① 温控仪pid怎样设置,或者是怎样计算的。
看用于什么场合,控制精度要求。一般加温控制,如果控制误差要求为5%,测比例设为10%,积分时间需要测量被控体在5%的温度变化内所需的时间(从-5%升到5%的时间)与工艺的对误差允许的时间,一般取变化时间的1/3左右。微分主要是为了避免过冲,如果对过冲要求比较在意,则取变化时间,如要求稳定时间较短,可取1/2变化时间。现在的智能数字温控仪一般都有自整定(AT)功能。在初次使用时按一下AT键,PID参数将在三次调整周期内自动设定完成。
温控仪是调控一体化智能温度控制仪表,它采用了全数字化集成设计,具有温度曲线可编程或定点恒温控制、多重PID调节、输出功率限幅曲线编程、手动/自动切换、软启动、报警开关量输出、实时数据查询、与计算机通讯等功能,将数显温度仪表和ZK晶闸管电压调整器合二为一,集温度测量、调节、驱动于一体,仪表直接输出晶闸管触发信号,可驱动各类晶闸管负载。
干式变压器温度控制器采用高性能PT100传感器,是保证干式变压器安全运行的控制装置。该仪表设计新式,结构紧凑、牢固、显示醒目、直观,具有更加完善的系统保护、参数保存与输出指示等功能。其特有的温度超限报警,超温跳闸;负载断线报警输出,可以更好的保证无人值守供电系统安全、高效运行。
1、对三相绕组温度的巡回显示或最高温度相绕组的跟踪显示(可随意切换)。任何一路超过预设点即起控风机。
2、实现冷却风机启停的自动控制或手动控制(可随意切换)。
3、风机启停、超温报警、超温跳闸信号的显示、输出及远传。
4、传感器开路、短路及超过测量范围提示;风机断线报警与输出。
5、三相温度修正。
② pid参数如何整定!!各种情况下该如何设定准确的pid.
3.PID调试一般原则
a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 4.一般步骤 a.确定比例增益P
确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。比例增益P调试完成。 b.确定积分时间常数Ti
比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。 c.确定微分时间常数Td
微分时间常数Td一般不用设定,为0即可。若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。
d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。关于PID整定!关于PID整定! PID是比例,积分,微分的缩写. 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器
③ 自动准同期装置设置了哪几个控制单元
频差控制单元,压差控制单元,合闸信号控制单元
④ 请教:在电气调试过程中,怎样去整定自动准同期装置的假同期并网的导前时间
这个比较好弄,通过假同期试验即可实现。
假同期试验中首先设定导前时间为0,通过测量两侧电压相角差,以及断路器动作时间,从而即可确定同期装置和断路器动作延时时间。
然后将这个延时时间作为导前时间再试验几次,对导前时间做微调即可得到最终的导前时间。
⑤ PID是指什么,这三个参数参数怎样调整最佳
(1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti就是最佳值。如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。由于微分作用有抵制偏差变化的能力,所以确定一个Td值后,可把整定好的PB和Ti值减小一点再进行现场凑试,直到PB、Ti和Td取得最佳值为止。显然用经验法整定的参数是准确的。但花时间较多。为缩短整定时间,应注意以下几点:①根据控制对象特性确定好初始的参数值PB、Ti和Td。可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。这样可大大减少现场凑试的次数。②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:PB过大,曲线漂浮较大,变化不规则,Ti过长,曲线带有振荡分量,接近给定值很缓慢。这样可根据曲线形状来改变PB或Ti。③PB过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;Ti过短,振荡周期较长;Td太长,振荡周期最短。④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时,可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。
(2)衰减曲线法是以4:1衰减作为整定要求的,先切除调节器的积分和微分作用 ,用凑试法整定纯比例控制作用的比例带PB(比同时凑试二个或三个参数要简单得多),使之符合4:1衰减比例的要求,记下此时的比例带PBs和振荡周期Ts。如果加进积分和微分作用,可按表3-4-2给出经验公式进行计算。若按这种方式整定的参数作适当的调整。对有些控制对象,控制过程进行较快,难以从记录曲线上找出衰减比。这时,只要被控量波动2次就能达到稳定状态,可近似认为是4:1的衰减过程,其波动一次时间为Ts。
(3)临界比例带法,用临界比例带法整定调节器参数时,先要切除积分和微分作用,让控制系统以较大的比例带,在纯比例控制作用下运行,然后逐渐减小PB,每减小一次都要认真观察过程曲线,直到达到等幅振荡时,记下此时的比例带PBk(称为临界比例带)和波动周期Tk,然后按表3-4-3给出的经验公式求出调节器的参数值。按该表算出参数值后,要把比例带放在比计算值稍大一点的值上,把Ti和Td放在计算值上,进行现场观察,如果比例带可以减小,再将PB放在计算值上。这种方法简单,应用比较广泛。但对PBk很小的控制系统不适用。
⑥ 微机自动准同期装置的一般具有哪些功能
微机自动准同期装置用于发电机的并网。
当使用自动准同期时,准同期装置会自动调节待并网发电机的电压、频率和相位与电网相同,当调整到具备并网条件时,自动合上发电机的同期合闸开关,完成发电机的自动并网。
⑦ 怎样迅速调好PID参数
PID控制器参数选择的方法很多。
但是,对于PID控制而言,参数的选择始终是一件非常烦杂的工作,需要经过不断的调整才能得到较为满意的控制效果。依据经验,一般PID参数确定的步骤如下:
1、确定比例系数Kp确定比例系数Kp时,首先去掉PID的积分项和微分项,可以令Ti=0、Td=0,使之成为纯比例调节。输入设定为系统允许输出最大值的60%~70%,比例系数Kp由0开始逐渐增大,直至系统出现振荡;再反过来,从此时的比例系数Kp逐渐减小,直至系统振荡消失。记录此时的比例系数Kp,设定PID的比例系数Kp为当前值的60%~70%。
2、确定积分时间常数Ti比例系数Kp确定之后,设定一个较大的积分时间常数Ti,然后逐渐减小Ti,直至系统出现振荡,然后再反过来,逐渐增大Ti,直至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。
3、确定微分时间常数Td微分时间常数Td一般不用设定,为0即可,此时PID调节转换为PI调节。如果需要设定,则与确定Kp的方法相同,取不振荡时其值的30%。
4、经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti就是最佳值。如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。
5、由于微分作用有抵制偏差变化的能力,所以确定一个Td值后,可把整定好的PB和Ti值减小一点再进行现场凑试,直到PB、Ti和Td取得最佳值为止。显然用经验法整定的参数是准确的。但花时间较多。为缩短整定时间,应注意以下几点:①根据控制对象特性确定好初始的参数值PB、Ti和Td。
6、可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。这样可大大减少现场凑试的次数。②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:PB过大,曲线漂浮较大,变化不规则,Ti过长,曲线带有振荡分量,接近给定值很缓慢。
7、这样可根据曲线形状来改变PB或Ti。③PB过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;Ti过短,振荡周期较长;Td太长,振荡周期最短。④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时。
8、可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。
⑧ 发电机同期装置参数怎么设定
电压差小于5%(宜发电机略高于电网),频率差小于0.5%,相位差小于10度。
⑨ SID-2V型自动准同步装置如何整定电压的参数
可使用专配的SID-2DS准同步开发试验装置或两个调压器完成整定工作,具体步骤如下:
1.整定发电机过电压保护定值
调节输入同步装置的发电机压为1.15倍额定电压,用直流电压表(量程为0-10V)监视输入电路板上方的“TTV-4”测点对+5V电源地端的电压,然后调节电位器RT3直到电压表的指示从低电平变位高电平为止,整定完毕。
2.调节发电机及系统侧TV二次侧电压差的基准点
由于发电机及系统侧TV二次侧电压不一定100V(或57.7V)时正好对应一次侧的额定电压,因此必要对应一次侧额定电压的实际二次侧电压为基准才能整定出合理的允许压差值。这一步就是找出作为整定正、负压差允许值的基准点,方法是先将送入同步装置系统侧的电压调到实际TV二次侧额定值Usn,再将送入同步装置发电机侧的电压调到实际TV的二次侧额定值Ugn。接着用直流电压表监视输入电路板上方的“TTV-1”与“TTV-7”两侧点的电压(量程为10V)。用螺丝刀调节电位器RT1使该电压向减小方向变化,为提高精度,应逐步减小电压表量程,直到电压为零时停止,基准点整定完毕。
3.整定负向允许压差
保持系统侧输入电压为额定值Usn,将发电机侧电压降到80%Ugn以下,然后逐步将发电机侧电压升到最低允许电压值,此值影视发电机侧额定电压Ugn为基值的百分值,例如-8%Ugn。然后调节电位器RT2,直到8位数码显示器的最右一位刚好稳定的显示“U”为止,整定完毕。
4.整定正向允许压差
保持系统测输入电压为额定值Usn,将发电机侧电压升到最高允许电压值,此值应是发电机侧额定电压Ugn为基值的百分值,例如+7%Ugn。然后调节电位器RT4,直到8位数码显示器的最右两位刚好稳定的显示“-U”为止,整定完毕。
由于在发电机并网时系统侧的一次电压并不一定是额定值,随着系统负荷的变动,系统侧的实际电压也在一定的范围变动。所以应该提倡把允许压差值整定大一些,这是有益无害的,在并网瞬间短暂的无功功率转换发电机是完全可以承受的。
文章转载来自武汉瑞力特电气技术有限公司