① 簡述風力發電機聯軸器是如何實現扭矩限制功能的
我國是風力發電機組的裝機大國,也是風力發電設備的生產大國,但是我國風力發電機組中的某些關鍵部件任然依賴進口,聯軸器就是其中之一。風力發電聯軸器作為風力發電傳動系統中重要的組成部件,除了要求具有傳遞動力的功能外,還需要具有過載保護功能,扭矩限制器就是使風力發電聯軸器具有過載保護功能的關鍵部件,當負載超過額定載荷時自動打滑,實現對發電機組的過載保護。為實現風力發電聯軸器的國產化,突破扭矩限制器的技術難點,必須構建用於扭矩限制器性能測試的研發條件。本課題旨在研製最大打滑扭矩為100kN.m並集強度試驗、疲勞試驗和打滑扭矩標定等功能於一體的扭矩限制器綜合測試試驗台,具體研究內容如下:(1)對扭矩限制器的結構特點和工作原理進行了介紹;基於風力發電機組對扭矩限制器的工作參數要求,採用靜態試驗,設計了扭矩限制器的標定方案;並對載入方式和扭矩測量方案進行了對比,擬定了採用擺動液壓缸作為動力源的載入方式和採用扭矩感測器進行扭矩測量的方案。(2)對試驗台機械系統進行總體設計,對載入機構、扭矩限制器夾具和以逆止器作為主要部分的負載機構進行了詳細設計;通過分析與計算,確定關鍵零部件型號和規格;完成試驗台機械繫統的三維建模;利用Workbench軟體對重要結構件進行靜力學有限元分析。(3)設計了與試驗台相配套的液壓控制系統,實現載入扭矩的輸入控制,為滿足快速打滑過程大流量的需求,液壓系統採用以蓄能器為主要油源,泵作為輔助油源的供油方案;並採用以插裝閥和三位四通換向閥組成的大流量換向系統來實現擺動缸正反轉控制;計算確定了液壓系統的各項參數,完成了液壓元器件的選型工作。(4)利用AMESim軟體對所設計的液壓系統進行建模模擬。通過模擬結果表明所設計的液壓系統可以滿足試驗台對載入時間的要求,也驗證了蓄能器容積是影響扭矩限制器打滑時間和卸載時間的主要因素,泵的排量對系統影響不大,驗證了液壓系統採用蓄能器作為主要油源的合理性。
② 風力發電原理及工作過程是什麼
風力發電原理:
把風的動能轉變成機械動能,再把機械能轉化為電力動能,這就是風力發電。風力發電的原理,是利用風力帶動風車葉片旋轉,再透過增速機將旋轉的速度提升,來促使發電機發電。
依據風車技術,大約是每秒三米的微風速度(微風的程度),便可以開始發電。 風力發電正在世界上形成一股熱潮,因為風力發電不需要使用燃料,也不會產生輻射或空氣污染。
工作過程:
通過風輪把風能轉換為機械能,進而藉助於發電機再把機械能轉化為電能。由於風輪的轉速一般比較低(每分鍾幾轉到數十轉),而發電機的轉速通常很高(一般每分鍾超過1000轉),因此需要通過齒輪箱變速。
平軸風力發電機:
水平軸風力發電機科分為升力型和阻力型兩類。升力型風力發電機旋轉速度快,阻力型旋轉速度慢。對於風力發電,多採用升力型水平軸風力發電機。
大多數水平軸風力發電機具有對風裝置,能隨風向改變而轉動。對於小型風力發電機,這種對風裝置採用尾舵,而對於大型的風力發電機,則利用風向感測元件以及伺服電機組成的傳動機構。
風力機的風輪在塔架前面的稱為上風向風力機,風輪在塔架後面的則成為下風向風機。水平軸風力發電機的式樣很多,有的具有反轉葉片的風輪,有的再一個塔架上安裝多個風輪,以便在輸出功率一定的條件下減少塔架的成本,還有的水平軸風力發電機在風輪周圍產生漩渦,集中氣流,增加氣流速度。
以上內容參考:網路——風力發電
③ 風力發電機的工作原理
發電機原理:
是將風能轉換為機械能,機械能轉換為電能的電力設備。廣義地說,它是一種以太陽為熱源,以大氣為工作介質的熱能利用發動機。
風力發電利用的是自然能源。相對柴油發電要好的多。但是若應急來用的話,還是不如柴油發電機。風力發電不可視為備用電源,但是卻可以長期利用。
風力發電的原理,是利用風力帶動風車葉片旋轉,再透過增速機將旋轉的速度提升,來促使發電機發電。依據目前的風力發電機技術,大約是每秒三公尺的微風速度(微風的程度),便可以開始發電。
風力發電正在世界上形成一股熱潮,因為風力發電沒有燃料問題,也不會產生輻射或空氣污染。
風力發電在芬蘭、丹麥等國家很流行;我國也在西部地區大力提倡。小型風力發電系統效率很高,但它不是只由一個發電機頭組成的,而是一個有一定科技含量的小系統:風力發電機+充電器+數字逆變器。
風力發電機由機頭、轉體、尾翼、葉片組成。每一部分都很重要,各部分功能為:葉片用來接受風力並通過機頭轉為電能;尾翼使葉片始終對著來風的方向從而獲得最大的風能;轉體能使機頭靈活地轉動以實現尾翼調整方向的功能;機頭的轉子是永磁體,定子繞組切割磁力線產生電能。
風力發電機因風量不穩定,故其輸出的是13~25V變化的交流電,須經充電器整流,再對蓄電瓶充電,使風力發電機產生的電能變成化學能。然後用有保護電路的逆變電源,把電瓶里的化學能轉變成交流220V市電,才能保證穩定使用。
機械連接與功率傳遞:水平軸風機槳葉通過齒輪箱及其高速軸與萬能彈性聯軸節相連,將轉矩傳遞到發電機的傳動軸,此聯軸節應按具有很好的吸收阻尼和震動的特性。
表現為吸收適量的徑向、軸向和一定角度的偏移,並且聯軸器可阻止機械裝置的過載。另一種為直驅型風機槳葉不通過齒輪箱直接與電機相連風機電機類型。
(3)風力發電機組傳動裝置上工作擴展閱讀:
發電機結構:
1,機艙:機艙包容著風力發電機的關鍵設備,包括齒輪箱、發電機。維護人員可以通過風力發電機塔進入機艙。機艙左端是風力發電機轉子,即轉子葉片及軸。
2,轉子葉片:捉獲風,並將風力傳送到轉子軸心。現代600千瓦風力發電機上,每個轉子葉片的測量長度大約為20米,而且被設計得很象飛機的機翼。
3,軸心:轉子軸心附著在風力發電機的低速軸上。
4,低速軸:風力發電機的低速軸將轉子軸心與齒輪箱連接在一起。在現代600千瓦風力發電機上,轉子轉速相當慢,大約為19至30轉每分鍾。軸中有用於液壓系統的導管,來激發空氣動力閘的運行。
5,齒輪箱:齒輪箱左邊是低速軸,它可以將高速軸的轉速提高至低速軸的50倍。
6,高速軸及其機械閘:高速軸以1500轉每分鍾運轉,並驅動發電機。它裝備有緊急機械閘,用於空氣動力閘失效時,或風力發電機被維修時。
7,發電機:通常被稱為感應電機或非同步發電機。在現代風力發電機上,最大電力輸出通常為500至1500千瓦。
8,偏航裝置:藉助電動機轉動機艙,以使轉子正對著風。偏航裝置由電子控制器操作,電子控制器可以通過風向標來感覺風向。圖中顯示了風力發電機偏航。通常,在風改變其方向時,風力發電機一次只會偏轉幾度。
9,電子控制器:包含一台不斷監控風力發電機狀態的計算機,並控制偏航裝置。為防止任何故障(即齒輪箱或發電機的過熱),該控制器可以自動停止風力發電機的轉動,並通過電話數據機來呼叫風力發電機操作員。
10,液壓系統:用於重置風力發電機的空氣動力閘。
11,冷卻元件:包含一個風扇,用於冷卻發電機。此外,它包含一個油冷卻元件,用於冷卻齒輪箱內的油。一些風力發電機具有水冷發電機。
12,塔:風力發電機塔載有機艙及轉子。通常高的塔具有優勢,因為離地面越高,風速越大。現代600千瓦風汽輪機的塔高為40至60米。它可以為管狀的塔,也可以是格子狀的塔。管狀的塔對於維修人員更為安全,因為他們可以通過內部的梯子到達塔頂。格狀的塔的優點在於它比較便宜。
13,風速計及風向標:用於測量風速及風向
14,尾舵:常見於水平軸上風向的小型風力發電機(一般在10KW及以下)。位於回轉體後方,與回轉體相連。
主要作用一為調節風機轉向,使風機正對風向。作用二是在大風風況的情況下使風力機機頭偏離風向,以達到降低轉速,保護風機的作用。
④ 風力發電機常見故障及其分析概要
風電機組的故障率隨著風電機組技術的發展而逐漸降低,但是對比於傳統的發電系統,如蒸汽輪機、燃氣輪機、水輪機等,風電機組的故障率還是相對較高的,其運行可靠性還有待進一步的增強和提高。總的來說,由於工作環境惡劣、載荷復雜多變,風電機組較易發生故障; 海上風電機組由於會受到風暴、波浪的影響以及鹽霧的腐蝕,比陸上風電機組更加容易發生故障; 另外風電機組的故障頻率也隨著風電機組尺寸的增大而相應有所提高。據統計,風電機組中故障率較高的部件有電氣系統、轉子葉片、變槳系統、液壓系統、控制系統和齒輪箱等,各個部件的故障分布如圖1 所示。雖然風電機組中發生電氣和控制系統的故障較為頻繁,但是維修該類故障所導致的風電機組停機時間是比較短的; 傳動系統上的主軸、齒輪箱、發電機等故障率較低的故障,維修時間往往比較長,其中齒輪箱故障導致的風電機組停機時間最長,不同部件(子系統)故障引起的停機維修時間如圖2所示。
圖2 風力發電機組中各零部件故障引起的停機時間
Downtime caused by different parts and subassemblies in wind turbine
1 葉片
葉片( 槳葉) 是風電機組捕捉風能的核心部件,其工作環境惡劣,即便在風電機組正常工作時,葉片上往往承受著較高的應力,容易發生如下一些故障: 由於污染、剝落等原因引起葉片表面粗糙度的增加; 由於結構松動導致的葉片內部材料的移動、雨水通過裂紋進入葉片內部等原因導致葉片不平衡; 葉片變形、槳距控制失效等原因引起葉片空氣動力學的不平衡; 疲勞、雷擊等原因導致的葉片表面或內部結構出現裂紋等故障。
葉片受力產生裂紋或發生變形時,會釋放出高頻( 一般在1 kHz ~ 1 MHz) 的、時變的、非平穩的、瞬態的聲發射信號。因此聲發射檢測已經被成功地應用於葉片損傷的探測與評估。由於葉片故障導致轉子葉片受力不均,這些應力通過主軸傳遞會最終作用在機艙上,容易引起機艙的晃動,Caselitz P 等人通過在主軸上安裝多個振動感測器,採集低頻(0.1 ~ 10 Hz) 的振動信號,應用演算法成功地分析了葉片轉動不平衡等故障。
2 齒輪箱
齒輪箱是連接風電機組主軸和發電機的傳動部件,其功能是將主軸上較低的轉速提高到相對較高的轉速,以滿足發電機工作所需的轉速要求。齒輪箱一般由一級行星齒輪和兩級平行齒輪傳動構成,其工作條件惡劣、工況復雜、傳遞功率大。齒輪箱中的行星齒輪、高速軸側軸承、中間軸軸承、行星齒輪傳動側軸承以及其潤滑系統較容易發生故障。風電機組運行過程中,受交變應力、沖擊載荷等作用的影響,齒輪容易發生齒面磨損、齒面擦傷、點蝕、斷齒等故障; 軸承容易發生磨損、滾道滑傷、滾子打滑、外圈跑圈等故障。雖然齒輪箱不是風電機組中發生故障最頻繁的部件,但是由齒輪箱故障引起的停機維修時間卻是最長的,而且維修費用很高。因此齒輪箱的故障診斷與預測得到了廣泛的關注。Huang Q 等人通過對齒輪箱的振動信號分析,利用小波神經網路的方法成功地診斷了齒輪箱故障; 另外基於軸承溫度、潤滑油溫度和油液磨粒等信息的分析方法也相繼被提出用於齒輪箱故障的檢測。
3 電機( 發電機或電動機)
雙饋發電機和永磁同步發電機在目前的風力發電機組技術中廣泛被使用。其中雙饋式風力發電機組的轉速較高,其額定轉速為1 500 r /min,因此機組中需要齒輪箱用於增速,這樣使得機組重量較重,另外發電機的高速運轉存在著一定的雜訊污染; 電機為非同步發電機,變流器連接轉子,變流器功率可以雙向流動,通過轉子交流勵磁調節實現變速恆頻運行,機組的運行范圍很寬,在額定轉速60% ~ 110%的范圍內都可以獲得良好的功率輸出。
直驅式風力發電機組由風輪直接耦合電機轉子工作,電機轉速較低,一般為每分鍾幾十轉。直驅式風力發電機組一般採用永磁同步電機,電機啟動轉矩較大,定子繞組經全功率變流器接入電網,機組運行范圍較寬,但發電機結構復雜、直徑較大、成本較高。除了發電機以外,電動機也廣泛地應用於風電機組的偏航、變槳等系統中。
電機的故障通常分為電氣故障和機械故障。電氣方面故障有繞組短路、斷路、過熱、三相不平衡等。機械故障有軸承過熱、損壞,定、轉子間的氣隙異常,轉軸磨損變形等。通過對振動、電流、溫度等信號的分析,可實現對電機故障的檢測。
4 偏航、變槳和剎車系統
偏航系統主要有兩個功能:
1) 使風力發電機組跟蹤風向;
2) 由於跟蹤風向容易使得從機艙內引出的電纜發生纏繞,當纏繞過多時,偏航系統可用於解除電纜纏繞的問題。
變槳系統的作用是當風速改變時,通過控制葉片的角度來改變風電機組獲得空氣動力的轉矩,實現功率控制; 當風速過高或風電機組故障時,調整葉片到順槳狀態,實現制動。偏航和變槳系統工作較為頻繁,偏航和變槳軸承承受的扭矩較大,偏航軸承部分裸露在環境中,容易受到沙塵侵害,鹽(水) 霧腐蝕等影響而發生故障。變槳軸承由於其不完全旋轉的工作特點,容易發生潤滑不良的問題,導致軸承磨損等故障。剎車系統用於防止轉子葉片旋轉過快,以及當風電機組其他部件發生故障時,實現風電機組的停機。由於摩擦片磨損、受力過大等原因,剎車系統也較容易發生故障。液壓系統由於具有單位體積小、動態響應好、傳動力大、扭矩大等優良特點,在風電機組的偏航、變槳和剎車系統中都發揮著重要的作用。液壓迴路相互干涉,使其故障機理復雜,失效模式多樣。液壓系統常見的故障有液壓油污染、漏油、電磁閥、溢流閥故障、液壓泵故障、油液過熱、異常振動和雜訊等。
5 變流器和變壓器
隨著風電機組單機容量的增加,電氣系統能否可靠運行變得越來越重要。據統計資料表明,電氣系統是風電機組中故障發生率最高的子系統,電氣系統故障在風電機組所有的故障中約佔比20%。雖然由電氣故障引起的風電機組停機時間不長,但電氣系統頻繁發生故障,同樣會導致高昂維修成本。隨著風電機組容量的進一步提高,電氣系統的故障頻率也會隨著增加。
電氣系統的故障通常指由於過壓、過流、過熱、振動、濕度過大等原因所導致的電容、印刷電路板或功率半導體器件(如MOSFET 和IGBT) 等電子元器件的失效。它們的失效分別佔了電氣系統零部件故障中的30%、26%和21%。
6 控制系統和感測器
風力發電機組的控制系統在偏航、槳距調節、電纜解繞、保護等方面發揮著重要的作用。控制系統中通常包含了各類感測器、控制器和執行機構,經由感測器將各類信號採集並傳送至控制器,進行分析處理和邏輯運算,通過執行機構控制和保護風電機組的各個子系統,保障風電機組在安全、可靠、優化的狀態下工作。
風力發電機組中安裝了各式各樣的感測器,如風速儀、風向標、速度解碼器、位置編碼器、溫度感測器、壓力感測器、振動感測器、偏航感測器等。由於工作環境惡劣,感測器的故障率較高。有統計資料表明,在風力發電機組中,14% 以上和40% 以上的風電機組故障分別是由感測器本身和感測器相關系統的故障引起的。
除了感測器外,控制系統的其他故障可分為硬體故障和軟體故障。硬體故障包括控制板電路故障、伺服機構故障等。軟體故障表現為系統出現偶發性的死機、不動作等問題,通常由於設計不合理、內存溢出等原因所導致的,通過重新啟動控制系統等動作可消除該類故障。
https://mbd..com/newspage
⑤ 風力發電機組傳動系統主要包括哪些部件
風力發電機組傳動系統主要包括:葉片,輪轂,主軸,增速機,連軸器等。
⑥ 風力發電機組常見故障
風電機組的故障率隨著風電機組技術的發展而逐漸降低,但是對比於傳統的發電系統,如蒸汽輪機、燃氣輪機、水輪機等,風電機組的故障率還是相對較高的,其運行可靠性還有待進一步的增強和提高。總的來說,由於工作環境惡劣、載荷復雜多變,風電機組較易發生故障; 海上風電機組由於會受到風暴、波浪的影響以及鹽霧的腐蝕,比陸上風電機組更加容易發生故障; 另外風電機組的故障頻率也隨著風電機組尺寸的增大而相應有所提高。據統計,風電機組中故障率較高的部件有電氣系統、轉子葉片、變槳系統、液壓系統、控制系統和齒輪箱等,各個部件的故障分布如圖1 所示。雖然風電機組中發生電氣和控制系統的故障較為頻繁,但是維修該類故障所導致的風電機組停機時間是比較短的; 傳動系統上的主軸、齒輪箱、發電機等故障率較低的故障,維修時間往往比較長,其中齒輪箱故障導致的風電機組停機時間最長,不同部件(子系統)故障引起的停機維修時間如圖2所示。
圖1 風力發電機組中各零部件引起的故障分布
Fault distribution caused by different parts and subassemblies in wind turbine
圖2 風力發電機組中各零部件故障引起的停機時間
Downtime caused by different parts and subassemblies in wind turbine
1 葉片
葉片( 槳葉) 是風電機組捕捉風能的核心部件,其工作環境惡劣,即便在風電機組正常工作時,葉片上往往承受著較高的應力,容易發生如下一些故障: 由於污染、剝落等原因引起葉片表面粗糙度的增加; 由於結構松動導致的葉片內部材料的移動、雨水通過裂紋進入葉片內部等原因導致葉片不平衡; 葉片變形、槳距控制失效等原因引起葉片空氣動力學的不平衡; 疲勞、雷擊等原因導致的葉片表面或內部結構出現裂紋等故障。
葉片受力產生裂紋或發生變形時,會釋放出高頻( 一般在1 kHz ~ 1 MHz) 的、時變的、非平穩的、瞬態的聲發射信號。因此聲發射檢測已經被成功地應用於葉片損傷的探測與評估。由於葉片故障導致轉子葉片受力不均,這些應力通過主軸傳遞會最終作用在機艙上,容易引起機艙的晃動,Caselitz P 等人通過在主軸上安裝多個振動感測器,採集低頻(0.1 ~ 10 Hz) 的振動信號,應用演算法成功地分析了葉片轉動不平衡等故障。
2 齒輪箱
齒輪箱是連接風電機組主軸和發電機的傳動部件,其功能是將主軸上較低的轉速提高到相對較高的轉速,以滿足發電機工作所需的轉速要求。齒輪箱一般由一級行星齒輪和兩級平行齒輪傳動構成,其工作條件惡劣、工況復雜、傳遞功率大。齒輪箱中的行星齒輪、高速軸側軸承、中間軸軸承、行星齒輪傳動側軸承以及其潤滑系統較容易發生故障。風電機組運行過程中,受交變應力、沖擊載荷等作用的影響,齒輪容易發生齒面磨損、齒面擦傷、點蝕、斷齒等故障; 軸承容易發生磨損、滾道滑傷、滾子打滑、外圈跑圈等故障。雖然齒輪箱不是風電機組中發生故障最頻繁的部件,但是由齒輪箱故障引起的停機維修時間卻是最長的,而且維修費用很高。因此齒輪箱的故障診斷與預測得到了廣泛的關注。Huang Q 等人通過對齒輪箱的振動信號分析,利用小波神經網路的方法成功地診斷了齒輪箱故障; 另外基於軸承溫度、潤滑油溫度和油液磨粒等信息的分析方法也相繼被提出用於齒輪箱故障的檢測。
3 電機( 發電機或電動機)
雙饋發電機和永磁同步發電機在目前的風力發電機組技術中廣泛被使用。其中雙饋式風力發電機組的轉速較高,其額定轉速為1 500 r /min,因此機組中需要齒輪箱用於增速,這樣使得機組重量較重,另外發電機的高速運轉存在著一定的雜訊污染; 電機為非同步發電機,變流器連接轉子,變流器功率可以雙向流動,通過轉子交流勵磁調節實現變速恆頻運行,機組的運行范圍很寬,在額定轉速60% ~ 110%的范圍內都可以獲得良好的功率輸出。
直驅式風力發電機組由風輪直接耦合電機轉子工作,電機轉速較低,一般為每分鍾幾十轉。直驅式風力發電機組一般採用永磁同步電機,電機啟動轉矩較大,定子繞組經全功率變流器接入電網,機組運行范圍較寬,但發電機結構復雜、直徑較大、成本較高。除了發電機以外,電動機也廣泛地應用於風電機組的偏航、變槳等系統中。
電機的故障通常分為電氣故障和機械故障。電氣方面故障有繞組短路、斷路、過熱、三相不平衡等。機械故障有軸承過熱、損壞,定、轉子間的氣隙異常,轉軸磨損變形等。通過對振動、電流、溫度等信號的分析,可實現對電機故障的檢測。
4 偏航、變槳和剎車系統
偏航系統主要有兩個功能:
1) 使風力發電機組跟蹤風向;
2) 由於跟蹤風向容易使得從機艙內引出的電纜發生纏繞,當纏繞過多時,偏航系統可用於解除電纜纏繞的問題。
變槳系統的作用是當風速改變時,通過控制葉片的角度來改變風電機組獲得空氣動力的轉矩,實現功率控制; 當風速過高或風電機組故障時,調整葉片到順槳狀態,實現制動。偏航和變槳系統工作較為頻繁,偏航和變槳軸承承受的扭矩較大,偏航軸承部分裸露在環境中,容易受到沙塵侵害,鹽(水) 霧腐蝕等影響而發生故障。變槳軸承由於其不完全旋轉的工作特點,容易發生潤滑不良的問題,導致軸承磨損等故障。剎車系統用於防止轉子葉片旋轉過快,以及當風電機組其他部件發生故障時,實現風電機組的停機。由於摩擦片磨損、受力過大等原因,剎車系統也較容易發生故障。液壓系統由於具有單位體積小、動態響應好、傳動力大、扭矩大等優良特點,在風電機組的偏航、變槳和剎車系統中都發揮著重要的作用。液壓迴路相互干涉,使其故障機理復雜,失效模式多樣。液壓系統常見的故障有液壓油污染、漏油、電磁閥、溢流閥故障、液壓泵故障、油液過熱、異常振動和雜訊等。
5 變流器和變壓器
隨著風電機組單機容量的增加,電氣系統能否可靠運行變得越來越重要。據統計資料表明,電氣系統是風電機組中故障發生率最高的子系統,電氣系統故障在風電機組所有的故障中約佔比20%。雖然由電氣故障引起的風電機組停機時間不長,但電氣系統頻繁發生故障,同樣會導致高昂維修成本。隨著風電機組容量的進一步提高,電氣系統的故障頻率也會隨著增加。
電氣系統的故障通常指由於過壓、過流、過熱、振動、濕度過大等原因所導致的電容、印刷電路板或功率半導體器件(如MOSFET 和IGBT) 等電子元器件的失效。它們的失效分別佔了電氣系統零部件故障中的30%、26%和21%。
6 控制系統和感測器
風力發電機組的控制系統在偏航、槳距調節、電纜解繞、保護等方面發揮著重要的作用。控制系統中通常包含了各類感測器、控制器和執行機構,經由感測器將各類信號採集並傳送至控制器,進行分析處理和邏輯運算,通過執行機構控制和保護風電機組的各個子系統,保障風電機組在安全、可靠、優化的狀態下工作。
風力發電機組中安裝了各式各樣的感測器,如風速儀、風向標、速度解碼器、位置編碼器、溫度感測器、壓力感測器、振動感測器、偏航感測器等。由於工作環境惡劣,感測器的故障率較高。有統計資料表明,在風力發電機組中,14% 以上和40% 以上的風電機組故障分別是由感測器本身和感測器相關系統的故障引起的。
除了感測器外,控制系統的其他故障可分為硬體故障和軟體故障。硬體故障包括控制板電路故障、伺服機構故障等。軟體故障表現為系統出現偶發性的死機、不動作等問題,通常由於設計不合理、內存溢出等原因所導致的,通過重新啟動控制系統等動作可消除該類故障。
⑦ 雙饋式風力發電機工作原理
在雙饋風力發電系統中,發電機的定子直接連接到電網上,而轉子在變流器的控制下實現交流勵磁,
保持定子恆頻恆壓輸出,基本運行步驟如下:
1、 發電機組在自檢正常的情況下,葉輪處於自由運動狀態;當風速滿足運行條件且葉輪正對風向,
變槳系統將持續調整最佳槳距角,將發電機空載轉速保持在切入轉速上,主控系統若判定一切
准備就緒,則發出並網命令。
2、 變流器在接收到並網命令後,將先對母線進行預充電,當母線電壓達到一定程度後,網側變流
器開始進行調制;而當網側變流器正常運行後,機側變流器開始自檢,自檢通過後開始對勵磁
電流幅值、相位和頻率進行控制,使得發電機定子空載電壓和電網電壓同頻率、同相位、同幅
值,此時閉合並網接觸器實現並網。
3、 當風速變化導致發電機轉速變化時,變流器通過控制轉子的勵磁電流頻率來改變轉子磁場的旋
轉頻率、幅值、相位等參數,使發電機的輸出電壓、頻率和電網保持一致,從而實現風力發電
系統的變速恆頻發電
⑧ 直驅風力發電機的工作原理(發電機部分)
直驅電動機是直接驅動式電動機的簡稱,主要指電動機在驅動負載時,不需經過傳動裝置。 由於直驅電動機避免使用了傳動帶等傳動設備,而這些傳動部件恰恰是系統中故障率較高的部件,所以使用直驅電動機的系統,從技術上講應具有更低的故障率。使用傳動裝置(如減速齒輪、帶輪等)的機械繫統,常常結構復雜,體積龐大,重量增加,而且帶來系統運行成本、雜訊及傳動效率等方面的多種問題。直驅電動機的誕生使得驅動裝置變得更緊湊,重量更輕,控制起來也更加容易。直驅電動機根據其製造的原理不同主要可以分為兩類,力矩電動機和直線電動機。
(1) 力矩電動機。直流力矩電動機的工作原理與普通直流電動機相同,不同之處在於其結構。為了在一定體積和電樞電壓下產生大的轉矩額低的轉速,直流力矩電動機一般做成扁平式結構,電樞長度與直徑之比一般為0.2左右,極對數較多。為了減小轉矩和轉速的波動,選用較多的槽數和換向片數。通常採用永磁體產生磁場。定子是由軟磁材料製成的帶槽的圓環,槽中楔由銅板製成,兼作換向片,槽楔兩端伸出槽外,一段作為電樞繞組接線用,另一端排列成環形換向器。轉子的所有部件用高溫環氧樹脂燒鑄成整體。
交流力矩電動機分為單相和三相兩種,分別是從單相感應電動機和三相感應電動機的基本系列派生的,結構和安裝尺寸與基本系列一致。不同之處在於,其轉子導條通常採用較高電阻率的材料,如黃銅、純銅、鋁錳合金等,轉子電阻較普通感應電動機大得多,因而其機械特性與普通感應電動機明顯不同。
(2) 直線電動機。直線電動機是一種通過將封閉式磁場展開為開放式磁場,將電能直接轉化為直線運動的機械能,而不需要任何中間轉換機構的傳動裝置。直線電動機的結構可以看作是將一台旋轉電動機沿徑向剖開,並將電動機的圓周展開成直線而形成的。其中定子相當於直線電動機的初級,轉子相當於直線電動機的次級,當初級通電流後,在初次級之間的氣隙中產生行波磁場,在行波磁場與次級永磁體的作用下產生驅動力,從而實現運動部件的直線運動。