⑴ 根据雷诺实验,流体流动有哪两种状态
搞清两种流态产生的条件、观察液体流动时的层流和紊流现象雷诺揭示了重要的流体流动机理,说明沿程水头损失与流速的一次方成正比例关系,θ=45°,其中AB段即为层流向紊流转变的过渡区。反映了沿程阻力系数λ是与流态密切相关的参数;ν
Re称为雷诺数.75~2次方成比例,计算λ值必须首先确定水流的流态,BC段为紊流向层流转变的过渡区。绘制沿程水头损失和断面平均流速的关系曲线,由斜截式方程得,如下图所示,当Re较小时,作为lghf和lgv关系曲线。雷诺数是由流速v,各流层的液体形成涡体并能脱离原流层,A点所对应的雷诺数为上临界雷诺数。
2,与其周围的流体间无宏观的混合即分层流动这种流动形态称为层流或滞流。
1。当流体流速较小时,加深对管流不同流态的了解,流体有两种不同的形态,有色液体与水互不混掺,这种流体形态称为湍流,所以雷诺数Re表示惯性力与粘滞力的比值关系,用重量法或体积浊测出流量。当液体流速逐渐增大。
1,压差计两测压管水面高差△h即为1-1和1-2两断面间的沿程水头损失,使各流层的液体质点互不混杂,反应了液流内部结构从量变到质变的一个变化过程,有色液体与水混掺。进一步掌握层流,呈直线运动状态:因为管径不变V1=V2△h
所以,惯性力较小,即m=1,并了解其实用意义,液流呈层流运动。在层流中,1-2两断面。BD段为紊流区,有大小不等的涡体振荡于各流层之间,说明粘滞力占主导,沿程水头损失与流速的1。
2。流体流速增大到某个值后。液体流态的判别是用无量纲数雷诺数Re作为判据的,液流质点即互相混杂,A点所对应流速为上临界流速,可以将两种流态的根本区别清晰地反映出来:实验结果表明EC=1。区分两种不同流态的特征、测定颜色水在管中的不同状态下的雷诺数及沿程水头损失。液体运动的层流和紊流两种型态。在雷诺实验装置中。液流型态开始变化时的雷诺数叫做临界雷诺数。A点为层流向紊流转变的临界点,粘滞力对质点的控制逐渐减弱,在紊流中,并根据研究结果、紊流两种流态的运动学特性与动力学特性。分析圆管流态转化的规律:
lghf=lgk+mlgvlghf=lgkvmhf=kvmm为直线的斜率式中。这种从层流到紊流的运动状态,C点所对应的雷诺数为下临界雷诺数,粘滞力对质点起控制作用,当流速达到一定程度时,由恒定总流的能量方程知,并由实测的流量值求得断面平均流速,存在着两种根本不同的流动状态、通过对颜色水在管中的不同状态的分析、在如图所示的实验设备图中,流体质点除流动方向上的流动外,C点为紊流向层流转变的临界点。
3,验证不同流态下沿程水头损失的规律是不同的,流体质点只沿流动方向作一维的运动,加深对雷诺数的理解,C点所对应流速为下临界流速,液体为层流,质点惯性力也逐渐增雷诺实验大,即存在流体质点的不规则脉动.0,首先由英国物理学家雷诺进行了定性与定量的证实.75~2。当液体流速较小时,曲线上EC段和BD段均可用直线关系式表示:
Re=Vd/,液流呈紊流运动。学习古典流体力学中应用无量纲参数进行实验研究的方法、水力半径R和运动粘滞系数υ组成的无量纲数,即根据流速的大小,提出液流型态可用下列无量纲数来判断,取1-1;反之则为紊流,还向其它方向作随机的运动,为层流区、液体在运动时,通过有色液体的质点运动
⑵ 落球法测定不同液体在不同温度下的粘度的实验报告应该怎样写以及数据处理
当液体内各部分之间有相对运动时,接触面之间存在内摩擦力,阻碍液体的相对运动,这种性质称为液体的粘滞性,液体的内摩擦力称为粘滞力。粘滞力的大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘度(或粘滞系数)。
对液体粘滞性的研究在流体力学,化学化工,医疗,水利等领域都有广泛的应用,例如在用管道输送液体时要根据输送液体的流量,压力差,输送距离及液体粘度,设计输送管道的口径。
测量液体粘度可用落球法,毛细管法,转筒法等方法,其中落球法适用于测量粘度较高的液体。
粘度的大小取决于液体的性质与温度,温度升高,粘度将迅速减小。例如对于蓖麻油,在室温附近温度改变1˚C,粘度值改变约10%。因此,测定液体在不同温度的粘度有很大的实际意义,欲准确测量液体的粘度,必须精确控制液体温度。
实验目的:
1. 用落球法测量不同温度下蓖麻油的粘度
2. 了解PID温度控制的原理
3. 练习用停表记时,用螺旋测微器测直径
实验仪器:
变温粘度测量仪,ZKY-PID温控实验仪,停表,螺旋测微器,钢球若干
实验原理:
1. 落球法测定液体的粘度
1个在静止液体中下落的小球受到重力、浮力和粘滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示粘滞阻力的斯托克斯公式:
(1)
(1)式中d为小球直径。由于粘滞阻力与小球速度v成正比,小球在下落很短一段距离后(参见附录的推导),所受3力达到平衡,小球将以v0匀速下落,此时有:
(2)
(2)式中ρ为小球密度,ρ0为液体密度。由(2)式可解出粘度η的表达式:
(3)
本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时粘滞阻力的表达式可加修正系数(1+2.4d/D),而(3)式可修正为:
(4)
当小球的密度较大,直径不是太小,而液体的粘度值又较小时,小球在液体中的平衡速度v0会达到较大的值,奥西思-果尔斯公式反映出了液体运动状态对斯托克斯公式的影响:
(5)
其中 ,Re称为雷诺数,是表征液体运动状态的无量纲参数。
(6)
当Re小于0.1时,可认为(1)、(4)式成立。当0.1<Re<1时,应考虑(5)式中1级修正项的影响,当Re大于1时,还须考虑高次修正项。
考虑(5)式中1级修正项的影响及玻璃管的影响后,粘度η1可表示为:
(7)
由于3Re/16是远小于1的数,将1/(1+3Re/16)按幂级数展开后近似为1-3Re/16,(7)式又可表示为:
(8)
已知或测量得到ρ、ρ0、D、d、v等参数后,由(4)式计算粘度η,再由(6)式计算Re,若需计算Re的1级修正,则由(8)式计算经修正的粘度η1。
在国际单位制中,η的单位是Pa·s(帕斯卡•秒),在厘米,克,秒制中,η的单位是P(泊)或cP(厘泊),它们之间的换算关系是:
1Pa·s = 10P = 1000cP (9)
2.PID调节原理
PID调节是自动控制系统中应用最为广泛的一种调节规律,自动控制系统的原理可用图1说明。
e(t) u(t) 操作量
被控量 扰动
图1 自动控制系统框图
假如被控量与设定值之间有偏差e(t)=设定值-被控量,调节器依据e(t)及一定的调节规律输出调节信号u(t),执行单元按u(t)输出操作量至被控对象,使被控量逼近直至最后等于设定值。调节器是自动控制系统的指挥机构。
在我们的温控系统中,调节器采用PID调节,执行单元是由可控硅控制加热电流的加热器,操作量是加热功率,被控对象是水箱中的水,被控量是水的温度。
PID调节器是按偏差的比例(proportional),积分(integral),微分(differential),进行调节,其调节规律可表示为:
(10)
式中第一项为比例调节,KP为比例系数。第二项为积分调节,TI为积分时间常数。第三项为微分调节,TD为微分时间常数。
PID温度控制系统在调节过程中温度随时间的一般变化关系可用图2表示,控制效果可用稳定性,准确性和快速性评价。
系统重新设定(或受到扰动)后经过一定的过渡过程能够达到新的平衡状态,则为稳定的调节过程;若被控量反复振荡,甚至振幅越来越大,则为不稳定调节过程,不稳定调节过程是有害而不能采用的。准确性可用被调量的动态偏差和静态偏差来衡量,二者越小,准确性越高。快速性可用过渡时间表示,过渡时间越短越好。实际控制系统中,上述三方面指标常常是互相制约,互相矛盾的,应结合具体要求综合考虑。
由图2可见,系统在达到设定值后一般并不能立即稳定在设定值,而是超过设定值后经一定的过渡过程才重新稳定,产生超调的原因可从系统惯性,传感器滞后和调节器特性等方面予以说明。系统在升温过程中,加热器温度总是高于被控对象温度,在达到设定值后,即使减小或切断加热功率,加热器存储的热量在一定时间内仍然会使系统升温,降温有类似的反向过程,这称之为系统的热惯性。传感器滞后是指由于传感器本身热传导特性或是由于传感器安装位置的原因,使传感器测量到的温度比系统实际的温度在时间上滞后,系统达到设定值后调节器无法立即作出反应,产生超调。对于实际的控制系统,必须依据系统特性合理整定PID参数,才能取得好的控制效果。
由(10)式可见,比例调节项输出与偏差成正比,它能迅速对偏差作出反应,并减小偏差,但它不能消除静态偏差。这是因为任何高于室温的稳态都需要一定的输入功率维持,而比例调节项只有偏差存在时才输出调节量。增加比例调节系数KP可减小静态偏差,但在系统有热惯性和传感器滞后时,会使超调加大。
积分调节项输出与偏差对时间的积分成正比,只要系统存在偏差,积分调节作用就不断积累,输出调节量以消除偏差。积分调节作用缓慢,在时间上总是滞后于偏差信号的变化。增加积分作用(减小TI)可加快消除静态偏差,但会使系统超调加大,增加动态偏差,积分作用太强甚至会使系统出现不稳定状态。
微分调节项输出与偏差对时间的变化率成正比,它阻碍温度的变化,能减小超调量,克服振荡。在系统受到扰动时,它能迅速作出反应,减小调整时间,提高系统的稳定性。
PID调节器的应用已有一百多年的历史,理论分析和实践都表明,应用这种调节规律对许多具体过程进行控制时,都能取得满意的结果。
仪器介绍
1. 落球法变温粘度测量仪
变温粘度仪的外型如图3所示。待测液体装在细长的样品管中,能使液体温度较快的与加热水温达到平衡,样品管壁上有刻度线,便于测量小球下落的距离。样品管外的加热水套连接到温控仪,通过热循环水加热样品。底座下有调节螺钉,用于调节样品管的铅直。
2.开放式PID温控实验仪
温控实验仪包含水箱,水泵,加热器,控制及显示电路等部分。
本温控试验仪内置微处理器,带有液晶显示屏,具有操作菜单化,能根据实验对象选择PID参数以达到最佳控制,能显示温控过程的温度变化曲线和功率变化曲线及温度和功率的实时值,能存储温度及功率变化曲线,控制精度高等特点,仪器面板如图4所示。
开机后,水泵开始运转,显示屏显示操作菜单,可选择工作方式,输入序号及室温,设定温度及PID参数。使用 键选择项目, 键设置参数,按确认键进入下一屏,按返回键返回上一屏。
进入测量界面后,屏幕上方的数据栏从左至右依次显示序号,设定温度,初始温度,当前温度,当前功率,调节时间等参数。图形区以横坐标代表时间,纵坐标代表温度(以及功率),并可用 键改变温度坐标值。仪器每隔15秒采集1次温度及加热功率值,并将采得的数据标示在图上。温度达到设定值并保持两分钟温度波动小于0.1度,仪器自动判定达到平衡,并在图形区右边显示过渡时间ts,动态偏差σ,静态偏差e。一次实验完成退出时,仪器自动将屏幕按设定的序号存储(共可存储10幅),以供必要时查看,分析,比较。
3.停表
PC396电子停表具有多种功能。按功能转换键,待显示屏上方出现符号 且第1和第6、7短横线闪烁时,即进入停表功能。此时按开始/停止键可开始或停止记时,多次按开始/停止键可以累计记时。一次测量完成后,按暂停/回零键使数字回零,准备进行下一次测量。
实验内容与步骤
1.检查仪器后面的水位管,将水箱水加到适当值
平常加水从仪器顶部的注水孔注入。若水箱排空后第1次加水,应该用软管从出水孔将水经水泵加入水箱,以便排出水泵内的空气,避免水泵空转(无循环水流出)或发出嗡鸣声。
2.设定PID参数
若对PID调节原理及方法感兴趣,可在不同的升温区段有意改变PID参数组合,观察参数改变对调节过程的影响,探索最佳控制参数。
若只是把温控仪作为实验工具使用,则保持仪器设定的初始值,也能达到较好的控制效果。
3.测定小球直径
由(6)式及(4)式可见,当液体粘度及小球密度一定时,雷诺数Re d3。在测量蓖麻油的粘度时建议采用直径1~2mm的小球,这样可不考虑雷诺修正或只考虑1级雷诺修正。
用螺旋测微器测定小球的直径d,将数据记入表1中。
表1 小球的直径
次数 1 2 3 4 5 6 7 8 平均值
d (10-3m)
4.测定小球在液体中下落速度并计算粘度
温控仪温度达到设定值后再等约10分钟,使样品管中的待测液体温度与加热水温完全一致,才能测液体粘度。
用镊子夹住小球沿样品管中心轻轻放入液体,观察小球是否一直沿中心下落,若样品管倾斜,应调节其铅直。测量过程中,尽量避免对液体的扰动。
用停表测量小球落经一段距离的时间t,并计算小球速度v0,用(4)或(8)式计算粘度η,记入表2中。
表2中,列出了部分温度下粘度的标准值,可将这些温度下粘度的测量值与标准值比较,并计算相对误差。
将表2 中η的测量值在坐标纸上作图,表明粘度随温度的变化关系。
实验全部完成后,用磁铁将小球吸引至样品管口,用镊子夹入蓖麻油中保存,以备下次实验使用。
表2 粘度的测定 ρ = 7.8×103kg/m3 ρ0 = 0.95×103kg/m3 D = 2.0×10-2m
温度
(˚C) 时间(s) 速度
(m/s) η (Pa·s)
测量值 *η(Pa·s)
标准值
1 2 3 4 5 平均
10 2.420
15
20 0.986
25
30 0.451
35
40 0.231
45
50
55
* 摘自 CRC Handbook of Chemistry and Physics
附录 小球在达到平衡速度之前所经路程L的推导
由牛顿运动定律及粘滞阻力的表达式,可列出小球在达到平衡速度之前的运动方程:
(1)
经整理后得:
(2)
这是1个一阶线性微分方程,其通解为:
(3)
设小球以零初速放入液体中,代入初始条件(t=0, v=0),定出常数C并整理后得:
(4)
随着时间增大,(4)式中的负指数项迅速趋近于0,由此得平衡速度:
(5)
(5)式与正文中的(3)式是等价的,平衡速度与粘度成反比。设从速度为0到速度达到平衡速度的99.9%这段时间为平衡时间t0,即令:
(6)
由(6)式可计算平衡时间。
若钢球直径为10-3m,代入钢球的密度ρ,蓖麻油的密度ρ0及40 ºC时蓖麻油的粘度η = 0.231 Pa·s,可得此时的平衡速度约为v0 = 0.016 m/s,平衡时间约为t0 = 0.013 s。
平衡距离L小于平衡速度与平衡时间的乘积,在我们的实验条件下,小于1mm,基本可认为小球进入液体后就达到了平衡速度。
⑶ 知道液体的密度P,流速V 粘度U 怎样计算雷诺系数Re
Re=VPR/u R是管道半径
⑷ 液体粘滞系数的测定 思考题
[实验器材]
奥氏粘度计、温度计、秒表、玻璃缸、洗耳球、量筒、量杯、刻度移液管(滴定管)、蒸馏水、洒精等。
[实验原理]
1840年泊肃叶(Poiseulle)研究了牛顿液体在玻管中的流动,他发现流经毛细管的水的流量V与压力差
ΔP=P1-P2、毛细管半径r0的四次方及时间t成正比,与毛细管的长度L、液体的粘度η成反比。其表达式是:
(2一1)
则
(2一2)
图2-1
奥氏粘度计
应用这一原理,奥氏特瓦尔德(1553一1932)设计制做了如图2一1所示的粘度计。它用玻璃制成,P泡的位置较高,为测定液体体积的球,上下各有一刻痕A和B(A、B间的容器相当于量筒),在B之下是一段截面相等的毛细管BC;Q泡位置较低,且比P泡大,为储液器。使用时竖直放置在恒温槽中。如果我们采用直接法测量,需将一定量的液体由D管注入,然后用洗耳球或移液管把液休吸人P泡,高于A线,让液体经毛细管自由下降。液体下落到A线时开始计时,至B线时停止计时,时间间隔为t秒,流经BC的液体体积为V。由于该部分液体向下流动,受到的压强差是
P=ρgh,因此有关系式
(2-3)
但是在实际中h、r0、L、V都是难以测准的,尤其是h在测量过程中,随着液体重力势能的改变而正比地变化着,更无法测量。因此用式2-3进行测算,其误差很大,实施也较为困难,因而我门通常采用比较法,即让相同体积的标准液体如蒸馏水和待测液体分别流过同一粘度计,则有
(2-4)
(2-5)
将上述二式进行比较,可得
由于相同体积的液体作用在毛细管中液体的平均液柱高度h都相同,所以
(2-6)
从式2-6可以看出,要测某一待测液体的粘滞系数,只要测量流经毛细管的时间t1、t2和密度ρ1、ρ2就可以了。从而使实验简化,并提高了测量的精确度。
此法对于牛顿液体(如酒精、血清或血浆)的测量来说,其测量精度高,操作简便、并且装置便宜。然而对于非牛顿液体来说就不太适宜,需换用其它的仪器,如旋转粘度计、锥板粘度计等。
[实验步骤]
测定某一温度下酒精的粘滞系数
1.先用蒸馏水洗涤粘度汁三次,再用少量酒精(待测液)洗涤一次,甩干。
2.将粘度汁垂直地放人水缸,并在水缸中插人温度汁。
3.用量筒(或移液管)取适量体积的酒精(如9毫升)注入粘度计,待几分钟后,记下水缸温度。
4.用洗耳球从E端将酒精缓慢地吸至A刻度线以上,迅速移开洗耳球。当液面降到A处时,开启停表;等液面降到B处时,卡住停表,记下表上的时间t2,如此重复五次,求出t2的平均值
和平均绝对误差
。
5.将酒精从粘度计中倒人废酒精瓶中,再用蒸馏水洗涤五次,甩干。
6.取与酒精相同体积的标准液体(蒸馏水)注入粘度汁,按4的方法,测出蒸馏水的t1,并求出
和
。
7.从附表2-2中查出选定温度下水和酒精的密度ρ1、ρ2,以及在此温度下蒸馏水的粘滞系数η1。
8.将以上数据代人2-6式算出酒精在选定温度下的粘滞系数η2
。
[实验记录]
测量时的温度
T=
(℃)
水的密度
ρ1=
(kg/m3)
酒精的密度
ρ2=
(kg/m3)
水的粘滞系数η1=
(Pa.S)
表2-1
酒精的粘滞系数的测定
次数
待测量
蒸馏水(t1)
蒸馏水(Δt)
洒精(t2)
洒精(Δt)
1
2
3
4
5
相对误差
酒精的粘滞系数
(Pa.S)
平均绝对偏差
测量结果
(Pa.S)
[注意事项]
1.吸液体时要慢慢地吸,尤其快到A线时更应注意,不能吸得太猛,以免液体吸人洗耳球,而影响实验结果。
2.在甩水和更换液体时,要小心不要折断粘度计。
3.标准液体和待测液体的体积必须相等,否则无法进行比较。
⑸ 雷诺数和粘度如何转换
Re=ρvL/μ,ρ、μ为流体密度和粘度,v、L为流场的特征速度和特征长度
将流动着的液体看作许多相互平行移动的液层, 各层速度不同,形成速度梯度(dv/dx),这是流动的基本特征.(见图)
由于速度梯度的存在,流动较慢的液层阻滞较快液层的流动,因此.液体产生运动阻力.为使液层维持一定的速度梯度运动,必须对液层施加一个与阻力相反的反向力.
在单位液层面积上施加的这种力,称为切应力τ(N/m2).
切变速率(D) D=d v /d x (S-1)
切应力与切变速率是表征体系流变性质的两个基本参数
牛顿以图4-1的模式来定义流体的粘度。两不同平面但平行的流体,拥有相同的面积”A”,相隔距离”dx”,且以不同流速”V1”和”V2”往相同方向流动,牛顿假设保持此不同流速的力量正比于流体的相对速度或速度梯度,即:
τ= ηdv/dx =ηD(牛顿公式) 其中η与材料性质有关,我们称为“粘度”。
粘度定义:将两块面积为1m2的板浸于液体中,两板距离为1米,若加1N的切应力,使两板之间的相对速率为1m/s,则此液体的粘度为1Pa.s。
PS:
在压强为101.325kPa、温度为20℃的条件下,空气、水和甘油的动力粘度和运动粘度为:
空气 μ=17.9×10-6 Pa·s, v=14.8×10-6 m2/s
水 μ=1.01×10-3 Pa·s, v=1.01×10-6 m2/s
甘油 μ=1.499Pa·s, v=1.19×10-3 m2/s
⑹ 雷诺实验现象及物理意义
雷诺揭示了重要的流体流动机理,即根据流速的大小,流体有两种不同的形态。当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动这种流动形态称为层流或滞流。流体流速增大到某个值后,流体质点除流动方向上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则脉动,这种流体形态称为湍流。
反映了沿程阻力系数λ是与流态密切相关的参数,计算λ值必须首先确定水流的流态。
液体流态的判别是用无量纲数雷诺数Re作为判据的。
雷诺数是由流速v、水力半径R和运动粘滞系数υ组成的无量纲数,所以雷诺数Re表示惯性力与粘滞力的比值关系,当Re较小时,说明粘滞力占主导,液体为层流;反之则为紊流。
1、观察液体流动时的层流和紊流现象。区分两种不同流态的特征,搞清两种流态产生的条件。分析圆管流态转化的规律,加深对雷诺数的理解。
2、测定颜色水在管中的不同状态下的雷诺数及沿程水头损失。绘制沿程水头损失和断面平均流速的关系曲线,验证不同流态下沿程水头损失的规律是不同的。进一步掌握层流、紊流两种流态的运动学特性与动力学特性。
3、通过对颜色水在管中的不同状态的分析,加深对管流不同流态的了解。学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。
1、液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增
雷诺实验
大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。
液体运动的层流和紊流两种型态,首先由英国物理学家雷诺进行了定性与定量的证实,并根据研究结果,提出液流型态可用下列无量纲数来判断:
Re=Vd/ν
Re称为雷诺数。液流型态开始变化时的雷诺数叫做临界雷诺数。
在雷诺实验装置中,通过有色液体的质点运动,可以将两种流态的根本区别清晰地反映出来。在层流中,有色液体与水互不混掺,呈直线运动状态,在紊流中,有大小不等的涡体振荡于各流层之间,有色液体与水混掺。
2、在如图所示的实验设备图中,取1-1,1-2两断面,由恒定总流的能量方程知:
因为管径不变V1=V2△h
所以,压差计两测压管水面高差△h即为1-1和1-2两断面间的沿程水头损失,用重量法或体积浊测出流量,并由实测的流量值求得断面平均流速,作为lghf和lgv关系曲线,如下图所示,曲线上EC段和BD段均可用直线关系式表示,由斜截式方程得:
lghf=lgk+mlgvlghf=lgkvmhf=kvmm为直线的斜率
式中:
实验结果表明EC=1,θ=45°,说明沿程水头损失与流速的一次方成正比例关系,为层流区。BD段为紊流区,沿程水头损失与流速的1.75~2次方成比例,即m=1.75~2.0,其中AB段即为层流向紊流转变的过渡区,BC段为紊流向层流转变的过渡区,C点为紊流向层流转变的临界点,C点所对应流速为下临界流速,C点所对应的雷诺数为下临界雷诺数。A点为层流向紊流转变的临界点,A点所对应流速为上临界流速,A点所对应的雷诺数为上临界雷诺数。