㈠ 自动变速器按传动机构方式不同可以分为
行星齿轮和普通外捏合齿轮
㈡ 传动装置的分类
汽车传动系可按能量传递方式的不同,划分为机械传动、液力传动、液压传动、电传动等。
汽车传动系按照结构和传动介质分,其型式有机械式、液力机械式、静液式(容积液压式)、电力式等。
机械式传动系常见布置型式主要与发动机的位置及汽车的驱动型式有关。可分为:
1.前置后驱—FR:即发动机前置、后轮驱动
这是一种传统的布置型式。国内外的大多数货车、部分轿车和部分客车都采用这种型式。
2.后置后驱—RR:即发动机后置、后轮驱动
在大型客车上多采用这种布置型式,少量微型、轻型轿车也采用这种型式。发动机后置,使前轴不易过载,并能更充分地利用车箱面积,还可有效地降低车身地板的高度或充分利用汽车中部地板下的空间安置行李,也有利于减轻发动机的高温和噪声对驾驶员的影响。缺点是发动机散热条件差,行驶中的某些故障不易被驾驶员察觉。远距离操纵也使操纵机构变得复杂、维修调整不便。但由于优点较为突出,在大型客车上应用越来越多。
3.前置前驱—FF:发动机前置、前轮驱动
这种型式操纵机构简单、发动机散热条件好。但上坡时汽车质量后移,使前驱动轮的附着质量减小,驱动轮易打滑;下坡制动时则由于汽车质量前移,前轮负荷过重,高速时易发生翻车现象。大多数轿车采取这种布置型式。
4.越野汽车的传动系
越野汽车一般为全轮驱动,发动机前置,在变速箱后装有分动器将动力传递到全部车轮上。轻型越野汽车普遍采用4×4驱动型式,中型越野汽车采用4×4或6×6驱动型式;重型越野汽车一般采用6×6或8×8驱动型式。
㈢ 根据传动原理不同,带传动可分为_和_两大类
根据工作原理不同来,带传动可源分为摩擦带传动和啮合带传动两类。
带传动是利用张紧在带轮上的柔性带进行运动或动力传递的一种机械传动。根据传动原理的不同,有靠带与带轮间的摩擦力传动的摩擦型带传动,也有靠带与带轮上的齿相互啮合传动的同步带传动。
优点:
1、有过载保护作用。
2、有缓冲吸振作用 。
3、运行平稳无噪音 。
4、适于远距离传动(amax=15m) 。
5、制造、安装精度要求不高
缺点:
1、有弹性滑动使传动比i不恒定 。
2、张紧力较大(与啮合传动相比)轴上压力较大 。
3、结构尺寸较大、不紧凑 。
4、打滑,使带寿命较短 。
5、带与带轮间会产生摩擦放电现象,不适宜高温、易燃、易爆的场合。
㈣ 传动装置都有哪些分类
传动装置是指把动力源的运动和动力传递给执行机构的装置,介于动力源和执行机构之间,可以改变运动速度,运动方式和力或转矩的大小。
任何一部完整的机器都由动力部分、传动装置和工作机构组成,能量从动力部分经过传动装置传递到工作机构。根据工作介质的不同,传动装置可分为四大类:机械传动、电力传动、气体传动和液体传动。
(1)机械传动
机械传动是通过齿轮、皮带、链条、钢丝绳、轴和轴承等机械零件传递能量的。它具有传动准确可靠、制造简单、设计及工艺都比较成熟、受负荷及温度变化的影响小等优点,但与其他传动形式比较,有结构复杂笨重、远距离操纵困难、安装位置自由度小等缺点。
(2)电力传动
电力传动在有交流电源的场合得到了广泛的应用,但交流电动机若实现无级调速需要有变频调速设备,而直流电动机需要直流电源,其无级调速需要有可控硅调速设备,因而应用范围受到限制。电力传动在大功率及低速大转矩的场合普及使用尚有一段距离。在工程机械的应用上,由于电源限制,结构笨重,无法进行频繁的启动、制动、换向等原因,很少单独采用电力传动。
(3)气体传动
气体传动是以压缩空气为工作介质的,通过调节供气量,很容易实现无级调速,而且结构简单、操作方便、高压空气流动过程中压力损失少,同时空气从大气中取得,无供应困难,排气及漏气全部回到大气中去,无污染环境的弊病,对环境的适应性强。气体传动的致命弱点是由于空气的可压缩性致使无法获得稳定的运动,因此,一般只用于那些对运动均匀性无关紧要的地方,如气锤、风镐等。此外为了减少空气的泄漏及安全原因,气体传动系统的工作压力一般不超过0.7~0.8MPa,因而气动元件结构尺寸大,不宜用于大功率传动。在工程机械上气动元件多用于操纵系统,如制动器、离合器的操纵等。
(4)液体传动
以液体为工作介质,传递能量和进行控制的叫液体传动,它包括液力传动、液黏传动和液压传动。
1)液力传动
它实际上是一组离心泵一涡轮机系统,发动机带动离心泵旋转,离心泵从液槽吸入液体并带动液体旋转,最后将液体以一定的速度排入导管。这样,离心泵便把发动机的机械能变成了液体的动能。从泵排出的高速液体经导管喷到涡轮机的叶片上,使涡轮转动,从而变成涡轮轴的机械能。这种只利用液体动能的传动叫液力传动。现代液力传动装置可以看成是由上述离心泵一涡轮机组演化而来。
液力传动多在工程机械中作为机械传动的一个环节,组成液力机械传动而被广泛应用着,它具有自动无级变速的特点,无论机械遇到怎样大的阻力都不会使发动机熄火,但由于液力机械传动的效率比较低,一般不作为一个独立完整的传动系统被应用。
2)液黏传动
它是以黏性液体为工作介质,依靠主、从动摩擦片间液体的黏性来传递动力并调节转速与力矩的一种传动方式。液黏传动分为两大类,一类是运行中油膜厚度不变的液黏传动,如硅油风扇离合器;另一类是运行中油膜厚度可变的液黏传动,如液黏调速离合器、液黏制动器、液黏测功器、液黏联轴器、液黏调速装置等。
3)液压传动
它是利用密闭工作容积内液体压力能的传动。液压千斤顶就是一个简单的液压传动的实例。
液压千斤顶的小油缸l、大油缸2、油箱6以及它们之间的连接通道构成一个密闭的容器,里面充满着液压油。在开关5关闭的情况下,当提起手柄时,小油缸1的柱塞上移使其工作容积增大形成部分真空,油箱6里的油便在大气压作用下通过滤网7和单向阀3进入小油缸;压下手柄时,小油缸的柱塞下移,挤压其下腔的油液,这部分压力油便顶开单向阀4进入大油缸2,推动大柱塞从而顶起重物。再提起手柄时,大油缸内的压力油将力图倒流入小油缸,此时单向阀4自动关闭,使油不致倒流,这就保证了重物不致自动落下;压下手柄时,单向阀3自动关闭,使液压油不致倒流入油箱,而只能进入大油缸顶起重物。这样,当手柄被反复提起和压下时,小油缸不断交替进行着吸油和排油过程,压力油不断进入大油缸,将重物一点点地顶起。当需放下重物时,打开开关5,大油缸的柱塞便在重物作用下下移,将大油缸中的油液挤回油箱6。可见,液压千斤顶工作需有两个条件:一是处于密闭容器内的液体由于大小油缸工作容积的变化而能够流动,二是这些液体具有压力。能流动并具有一定压力的液体具有压力能。液压千斤顶就是利用油液的压力能将手柄上的力和位移转变为顶起重物的力和位移。
㈤ 自动变速器按其传动机构的类型不同,可分为那两种
C.钢带传动 D.平行轴式点击...
㈥ 按传动机构与控制装置不同,起动机可分为哪几类
按传动机构不同,起动机可分为:惯性啮合式、强制啮合式和电枢移动式等几类。
㈦ 传动系统按结构和传动介质不同有哪些
传动系统。按结构和传动介质不同。传系统系统可分为。机械式和液压式两种。
㈧ 按照传动方式的不同可分为那几类传动
这个传动也很广泛,简单的分就是机械传动和液力传动。机械传动包括带式传动、轴传动、齿轮传动、链式传动、往复传动、摩擦传动等。带式传动还分平皮带、三角带和齿形带。
㈨ 汽车制动传动装置的分类及组成
制动器可以分为摩擦式和非摩擦式两大类。
①摩擦式制动器。靠制动件与运动件之间的摩擦力制动。
②非摩擦式制动器。制动器的结构形式主要有磁粉制动器(利用磁粉磁化所产生的剪力来制动)、磁涡流制动器(通过调节励磁电流来调节制动力矩的大小)以及水涡流制动器等。
按制动件的结构形式又可分为外抱块式制动器、内张蹄式制动器、带式制动器、盘式制动器等;按制动件所处工作状态还可分为常闭式制动器(常处于紧闸状态,需施加外力方可解除制动)和常开式制动器(常处于松闸状态,需施加外力方可制动);按操纵方式也可分为人力、液压、气压和电磁力操纵的制动器。
按制动系统的作用 制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。
制动操纵能源 制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。
按制动能量的传输方式 制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。
㈩ 传动系按结构和传动介质可分为哪几类
传动系按传动介质可分为机械式传动系、液力传动系、静液式传动系、电力式传动系。
传动系按结构可分为前置后驱—FR:即发动机前置、后轮驱动;后置后驱—RR:即发动机后置、后轮驱动;前置前驱—FF:发动机前置、前轮驱动;越野汽车的传动系。
对于前置后驱的汽车来说,发动机发出的转矩依次经过离合器、变速箱、万向节、传动轴、主减速器、差速器、半轴传给后车轮,所以后轮又称为驱动轮。
驱动轮得到转矩便给地面一个向后的作用力,并因此而使地面对驱动轮产生一个向前的反作用力,这个反作用力就是汽车的驱动力。汽车的前轮与传动系一般没有动力上的直接联系,因此称为从动轮。
传动系的组成和布置形式是随发动机的类型、安装位置,以及汽车用途的不同而变化的。例如,越野车多采用四轮驱动,则在它的传动系中就增加了分动器等总成。而对于前置前驱的车辆,它的传动系中就没有传动轴等装置。
(10)制动传动装置按传动介质不同可分为扩展阅读
汽车传动系功能
1、起步功能
车辆动力传递时,需要具备反复将动力切断、连接的功能。车辆从静止状态到将发动机驱动力传递给变速箱输入轴,车辆开始行驶的过程中,驱动力要在两个不同转速的旋转半轴之间传递,这种功能被称为起步功能。
2、变速功能
发动机实现最佳输出特性的转速范围与实现最佳油耗特性的转速范围是不同的。而且车辆行驶状态中的低速、高速、加速、减速等由于受周围环境与驾驶者的意图影响而有很大的变化。起步加速和高速巡航时,如果不改变发动机转速和车轴转速的比例,很难高效率地利用发动机的输出功率。
3、驱动力的分配功能
四轮驱动车辆需要将驱动力分配到前后轮,一般分为全时四轮驱动式和二轮、四轮驱动进行切换两种形式。
4、主减速功能
将变速器的输出转速最终转化为与车轴相适合的转速的齿轮装置称为主动减速装置。当发动机和变速器相对于车辆纵向布置的时候,该主减速装置也应能够进行旋转方向的转换。
5、差速功能
二轮驱动车的驱动车轮在左右两侧,车辆在行驶过程中,由于驱动轮的左右车轮行驶轨迹不同,需要相应的装置吸收左右车轮的转速差,并能进行驱动力分配。四轮驱动车的前后车轴也会产生转速差,同样需要该装置。当单侧驱动轮空转时,为了将驱动力传动给另外的驱动轮,有时也需要对差速进行限制。
6、驱动力方向转换功能
悬架系统搭载于发动机,传动装置及车轮之间,需要联轴节进行连接,在允许一定量的相对运动的基础上传递功力。联轴节要具有能够改变旋转轴方向和伸缩的功能。
7、润滑油
为了充分发挥动力传动装置的功能,润滑油必不可少。传统式手动变速器、自动变速器、无级变速器以及AMT等各种装置对润滑油的要求也不尽相同,因此相应的使用各种不同的润滑油。