸承尺寸確定
(軸承預選6004 B1=12)

20

23
第4段

24(23.6)

145
第5段 齒頂圓直徑
齒寬
33

38
第6段

24

10
第7段

20

23
二、軸的受力分析及計算
軸的受力模型簡化(見圖3)及受力計算
L1=92.5 L2=192.5 L3=40

三、軸承的壽命校核
鑒於調整間隙的方便,軸承均採用正裝.預設軸承壽命為3年即12480h.
校核步驟及計算結果見下表:
表7 軸承壽命校核步驟及計算結果
計算步驟及內容 計算結果
6007軸承

A端 B端
由手冊查出Cr、C0r及e、Y值 Cr=12.5kN
C0r=8.60kN
e=0.68
計算Fs=eFr(7類)、Fr/2Y(3類) FsA=1809.55 FsB=1584.66
計算比值Fa/Fr FaA /FrA>e FaB /FrB< e
確定X、Y值 XA= 1,YA = 0, XB =1 YB=0
查載荷系數fP 1.2
計算當量載荷
P=Fp(XFr+YFa) PA=981.039 PB=981.039
計算軸承壽命

9425.45h
小於
12480h
由計算結果可見軸承6007合格.

表8 中間軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
由軸承尺寸確定
(軸承預選6008 )

33.6

40

25

第2段
(考慮鍵槽影響)

45(44.68)

77.5
第3段

50

12.5
第4段

99

109

第5段

46

39
考慮到低速軸的載荷較大,材料選用45,熱處理調質處理,取材料系數
所以,有該軸的最小軸徑為:
考慮到該段開鍵槽的影響,軸徑增大6%,於是有:
標准化取
其他各段軸徑、長度的設計計算依據和過程見下表:
表10 低速軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
(考慮鍵槽影響)
(由聯軸器寬度尺寸確定)

52.49
60(55.64)

142

第2段
(由唇形密封圈尺寸確定)

64(63.84)

50
第3段

66
16

第4段 由軸承尺寸確定
(軸承預選6014C )

70

24
第5段

78

75
第6段
20

88

20
第7段
齒寬+10
80(79.8)

119
§3.3.4 各軸鍵、鍵槽的選擇及其校核
因減速器中的鍵聯結均為靜聯結,因此只需進行擠壓應力的校核.
一、 高速級鍵的選擇及校核:
帶輪處鍵:按照帶輪處的軸徑及軸長選 鍵B8X7,鍵長50,GB/T1096
聯結處的材料分別為: 45鋼(鍵) 、40Cr(軸)
二、中間級鍵的選擇及校核:
(1) 高速級大齒輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B14X9GB/T1096
聯結處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、20Cr(軸)
此時, 鍵聯結合格.
三、低速級級鍵的選擇及校核
(1)低速級大齒輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B22X14,鍵長 GB/T1096
聯結處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、45(軸)
其中鍵的強度最低,因此按其許用應力進行校核,查手冊其

該鍵聯結合格
(2)聯軸器處鍵: 按照聯軸器處的軸徑及軸長選 鍵16X10,鍵長100,GB/T1096
聯結處的材料分別為: 45鋼 (聯軸器) 、45鋼(鍵) 、45(軸)
其中鍵的強度最低,因此按其許用應力進行校核,查手冊其

該鍵聯結合格.

第四章 減速器箱體及其附件的設計
§4.1箱體結構設計
根據箱體的支撐強度和鑄造、加工工藝要求及其內部傳動零件、外部附件的空間位置確定二級齒輪減速器箱體的相關尺寸如下:(表中a=322.5)
表12 箱體結構尺寸
名稱 符號 設計依據 設計結果
箱座壁厚 δ 0.025a+3=11 11
考慮鑄造工藝,所有壁厚都不應小於8
箱蓋壁厚 δ1 0.02a+3≥8 9.45
箱座凸緣厚度 b 1.5δ 16.5
箱蓋凸緣厚度 b1 1.5δ1 14.18
箱座底凸緣厚度 b2 2.5δ 27.5
地腳螺栓直徑 df 0.036a+12 24(23.61)
地腳螺栓數目 n 時,n=6
6
軸承旁聯結螺栓直徑 d1 0.75df 18
箱蓋與箱座聯接螺栓直徑 d 2 (0.5~0.6)df 12
軸承端蓋螺釘直徑和數目 d3,n (0.4~0.5)df,n 10,6
窺視孔蓋螺釘直徑 d4 (0.3~0.4)df 8
定位銷直徑 d (0.7~0.8) d 2 9
軸承旁凸台半徑 R1 c2 16
凸台高度 h 根據位置及軸承座外徑確定,以便於扳手操作為准 34
外箱壁至軸承座端面距離 l1 c1+c2+ (5~10) 42
大齒輪頂圓距內壁距離 ∆1 >1.2δ 11
齒輪端面與內壁距離 ∆2 >δ 10
箱蓋、箱座肋厚 m1 、 m m1≈0.85δ1 =8.03 m≈0.85δ=9.35 7
軸承端蓋凸緣厚度 t (1~1.2) d3 10
軸承端蓋外徑 D2 D+(5~5.5) d3 120
軸承旁邊連接
螺栓距離

S
120
第五章 運輸、安裝和使用維護要求
1、減速器的安裝
(1)減速器輸入軸直接與原動機連接時,推薦採用彈性聯軸器;減速器輸出軸與工作機聯接時,推薦採用齒式聯軸器或其他非剛性聯軸器。聯軸器不得用錘擊裝到軸上。
(2)減速器應牢固地安裝在穩定的水平基礎上,排油槽的油應能排除,且冷卻空氣循環流暢。
(3)減速器、原動機和工作機之間必須仔細對中,其誤差不得大於所用聯軸器的許用補償量。
(4)減速器安裝好後用手轉動必須靈活,無卡死現象。
(5)安裝好的減速器在正式使用前,應進行空載,部分額定載荷間歇運轉1~3h後方可正式運轉,運轉應平穩、無沖擊、無異常振動和雜訊及滲漏油等現象,最高油溫不得超過100℃;並按標准規定檢查輪齒面接觸區位置、面積,如發現故障,應及時排除。
2、使用維護
本類型系列減速器結構簡單牢固,使用維護方便,承載能力范圍大,公稱輸入功率0.85—6660kw,公稱輸出轉矩100—410000N.m,不怕工況條件惡劣,是適用性很好,應用量大面廣的產品。可通用於礦山、冶金、運輸、建材、化工、紡織、輕工、能源等行業的機械傳動。但有以下限制條件:
1.減速器高速軸轉速不高於1000r/min;
2.減速器齒輪圓周速度不高於20m/s;
3.減速器工作環境溫度為—40~45℃,低於0℃時,啟動前潤滑油應預熱到8℃以上,高於45℃時應採取隔熱措施。
3、減速器潤滑油的更換:
(1)減速器第一次使用時,當運轉150~300h後須更換潤滑油,在以後的使用中應定期檢查油的質量。對於混入雜質或變質的油須及時更換。一般情況下,對於長期工作的減速器,每500~1000h必須換油一次。對於每天工作時間不超過8h的減速器,每1200~3000h換油一次。
(2)減速器應加入與原來牌號相同的油,不得與不同牌號的油相混用。牌號相同而粘度不同的油允許混合用。
(3)換油過程中,蝸輪應使用與運轉時相同牌號的油清洗。
(4)工作中,當發現油溫溫升超過80℃或油池溫度超過100℃及產生不正常的雜訊等現象時,應停止使用,檢查原因。如因齒面膠合等原因所致,必須排除故障,更換潤滑油後,方可繼續運轉。
減速器應定期檢修。如發現擦傷、膠合及顯著磨損,必須採用有效措施制止或予以排除。備件必須按標准製造,更新的備件必須經過跑合和負荷試驗後才能正式使用。 用戶應有合理的使用維護規章制度,對減速器的運轉情況和檢驗中發現的問題應做認真的記錄 。

小 結
轉眼兩周的時間過去了,感覺時間過得真快,忙忙碌碌終於把機械設計做出來了。我通過這次設計學到了很多東西。使我對機械設計的內容有了進一步的了解.
因為剛結束課程就搞設計,還沒有來得及復習,所以剛開始遇到好多的問題,都感覺很棘手.因為機械設計是把我們這學期所學知識全部綜合起來了,還用到了許多先前開的課程,例如金屬工藝學,材料力學,機械原理等.
首先,我們要運用知識想好用什麼結構,然後進行軸大小長短的設計,要校核,選軸承。最後還要校核低速軸,看能否用。鍵也是一件重要的零件,校核也不可避免。所有這些都用到了力學和機械設計得內容,可是我當時力學沒有學好,機械設計又沒完全掌握,做這次設計真是不容易啊!.
但通過這次機械設計學到了許多,不僅是在知識方面,重要是在觀念方面。以往我們不管做什麼都有現成的東西,而我們只要算別人現有的東西就可以了,其實那就是抄。但現在很多是自己設計,沒有約束了反而不知所措了。其次,我在這次設計中出現了許多問題,經過常老師得指點,我學到了許多課本上沒有的東西他並且給我們講了一些實際用到的經驗.收獲真是破多啊!最後就是我們大學的課程開了這么多,我們一定要把基礎打牢,為以後的綜合運用打下基礎啊.這次機械設計課程就體現了,我們現在很缺乏把自己學的東西聯系起來的能力.
最後我總結一下通過這次機械設計我學到的。實踐出真知,不假。通過設計我現在可以了解真正的設計是一個怎樣的程序啊.而且其中出現了許多錯誤,為以後工作增加經驗。雖然機設很累,但我很充實,我學到了許多知識,我增加了社會競爭力,我又多了解了機械,又進步了。總之,這次機械設計雖然很累,但是我學到了好多自己從前不知道和沒有經歷的經驗。

參 考 文 獻

1 <<機械設計>>第八版 濮良貴主編 高等教育出版社 ,2006
2 <<機械設計課程設計>>第1版 . 王昆,何小柏主編 .機械工業出版社 ,2004
3 <<機械原理>> 申永勝主編 清華大學出版社 ,1999
4 <<材料力學 >> 劉鴻文主編 高等教育出版社 ,2004
5 <<幾何公差與測量>>第五版 甘永力主編 上海科學技術出版社 ,2003
6 <<機械制圖>>

⑺ 帶式輸送機傳送裝置(二級展開式圓柱齒輪減速器)設計

那個,這種東西是沒有人免費給你做的。很多人都靠代做課程設計掙錢的。

⑻ 帶式輸送機傳動裝置中的二級圓柱齒輪減速器

機械設計的一般過程
設計任何一部新機械大件上都需要經過這樣一個過程:設計任務 總體設版計 結構權設計 零件設計 加工生產 安裝調試。
安裝調試之後需要看是否能完成滿足設計要求,如不能滿足預先制定的設計要求還要重新審視總體設計,結構設計等各環節的設計是否合理,對有問題的環節應作相應的改進指導完全滿足設計要求為止。課程設計的步驟在課程設計中我們不可能完整履行機械設計的全過程,而只能進行其中的一些重要設計環節。

⑼ 設計某帶式輸送機減速器的兩級展開式斜齒圓柱齒輪傳動

找本參考書,照葫蘆畫瓢,相信你的能力,應該沒有問題的

閱讀全文

與設計某膠帶輸送機的傳動裝置外齒輪傳動及二級展開式圓柱齒輪減速器相關的資料

熱點內容
帶卡槽軸承作用是什麼 瀏覽:169
啤機械手怎麼調試視頻 瀏覽:717
石墨電極自動接長裝置 瀏覽:555
重結晶與過濾的實驗裝置圖 瀏覽:897
閥門銹死斷怎麼辦 瀏覽:366
高鐵動車上能帶電動工具嗎 瀏覽:110
三地畫怎麼加工設備 瀏覽:659
電動工具店鋪牌子圖片 瀏覽:566
計算機常見的輔助設備有哪些 瀏覽:189
機械雜質的危害有哪些 瀏覽:913
東莞市五金製品加工 瀏覽:373
甩手工具箱裂變寶貝 瀏覽:943
變電站保護及自動裝置 瀏覽:318
設計捕小魚的捕魚裝置 瀏覽:296
啤酒灌裝設備哪裡有 瀏覽:532
常紡機械怎麼樣 瀏覽:269
軸承基本額定負荷怎麼計算 瀏覽:901
回收軸承電話多少 瀏覽:311
暖氣進水閥門損壞歸誰管理 瀏覽:113
華為rru是什麼設備 瀏覽:229