『壹』 數控機床的自動換刀裝置都有哪些方式
1、刀具交換方式
數控機床的自動換刀裝置中,實現刀庫與機床主軸之間傳遞和裝卸刀具的裝置稱為刀具交換裝置。刀具的交換方式和它們的具體結構對機床的生產率和工作可靠性有著直接的影響。
刀具的交換方式很多,一般可分為以下兩大類。
(一)無機械手換刀
無機械手換刀,是由刀庫和機床主軸的相對運動實現的刀具交換。換刀時,必須首先將用過的刀具送回刀庫,然後再從刀庫中取出新刀具,這兩個動作不可能同時進行,因此,換刀時間長。所示的數控立式鏜銑床就是採用這種換刀方式的實例。它的選刀和換刀由三個坐標軸的數控定位系統來完成,因此每交換一次刀具,工作台和主軸箱就必須沿著三個坐標軸作兩次來回運動,因而增加了換刀時間。另外,由於刀庫置於工作台上,減少了工作台的有效使用面積。
(二)機械手換刀
由於刀庫及刀具交換方式的不同,換刀機械手也有多種形式。因為機械手換刀有很大的靈活性,而且還可以減少換刀時間,應用最為廣泛。
在各種類型的機械手中,雙臂機械手全面地體現了以上優點,為了防止刀具掉落,各機械手的活動爪都必須帶有自鎖結構。雙臂回轉機械手的動作比較簡單,而且能夠同時抓取和裝卸機床主軸和刀庫中的刀具,因此換刀時間可以進一步縮短。雙臂回轉機械手,雖不是同時抓取主軸和刀庫中的刀具,但是換刀准備時間及將刀具送回刀庫的時間(圖中實線所示位置)與機械加工時間重合,因而換刀(圖中雙點劃線所示位置)時間較短。
2、機械手形式
在自動換刀數控機床中,機械手的形式也是多種多樣,常見的有以下幾種形式。
1、單臂單爪回轉式機械手
這種機械手的手臂可以回轉不同的角度來進行自動換刀,其手臂上只有一個卡爪,不論在刀庫上或是在主軸上,均靠這個卡爪來裝刀及卸刀,因此換刀時間較長。
2、單臂雙爪回轉式機械手
這種機械手的手臂上有兩個卡爪,兩個卡爪有所分工。一個卡爪只執行從主軸上取下「舊刀」送回刀庫的任務,另一個卡爪則執行由刀庫取出「新刀」送到主軸的任務。其換刀時間較上述單爪回轉式機械手要少。
3、雙臂回轉式機械手
這種機械手的兩臂上各有一個卡爪,兩個卡爪可同時抓取刀庫及主軸上的刀具,回轉180°後又同時將刀具放回刀庫及裝入主軸。這種機械手換刀時間較以上兩種單臂機械手均短,是最常用的一種形式。
4、雙機械手
這種機械手相當於兩個單臂單爪機械手,它們互相配合進行自動換刀。其中一個機械手從主軸上取下「舊刀」送回刀庫,另一個由刀庫中取出「新刀」裝入機床主軸。
5、雙臂往復交叉式機械手
這種機械手的兩手臂可以往復運動,並交叉成一定的角度。一個手臂從主軸上取下「舊刀」送回刀庫,另一個手臂由刀庫中取出「新刀」裝入主軸。整個機械手可沿某導軌直線移動或繞某個轉軸回轉,以實現由刀庫與主軸間的運刀工作。
6、雙臂端面夾緊式機械手
這種機械手只是在夾緊部位上與前幾種不同。前幾種機械手均靠夾緊刀柄的外圓表面來抓取刀具,這種機械手則是靠夾緊刀柄的兩個端面來抓取的。
3、機械手夾持結構
在換刀過程中,由於機械手抓住刀柄要作快速回轉,要作拔、插刀具的動作,還要保證刀柄鍵槽的角度位置對准主軸上的驅動鍵。因此,機械手的夾持部分要十分可靠,並保證有適當的夾緊力,其活動爪要有鎖緊裝置,以防止刀具在換刀過程中轉動脫落。機械手夾持刀具的方法有以下兩種。
(一)柄式夾持
柄式夾持,也稱軸向夾持或V形槽夾持。其刀柄前端有V形槽,供機械手夾持用,目前我國數控機床較多採用這種夾持方式。機械手手掌結構示意圖。它由固定爪及活動爪組成,活動爪可繞軸回轉,其一端在彈簧柱塞的作用下,支靠在擋銷上,調整螺釘以保持手掌適當的夾緊力,鎖緊銷使活動爪牢固地夾持刀柄,防止刀具在交換過程中松脫。鎖緊銷還可軸向移動,使活動爪放鬆,以便杈刀從刀柄V形槽中退出。
(二)法蘭盤式夾持
法蘭盤式夾持,也稱徑向夾持或碟式夾持。刀柄的前端有供機械手夾持的法蘭盤。採用法蘭盤式夾持的優點是:當採用中間搬運裝置時,可以很方便從一個機械手過渡到另一個輔助機械手上去。對於法蘭盤式夾持方式,其換刀動作較多,不如柄式夾持方式應用廣泛。
4、自動換刀動作順序
由於自動換刀裝置的布局結構多種多樣,其換刀過程動作順序會不盡相同。下面分別以常見的雙臂往復交叉式機械手和鉤刀機械手為例用動作分圖加以說明。
(一)雙臂往復交叉式機械手的換刀過程
(1)開始換刀前狀態。主軸正用T05號刀具進行加工,裝刀機械手已抓住下一工步需用的T09號刀具,機械手架處於最高位置,為換刀做好了准備;
(2)上一工步結束,機床立柱後退,主軸箱上升,使主軸處於換刀位置。接著下一工步開始,其第一個指令是換刀,機械手架回轉180o轉向主軸。
(3)卸刀機械手前伸,抓住主軸上已用過的T05號刀具。
(4)機械手架由滑座帶動,沿刀具軸線前移,將T05號刀具從主軸上拔出。
(5)卸刀機械手縮回原位。
(6)裝刀機械手前伸,使T09號刀具對准主軸。
(7)機械手架後移,將T09號刀具插入主軸。
(8)裝刀機械手縮回原位。
(9)機械手架回轉180o,使裝刀、卸刀機械手轉向刀庫。
(10)機械手架由橫梁帶動下降,找第二排刀套鏈,卸刀機械手將T05號刀具插回P05號刀套中。
(11)刀套鏈轉動把在下一個工步需用的T46號刀具送到換刀位置,機械手一降,找第三排刀鏈,由裝刀機械手將T46號刀具取出。
(12)刀套鏈反轉,把P09號刀套送到換刀位置,同時機械手架上升至最高位置,為再下一工步的換刀做好准備。
(二)鉤刀機械手的換刀過程
作為最常用的一種換刀形式,換刀一次所需的基本動作如下。
1)抓刀。手臂旋轉90?,同時抓住刀庫和主軸上的刀具。
(2)拔刀。主軸夾頭松開刀具,機械手同時將刀庫和主軸上的刀具拔出。
(3)換刀。手臂旋轉180?,新舊刀具更換。
(4)插刀。機械手同時將新舊刀具分別插入主軸和刀庫,然後主軸夾頭夾緊刀具;
(5)復位。轉動手臂,回到原始位置。
『貳』 數控機床電動四方刀架自動換刀時的動作過程
自動換刀裝置的形式
自動換刀裝置是加工中心的重要執行機構,它的形式多種多樣,目前常見的有以下幾種。
1.回轉刀架換刀
數控機床使用的回轉刀架是最簡單的自動換刀裝置,有四方刀架、六角刀架,即在其上裝有四把、六把或更多的刀具。
回轉刀架必須具有良好的強度和剛度,以承受粗加工的切削力:同時要保證回轉刀架在每次轉位的重復定位精度。
圖1為數控車床六角回轉刀架,它適用於盤類零件的加工。在加工軸類零件時,可以用四方回轉刀架。由於兩者底部安裝尺寸相同,更換刀架十分方便。
回轉刀架的全部動作由液壓系統通過電磁換向閥和順序閥進行控制,它的動作分為4個步驟:
(1)刀架抬起 當數控裝置發出換刀指令後,壓力油由a孔進入壓緊液壓缸的下腔,活塞1上升,刀架體2抬起,使定位用的活動插銷10與固定插銷9脫開。同時,活塞桿下端的端齒離合器與空套齒輪5結合。
(2)刀架轉位 當刀架抬起後,壓力油從c孔進入轉位液壓缸左腔,活塞6向右移動,通過聯接板帶動齒條8移動,使空套齒輪5作逆時針方向轉動。通過端齒離合器使刀架轉過60º。活塞的行程應等於齒輪5分度圓周長的1/6,並由限位開關控制。
(3)刀架壓緊 刀架轉位之後,壓力油從b孔進入壓緊液壓缸上腔,活塞1帶動刀架體2下降。齒輪3的底盤上精確地安裝有6個帶斜楔的圓柱固定插銷9,利用活動插銷10消除定位銷與孔之間的間隙,實現反靠定位。刀架體2下降時,定位活動插銷10與另一個固定插銷9卡緊,同時齒輪3與齒圈4的錐面接觸,刀架在新的位置定位並夾緊。這時,端齒離合器與空套齒輪5脫開。
(4)轉位液壓缸復位 刀架壓緊之後,壓力油從d孔進入轉位液壓缸的右腔,活塞6帶動齒條復位,由於此時端齒離合器已脫開,齒條帶動齒輪3在軸上空轉。
如果定位和夾緊動作正常,推桿11與相應的觸頭12接觸,發出信號表示換刀過程已經結束,可以繼續進行切削加工。
回轉刀架除了採用液壓缸轉位和定位銷定位之外,還可以採用電動機帶動離合器定位,以及其他轉位和定位機構。
2.更換主軸頭換刀
在帶有旋轉刀具的數控機床中,更換主軸頭是一種簡單換刀方式。主軸頭通常有卧式和立式兩種,而且常用轉塔的轉位來更換主軸頭,以實現自動換刀。在轉塔的各個主軸頭上,預先安裝有各工序所需的旋轉刀具。當發出換刀指令時,各主軸頭依次地轉到加工位置,並接通主軸運動,使相應的主軸帶動刀具旋轉,而其他處於不加工位置上的主軸都與主運動脫開。
圖2為卧式八軸轉塔頭。轉塔頭上徑向分布著八根結構完全相同的主軸7,主軸的回轉運動由齒輪12輸入。當數控裝置發出換刀指令時,先通過液壓撥叉將移動齒輪3與齒輪12脫離嚙合,同時在中心液壓缸14的上腔通壓力油。由於活塞桿和活塞15固定在底座上,因此中心液壓缸14帶著由兩個推力軸承17和16支承的轉塔刀架體18抬起,離合器2和1脫離嚙合。然後壓力油進入轉位液壓缸,推動活塞齒條,再經過中間齒輪使大齒輪4與轉塔刀架體18一起回轉45º,將下一工序的主軸轉到工作位置。轉位結束後,壓力油進入中心液壓缸14的下腔,使轉塔頭下降,離合器2和1重新嚙合,實現了精確的定位。在壓力油的作用下,轉塔頭被壓緊,轉位液壓缸退回原位。最後,通過液壓撥叉移動齒輪3,使它與新換上的主軸齒輪12相嚙合。為了改善主軸結構的裝配工藝性,整個主軸部件裝在套筒5內,只要卸去螺釘10,就可以將整個部件抽出。主軸前軸承9採用錐孔雙列圓柱滾子軸承,調整時,先卸下端蓋6,然後擰緊螺母8,使內環做軸向移動,以便消除軸承的徑向間隙。
圖2 卧式八軸轉塔頭
1、2一離合器 3、4、12一齒輪 5一套筒 6一端蓋 7一主軸 8一螺母
9、16、17一軸承 10一螺釘 1l一推動桿 13一操縱桿 14一液壓缸 15一活塞 18一轉塔刀架體
為了便於卸出主軸錐孔內的刀具,每根主軸都有操縱桿13,只要按壓操縱桿,就能通過斜面推動桿11,頂出刀具。
轉塔主軸頭的轉位、定位和壓緊方式與鼠齒盤式分度工作台極為相似,但因為在轉塔上分布著許多回轉主軸部件,使結構更為復雜。
由於空間位置的限制,主軸部件的結構不可能設計得十分堅實,因而影響了主軸系統的剛度。為了保證主軸的剛度,主軸數目必須加以限制,否則將會使結構尺寸大為增加。
轉塔主軸頭換刀方式的主要優點在於省去了自動松夾、卸刀、裝刀、夾緊以及刀具搬運等一系列復雜的操作。從而提高了換刀的可靠性,並顯著地縮短了換刀時間。但由於上述結構上的原因,轉塔主軸頭通常只是用於工序較少、精度要求不太高的機床,例如數控鑽床等。
3.帶刀庫的自動換刀系統
帶刀庫的自動換刀系統由刀庫和刀具交換機構組成。首先把加工過程中需要使用的全部刀具分別安裝在標准刀柄上,在機外進行尺寸預調整後,按一定的方式放入刀庫中去。換刀時先在刀庫中進行選刀,並由刀具交換裝置從刀庫和主軸上取出刀具,在進行交換刀具之後,將新刀具裝入主軸,把舊刀具放回刀庫。存放刀具的刀庫具有較大的容量,它既可以安裝在主軸箱的側面或上方,也可作為單獨部件安裝到機床以外,並由搬運裝置運送刀具。
與轉塔主軸頭相比較,由於帶刀庫的自動換刀裝置數控機床主軸箱內只有一個主軸,設計主軸部件就有可能充分增強它的剛度,因而能滿足精密加工的要求。另外,刀庫可以存放數量很大的刀具,因而能夠進行復雜零件的多工序加工,這樣就明顯提高了機床的適應性和加工效率。所以帶刀庫的自動換刀裝置特別適用於數控鑽床、數控銑床和數控鏜床。
『叄』 加工中心自動換刀裝置的組成部分是什麼
加工中心有是由基礎的數控銑床發展而來,它綜合了數控銑床的所有的特點和功能,與數控銑床不同的是加工中心擁有自動換刀裝置,能實現在加工時自動換刀功能。而數控銑床則沒有自動換刀裝置,不能實現自動換刀功能,這就是數控銑床與加工中心的區別所在。
加工中心自動換刀裝置的組成:
加工中心的自動換刀裝置是由刀庫、機械手臂和驅動機構等部件組成,刀庫是存放著加工時所需要的刀具。刀庫的類型有很多,主要是根據形狀來分類有斗笠式刀庫、圓盤式刀庫和鏈條式刀庫等多種類型的刀庫,這些刀庫的容量幾把到幾百把刀具。在市場上常見加工中心使用的刀庫有斗笠式刀庫和圓盤式刀庫這兩種,而鏈條式刀庫由於價格昂貴所以沒有什麼廠家使用。
加工中心的換刀方式:
1、斗笠式刀庫的換刀方式:
斗笠式刀庫的換刀方式比較簡單,這類刀庫沒有機械手臂,所以不需要使用機械手臂來完成換刀。其刀庫的換刀方式是這樣的:刀庫向主軸移動來實現換刀。此類具有性價比高、維護方便、結構簡單等優點,而缺點就是換刀速度慢。
2、圓盤式刀庫的換刀方式:
圓盤式刀庫的換刀方式比較復雜,主要是由機械手臂來完成換刀動作,由機械手從刀庫取出刀具180°旋轉裝入主軸中完成換刀。此類刀庫具有換刀速度快的優點,其缺點就是結構復雜,維修不便,而且故障率高。
盡管這些刀庫的換刀方式、選刀方式、刀具結構等各不相同,但都是由數控系統來控制的,由電機、氣壓或者液壓和機械手來實現刀具的選擇與交換。
『肆』 數控機床對自動換刀裝置有什麼基本要求
1.自動回轉刀架
自動回轉刀架是數控車床上使用的一種簡單的自動換刀裝置,有四方刀架和六角刀架等多種形式,回轉刀架上分別安裝有四把、六把或更多的刀具,並按數控指令進行換刀。回轉刀架又有立式和卧式兩種,立式回轉刀架的回轉軸與機床主軸成垂直布置,結構比較簡單,經濟型數控車床多採用這種刀架。
回轉刀架在結構上必須具有良好的強度和剛度,以承受粗加工時切削抗力和減少刀架在切削力作用下的變形,提高加工精度。回轉刀架還要選擇可靠的定位方案和合理的定位結構,以保證回轉刀架在每次轉位之後具有較高的重復定位精度(一般為0.001~0.005mm)。圖1所示為螺旋升降式四方刀架,它的換刀過程如下:
(1)刀架抬起 當數控裝置發出換刀指令後,電機22正轉,並經聯軸套16、軸17,由滑鍵(或花鍵)帶動蝸桿18、蝸輪2、軸1、軸套10轉動。軸套10的外圓上有兩處凸起,可在套筒9內孔中的螺旋槽內滑動,從而舉起與套筒9相連的刀架8及上端齒盤6,使6與下端齒盤5分開,完成刀架抬起動作。
1,17—軸;2—蝸輪;3—刀座;4—密封圈;5,6—齒盤;7—壓蓋;8—刀架;9,20—套簡;10—軸套;11—墊圈;12—螺母;13—銷;14—底盤;15—軸承;16—聯軸套;18—蝸桿;19—微動開關;21—壓縮彈簧;22—電機
(2)刀架轉位 刀架抬起後,軸套10仍在繼續轉動,同時帶動刀架8轉過90°,180°,270°或360°,並由微動開關19發出信號給數控裝置。具體轉過的度數由數控裝置的控制信號確定,刀架上的刀具位置一般採用編碼盤來確定。
(3)刀架壓緊 刀架轉位後,由微動開關發出的信號使電機22反轉,銷11使刀架8定位而不隨軸套10回轉,於是刀架8向下移動。上下端齒盤5、6合攏壓緊。蝸桿18繼續轉動則產生軸向位移,壓縮彈簧21,套筒20的外圓曲面,微動開關19使電機22停止旋轉,從而完成一次轉位。
2.轉塔頭式換刀裝置
帶有旋轉刀具的數控機床常採用轉塔頭式換刀裝置,如數控鑽鏜床的多軸轉塔頭等。轉塔頭上裝有幾個主軸,每個主軸上均裝一把刀具,加工過程中轉塔頭可自動轉位實現自動換刀。主軸轉塔頭就相當於一個轉塔刀庫,其優點是結構簡單,換刀時間短,僅為2秒左右。由於受空間位置的限制,主軸數目不能太多,主軸部件結構不能設計得十分堅實,影響了主軸系統的剛度,通常只適用於工序較少、精度要求不太高的機床,如數控鑽床、數控銑床等。近年來出現了一種用機械手和轉塔頭配合刀庫進行換刀的自動換刀裝置,如圖2所示。它實際上是轉塔頭換刀裝置和刀庫式換刀裝置的結合。其工作原理如下:
1—刀庫;2—機械手;3,4—刀具主軸;5—轉塔頭;6—工件;7—工作台
轉塔頭5上有兩個刀具主軸3和4,當用刀具主軸4上的刀具進行加工時,可由機械手2將下一步需用的刀具換至不工作的刀具主軸3上,待本工序完成後,轉塔頭回轉180°,完成換刀。因其換刀時間大部分和加工時間重合,真正換刀時間只需轉塔頭轉位的時間。這種換刀方式主要用於數控鑽床和數控銑鏜床。
3.帶刀庫的自動換刀系統
由於回轉刀架、轉塔頭式換刀裝置容納的刀具數量不能太多,不能滿足復雜零件的加工需要,因此,自動換刀數控機床多採用帶刀庫的自動換刀裝置。帶刀庫的自動換刀裝置由刀庫和換刀機構組成,換刀過程較為復雜。首先要把加工過程中使用的全部刀具分別安裝在標准刀柄上,在機外進行尺寸預調整後,按一定的方式放入刀庫。換刀時,先在刀庫中選刀,再由換刀裝置從刀庫或主軸上取出刀具,進行交換,將新刀裝入主軸,舊刀放回刀庫。刀庫具有較大的容量,既可安裝在主軸箱的側面或上方。由於帶刀庫的自動換刀裝置的數控機床的主軸箱內只有一根主軸,主軸部件的剛度要高,以滿足精密加工要求。
另外,刀庫內刀具數量較大,因而能夠進行復雜零件的多工序加工,大大提高了機床的適應性和加工效率。帶刀庫的自動換刀系統適用於數控鑽削中心和加工中心。
『伍』 加工中心對結構都有哪些要求
加工中心有各種類型,雖然外形結構各異,但總體上是由以下幾大部分組成。
1、基礎部件:由床身、立柱和工作台等大件組成,它們是加工中心結構中的基礎部件。這些大件有鑄鐵件,也有焊接的鋼結構件,它們要承受加工中心的靜載荷以及在加工時的切削負載,因此必須具備更高的靜動剛度,也是加工中心中質量和體積最大的部件。
2、主軸部件:由主軸箱、主袖電動機、主軸和主軸軸承等零件組成。主軸的啟動、停止等動作和轉速均由數控系統控制,並通過裝在主軸上的刀具進行切削。主軸部件是切削加工的功率輸出部件,是加工中心的關鍵部件,其結構的好壞,對加工中心的性能有很大的影響。
3、數控系統:由CNC裝置、可編程序控制器、伺眼驅動裝置以及電動機等部分組成。是加工中心執行順序控制動作和控制加工過程的中心。
4、自動換刀裝置(ATC):加工中心與一般數控機床的顯著區別是具有對零件進行多工序加工的能力,有一套自動換刀裝置。
加工中心對結構的要求:
1、具備更高的靜動剛度
加工中心價格昂貴,其加工費用比傳統機床要高得多,這就要求必須採取措施大幅度地壓縮單件加工時間。壓縮單件加工時間包括兩個方面:一方面是新型刀具材料的發展,使切削速度成倍地提高,大大縮短了切削時間;另一方面,採用自動換刀系統,加快裝夾變換等操作,這又大大減少了輔助時間。這些措施大幅度地提高了生產率,獲得了好的經濟效益,然而,也明顯地增加了機床的負載及運轉時間。另外,機床床身、導軌、工作台、刀架和主軸箱等部件的結構剛度將影響它們本身的幾何精度及因變形所產生的誤差.所有這些因素都要求數控機床具有更高的靜剛度。
切削過程中的振動不僅直接影響零件的加工精度和表面質量,還會降低刀具壽命,影響生產率。而加工中心又是連續作業,不可能在加工中作人為調整(如改變切削用量或改變刀具的幾何角度)來消除或減少振動,因此,還必須提高加工中心的動剛度。
在設計加工中心結構時,考慮到這些因素,其基礎大件通常採用封閉箱形結構,合理布局且加強筋板以及加強各部件的接觸剛度,有效地提高機床的靜剛度。另外,調整構件的質量可改變系統的自振頻率,增加阻尼可改善機床的阻尼特性,是提高機床動剛度的有效措施。
2、更小的熱變形
加工中心在加工中受切削熱、摩擦熱等內外熱源的影響,各部件將發生不同程度的熱變形,這將影響工件的加工精度。由於加工中心的主軸轉速、進給速度及切削量等都大於傳統機床,而且工藝過程自動化,常常是連續加工,因而產生的熱量也多於傳統機床,這就要求必須採取措施減少熱變形對加工精度的影響。主要措施有:對發熱源採取有效的液冷、風冷等方法來控制溫升;改善機床結構,使構件的熱變形發生在非誤差敏感方向上。例如卧式加工中心的立柱採用框式雙立柱結構,左右對稱;熱變形對主軸軸線產生垂直方向的平移,它可以由坐標修正量進行補償,減少發熱,盡可能將熱源從主機中分離出去。
3、運動件間的摩擦小,並消除傳動系統間隙
加工中心工作台的位移,以脈沖當量作為它的最小單位,在對刀、工件找正等情況下,工作台常以極低的速度運動。這就要求工作台能對數控裝置發出的指令作出准確響應,它與運動件的摩擦特性有關。加工中心採用滾動導軌和靜壓導軌,滾動導軌和加壓導軌的靜摩擦力較小,並且在潤滑油的作用下,它們的摩擦力隨運動速度的提高而加大,這就有效地避免了低速爬行現象,從而使加工中心的運動平穩性和定位精度都有所提高。進給系統中採用滾珠絲杠代替滑動絲杠,也是基於同樣的道理。另外,採用脈沖補償裝置進行螺距補償,消除了進給傳動系統的間隙;有的機床採用無間隙傳動副。
4、壽命高、精度保持性好
良好的潤滑系統保證了加工中心的壽命,導軌、進給絲杠及主軸部件都採用新型的耐磨材料.使加工中心在長期使用過程中能夠保持良好的精度。
5、宜人性
加工中心採用多主軸、多刀架及自動換刀裝置,一次裝卡完成各工序的加工,節省了大量裝卡換刀時間。由於不需要人工操作,故採用了封閉或半封閉式加工,使人機界面明快、干凈、協調。機床各部分的互鎮能力強,可防止事故發生,改善了操作者的觀察、操作和維護條件,並設有緊急停車裝置,以避免發生意外事故.所有操作都集中在一個操作面板上,一目瞭然,減少了誤操作。
『陸』 為了保證使用性能,數控機床的機械結構應滿足哪些基本要求
數控機床的主體機構有以下特點:
1、由於採用了高性能的無級變速主軸及伺服傳動系統,數控機床的極限傳動結構大為簡化,傳動鏈也大大縮短;
2、為適應連續的自動化加工和提高加工生產率,數控機床機械結構具有較高的靜、動態剛度和阻尼精度,以及較高的耐磨性,而且熱變形小;
3、為減小摩擦、消除傳動間隙和獲得更高的加工精度,更多地採用了高效傳動部件,如滾珠絲杠副和滾動導軌、消隙齒輪傳動副等;
4、為了改善勞動條件、減少輔助時間、改善操作性、提高勞動生產率,採用了刀具自動夾緊裝置、刀庫與自動換刀裝置及自動排屑裝置等輔助裝置。
數控機床對機械結構的要求:
1、較高的機床靜、動剛度
數控機床是按照數控編程或手動輸入數據方式提供的指令自動進行加工的。由於機械結構(如機床床身、導軌、工作台、刀架和主軸箱等)的幾何精度與變形產生的定位誤差在加工過程中不能為地調整與補償,因此,必須把各處機械結構部件產生的彈性變形控制在最小限度內,以保證所要求的加工精度與表面質量。
2、減少機床的熱變形
在內外熱源的影響下,機床各部件將發生不同程度的熱變形,使工件與刀具之間的相對運動關系遭到破環,也是機床季度下降。對於數控機床來說,因為全部加工過程是計算的指令控制的,熱變形的影響就更為嚴重。為了減少熱變形,在數控機床結構中通常採用以下措施。(1)減少發熱;(2)控制溫升;(3)改善機床機構。
3、減少運動間的摩擦和消除傳動間隙
『柒』 數控鑽床自動換刀裝置包含哪些東西
各類數控機復床的自動換刀裝置制的結構取決於機床的形式、工藝范圍以及刀具的種類和數量等,主要可以分為以下幾種形式
①回轉刀架換刀
數控機床上使用的回轉刀架是一種最簡單的自動換刀裝置,根據加工對象的不同,可以設計成四方刀架和六角刀架等多種形式,分別安裝著四把、六把或更多的刀具,並按數控裝置的指令換刀。回轉刀架的結構上必須具有良好的強度和剛性,以承受粗加工時的切削抗力,由於車削加工精度在很大程度上取決於刀尖位置,而加工工程中對刀尖位置一般不進行人工調整,因此更有必要選擇可靠地定位方案和合理的定位結構,以保證回轉刀架在每次轉位之後,具有盡可能高的重復定位精度
回轉刀架的全部動作由液壓系統通過電磁換向閥和順序閥進行控制,他的動作分為四個步驟:刀架抬起。刀架轉位。刀架壓緊。轉位油缸復位
回轉刀架除了採用液壓缸驅動轉位和定位銷定位以外,還可以採用電機/馬氏機構轉位和鼠齒定位,以及其他轉位和定位機構。
『捌』 數控機床自動換刀裝置的分類和特點及具體應用
數控機床自動換來刀裝置分為轉塔自式和刀庫式
轉塔式分為回轉刀架和轉塔頭
刀庫式分為刀庫與主軸之間直接換刀、用機械手配合刀庫進行換刀和(用機械手、運輸裝置配合刀庫進行換刀)三種
回轉刀架多為順序換刀,換刀時間短,結構緊湊,容納刀具較少 用於數控車床、數控車削中心機床
其它的太多了我打字太慢請諒解~~
『玖』 什麼是自動換刀裝置
一、自動換刀裝置的形式
自動換刀裝置是數控機床的重要執行機構,它的形式多種多樣,目前常見的有以下幾種:
1.回轉刀架換刀;
2.排式刀架換刀;
3.更換主軸頭換刀;
4.帶刀庫的自動換刀系統
在這里我對數控機床常見的這幾種換刀系統逐一介紹,首先介紹一下回轉刀架換刀系統。
二、回轉刀架
數控機床使用的回轉刀架是比較簡單的自動換刀裝置,常用的類型有四方刀架、六角刀架,即在其上裝有四把、六把或更多的刀具。
回轉刀架必須具有良好的強度和剛度,以承受粗加工的切削力:同時要保證回轉刀架在每次轉位的重復定位精度。下面我們結合一台四工位的四方刀架了解一下其換刀過程及原理。並結合換刀原理分析一下四方刀架的常見故障現象及原因。常見機床四方刀架如圖一(左)。
圖一數控機床刀架或刀庫是由機床PLC來進行控制,對於普通的四工位刀架來說,控制比較簡單,一般用於普通的車床。我們分析車床刀架的控制原理其實就是指刀架的整個換刀過程,刀架的換刀過程其實是通過PLC對控制刀架的所有I/O信號進行邏輯處理及計算。實現刀架的順序控制。另外為了保證換刀能夠正確進行,系統一般還要設置一些相應的系統參數來對換刀過程進行調整。下面我們分析PLC控制下的換刀過程。在分析之前,我們首先了解刀架控制的電氣部分。刀架電氣控制部分如圖二所示。圖二中的a是刀架控制的強電部分,主要是控制刀架電機的正轉和反轉,來控制刀架的正轉和反轉;圖b是刀架控制的交流控制迴路,主要是控制兩個交流接觸器的導通和關閉來實現a中的強電控制;圖c部分是刀架控制的繼電器控制迴路及PLC的輸入及輸出迴路,整個過程的控制最終是由這個模塊來完成的。 圖中各器件的作用如下:
序號 名稱 含義
1 M2 刀架電動機
2 QF3 刀架電動機帶過載保護的電源空開
3 KM5、KM6 刀架電動機正、反轉控制交流接觸器
4 KA1 由急停控制的中間繼電器
5 KA6、KA7 刀架電動機正、反轉控制中間繼電器
6 S1~S4 刀位檢測霍爾開關
7 SB11 手動刀位選擇按鈕
8 SB12 手動換刀啟動按鈕
9 RC3 三相滅弧器
10 RC9、RC10 單相滅弧器
自動刀架控制涉及到的I/O信號如下:
PLC輸入信號:
X2.7:刀架電動機過熱報警輸入;
X3.0~X3.3:1~4號刀到位信號輸入;
X30.6:手動刀位選擇按鈕信號輸入;
X30.7:手動換刀啟動按鈕信號輸入;
PLC輸出信號:
Y0.6:刀架正轉繼電器控制輸出;
Y0.7:刀架反轉繼電器控制輸出。
我們現在已經清楚了刀架控制的I/O信號,下面我們結合這些信號來分析一下換刀過程,刀架換刀有兩種模式,一種是手動換刀,一種是通過T指令進行自動換刀。我們以手動狀態為例,介紹一下換刀過程及常見故障。
1、首先我們將機床調至手動狀態,通過刀位選擇按鍵進行目的刀位選擇,有的系統是利用波段開關的形式進行實現,有的系統是利用記數的形式來實現,比如說通過檢測刀位選擇信號(X30.6)的狀態,如果按下刀位選擇按鍵,X30.6的狀態應該會改變一次,計數器的數值會發生改變,系統選擇的目的刀具也會發生相應的改變。
2、選擇目的刀具完成以後,下面就是將機床刀架的當前刀位轉換到目的刀位。我們按下刀位轉換按鍵X30.7以後。這時系統PLC輸出一個刀架正轉信號Y0.6,KA6吸合;KM5吸合,這時刀架電機開始正向旋轉,刀架開始正轉。
3、刀架在正向旋轉的過程中不停的對刀位輸入信號進行檢測,如圖3所示,每把刀具各有一個霍爾位置檢測開關。各刀具按順序依次經過發磁體位置產生相應的刀位信號。當產生的刀位信號和目的刀位寄存器中的刀位相一致的時候,PLC認為所選刀具已經到位。
圖34、刀具到位以後,刀架仍繼續正向旋轉一段時間,然後停止正向旋轉(Y0.6停止輸出),延時一段時間以後,刀架反轉控制信號Y0.7有效,此時刀架開始反轉,反轉過程其實就是刀架鎖緊的過程,此過程延續一段時間,直到刀架鎖緊到位,但反轉時間不宜過長或過短。過長就有可能燒壞電機或造成電機過熱空開跳閘,時間過短有可能造成刀架不能夠鎖緊。刀架鎖緊以後,整個換刀過程結束。
安全互鎖
1、架電動機長時間旋轉,而檢測不到刀位信號,則認為刀架出現故障,立即停止刀架電動機,以防止將其損壞並報警提示;
2、刀架電動機過熱報警時,停止換刀過程,並禁止自動加工;
我們現在已經對此種刀架的換刀原理有所了解,那麼對於此種刀架在工作過程中常見的一些故障我們應該很容易分析出他的原因。常見的故障現象如下:
故障現象一:選擇了目標刀位,按下刀位轉換按鈕以後,電動刀架不轉;
故障現象二:選擇了目標刀位,按下刀位轉換按鈕以後,電動刀架轉個不停;
我們現在就以這兩種比較典型的故障現象來分析一下故障原因,希望大家有所收獲,比如故障現象一;這是比較常見的一種故障現象,出現此現象後我們應該利用怎樣的方法才能夠比較容易去解決。
從上面的敘述中我們已經了解了換刀的整個過程, 如圖四,如果刀架不動,我們應該怎麼樣去檢修呢?
1、首先我們可以利用現象比較明顯,比較容易觀察到的地方來進行判斷,在這里我們可以把接觸器作為一個特殊點,以接觸器為分界點,作出一個初步判斷,可以觀察一下接觸器是否動作,如果接觸器動作我們可以聽到接觸器吸合的聲音,相反則聽不到。
2、接觸器吸合的情況下,我們可以判斷出換刀過程中的① ④沒有問題。那麼問題應該在⑤ 或 ⑥上,具體原因如下:
1)電機電源缺相或電壓過低;
2)接觸器主觸點被燒壞或接觸不良;
3)刀架電機電源相序錯,造成電機旋轉方向發生改變,刀架選刀的過程變成刀架鎖緊的過程;
4)電機被燒壞;
5)刀架鎖得太緊或被機械卡死等。
3、接觸器在沒有吸合的情況下,我們可以判斷出故障原因有可能出在①⑤這幾步上,具體分析過程如下:
1)KM5沒有吸合的情況下,觀察KA6是否吸合,如果KA6已經動作,那麼可以測量一下KM5線圈有沒有燒壞,控制電纜有沒有斷線,KA6的觸點接觸是否良好。
2)如果KA6沒有動作,可以通過觀察PLC的輸入輸出寄存器的狀態來確定刀架正轉信號Y0.6是否有輸出,如果有輸出,可以檢測一下繼電器KA6線圈是否被燒壞,PLC輸出板是否有問題,系統PLC到KA6的連線是否有問題。如果沒有輸出,則檢查一下是否PLC編寫有誤,是否有些換刀條件沒有滿足。