1. 汽车刹车系统自动调节装置的工作原理
刹车系统自动调节装置的构造:1、制动盘 2、制动片 3、制动块底板 4、进液口 5、夹紧环 6、活塞 7、密封圈等等。
工作原理:当踏下制动踏板时,制动液经液口进入活塞腔,活塞在液压作用下移向制动盘,通过制动片压紧制动盘使车轮制动。
密封圈由O型圈及支承环组成,安装在制动钳壳的槽中与活塞紧密粘合,制动时O型圈在活塞摩擦力的作用下产生微量弹性变形,在松开制动踏板时,密封圈的弹性变形将活塞弹返到原位。
在活塞的芯杆上装有夹紧环,夹紧环与制动钳壳间有一定的摩擦力,该摩擦力大于O型圈的弹力。活塞与夹紧环之间有一定的间隙,该间隙作为一种行程极限决定摩擦片与活塞之间的活动,当摩擦片磨损使间隙变大时,踩下制动踏板,液压使活塞带动夹紧环停在新的位置上,这样就可以达到制动间隙的自动调节。
2. 关于自卸车的设计标准。
自卸车的设计标准:
自卸车车箱应举升、下降平稳,不允许有窜动、冲撞和卡滞现象;车箱最大举升角为理论设计值左右2°;超载10%的工况下,车箱分别举升10°和20°,停留5min,车箱自降量不得超过2.5°。
自卸车车箱应符合下列要求:
车厢表面平整,外表面不容许有明显的凹凸不平;有足够的刚度和强度;车厢长度容许相差8mm,两边梁的直线型和平行性必须控制在3mm以内;两对角线的尺寸差不得大于10mm。车厢底座与车厢底架之间应贴合,因变形而造成的不能贴合距离不得大于6mm;车厢后厢板与车厢后端之间应贴合,最大间隙为上端小于3mm,下端小于1mm;锁启机构开启灵活,锁紧可靠。车箱举升3°时能保持锁紧状态,举升到5°—8°时保证全部打开,其它应符合QCn20951—1999;货卸操纵机构应灵活、准确、可靠;在行驶过程中不允许车箱出现自动举升现象。车箱举升后进行检修时,应有防止车箱自降的装置;液压倾卸
装置在额定载荷下连续举升(举升到最大举升角的一半)、下降(不卸载、载荷不移动)3000次倾卸可靠性试验,试验后应达到下列要求:液压倾卸装置各零件不得出现任何损坏(易损件除外);车箱自降量应符合国家标准的规定;车箱空载举升到最大举升角的时间不超过20s;车箱空载从大举升角下降到与副车驾贴合的时间不超过20s
3. 制动防抱死装置系统
一、基本概念
1、什么是ABS:ABS是英文防抱死制动系统Antilock Braking System或者Antiskid Braking System的缩写。该系统在汽车制动过程中可自动调节车轮制动力,防止车轮抱死以取得最佳制动效果。
为了使汽车在行驶过程中以适当的减速度降低车速直至停车,保证行驶的安全,汽车上均装有行车制动器。汽车的事故往往与制动距离过长、紧急制动时发生侧滑等情况有关,故汽车的制动性能是汽车安全行驶的重要保障。一辆汽车的制动性能,主要从以下三个方面评价:
① 制动效能:即制动距离与制动减速度
② 制动效能的恒定性:即抗热衰退或抗水衰退的性能
③ 制动时汽车方向的稳定性:即制动时汽车不能跑偏、侧滑及失去转向性能的能力
汽车的制动性能是汽车迅速降低车速直至停车的能力,它是制动性能最基本的评价指标。这个指标即是制动距离和制动减速度。
制动距离是指在一定车速下,汽车从驾驶员踩下制动踏板开始到停车为止所驶过的距离,它与制动踏板力及路面附着条件有关。
制动减速度常指制动过程中的最大减速度,它反映了地面制动力,因此它与制动器制动力(车轮滚动时)及道路-轮胎附着力(车轮抱死拖滑时)有关。
汽车制动效能的恒定性主要是抗热衰退性能。抗热衰退性能是指汽车在高速行驶或在下长坡连续制动时制动效能保持的程度。因为制动过程实际上是把汽车行驶的动能通过制动器吸收转换为热能,而在制动器温度升高后,能否保持在冷状态时的制动效能已成为设计制动器时要考虑的一个重要问题。此外,涉水行驶时制动器还存在水衰退问题,制动器浸水后仍应保持其制动效能。
制动时汽车方向的稳定性是指汽车在制动过程中维持直线行驶或预定的弯道行驶能力。制动时汽车自动向左向右偏驶称为制动跑偏。侧滑是指制动时汽车的某一轴或两轴发生横向移动。失去转向能力是指弯道制动时,汽车不再按原来弯道行驶而沿弯道切线方向驶出和直线行驶制动时转动方向盘汽车仍按直线方向行驶的现象。制动跑偏、侧滑和失去转向能力是造成交通事故的重要原因。
因此,我们通常所说的汽车制动性能好是指其制距离短、制动减速度大、抗热衰退、水衰退性能好,且在制动过程中不发生跑偏、侧滑以及不失去转向能力。
在ABS出现之前,汽车所用的都是开环制动系统,其特点是制动器制动力矩的大小仅与驾驶员的操纵力、制动力的分配调节,以及制动器的尺寸和型式有关。由于没有车轮运动状态的反馈信号,无法测知制动过程中车轮的运动状态,因此也就不能据此调节轮缸的气室制动压力的大小。这样在紧急制动时,不可避免的出现车轮在地面上抱死拖滑的现象。当车轮抱死时,地面的侧向附着性很差,所能提供的侧向附着力很小,在汽车受到只要很小的种种干扰外力作用下就会出现方向失稳问题,容易发生交通事故。在潮湿路面或冰雪路面上制动时,这种失稳现象更经常发生。
人们对汽车制动时方向失稳现象及其产生原因的认识是逐步加深的。在路面车辆诞生初期,汽车前轮上几乎不装制动器,仅只安装在后轮上。一方面的原因是车行驶速度低,但主要原因是为了怕前轮因制动失去转向能力。其间虽然注意到后轮抱死有时会造成汽车绕前轴转动,但总以为要比前轮丧失转向能力要好。随着汽车质量(载荷)和车速的增大,仅靠后轮制动不足以获得足够的制动力,才导致在前轮上安装制动器。但仅仅是作为后轮制动的补充,且不允许前轮先于后轮抱死。后来,人们又认识到应根据静态轴荷的分配比例来分配前后轮的制动力。逐渐又认识到制动时轴荷的动态转移,前轮要增重,后轮要减重。后轮先抱死更容易造成汽车特别是铰接汽车(如半挂拖车机组)的方向失控。从而着手开始研制能限制后轮制动力矩的装置。由此诞生了限压阀、比例阀、惯性阀、感载比例阀等。这些前后制动力分配和调解装置已广泛应用于各种汽车的制动管路中,几乎所有的铰接汽车都装有这类装置。
随着前后轮制动力分配装置技术的发展,为提高路面车辆制动性能的其他技术也在发展。例如汽车的液压制动技术、钳盘式制动技术、双管路制动系统、真空伺服制动装置等技术都得到了应用和推广。
然而这些技术的应用,并不能完全解决车轮制动时的抱死问题。这是因为这些技术通通是开环制动系统,无法感知制动车轮的运动状况,轮缸或气室的压力不能根据需要相应地调节,制动轮得不到相应的控制。制动时的方向失稳仍未得到根本改善。
ABS装置的基本功能就是可感知制动轮每一瞬间的运动状态,并根据其运动状态相应地调节制动器制动力的大小,避免车轮抱死,因而是一个闭环制动系统。它是电子控制技术在汽车上最有突出成就的一项应用。可使得汽车在制动时维持方向稳定性和缩短制动距离,有效提地高了行车的安全性。
2、制动时车轮受力:
汽车在制动过程中,车轮在路面上是边流边滑的过程:车轮未制动时,可以认为车轮是纯滚动状态。当车轮抱死时,车轮在路面上的运动处于纯滑动状态。为了定量描述车轮的运动关态,引入车轮滑移率S这一参数,用来表明车轮滑动成分的多少。滑移率S的定义为
Uw-Rro x Ww
S= ________________x100%
Uw
式中 Uw___车轮中心的速度即汽车车身的速度
Rro ___车轮的动力半径
Ww___车轮的角速度
在纯滚动时,滑移率S=0,在抱死纯拖滑时s=100%,边滚边滑时0<S<100%。所以滑移率的数值可以用来表示车轮运动中滑动或分所占的比例。滑移率S越大,滑动成分越多。
通常,汽车在制动过程中存在着两种阻力:一种阻力是制动时摩擦片与制动鼓(盘)之间产生的摩擦力,这种阻力称为制动系统的阻力。因为它提供了制动力,因此也称为制动系制动力。另一种阻力是轮胎与道路表面之间产生的摩擦阻力,也称为轮胎—道路附着力。
这两种力之间存在着以下关系:制动系制动力小于轮胎—道路附着力,则汽车制动时会保持稳定状态;若制动系制动力大于轮胎—道路附着力,则制动时会出现车轮抱死和滑移。
如果前轮抱死,汽车基本上沿直线向前行驶,汽车处于稳定状态,但汽车失去转向控制能力,这样驾驶员在制动过程中躲避障碍物、行人及弯道上必要的转向操纵等就无法实现;如果后轮抱死,汽车的制动稳定性变差,在很小的侧向干扰力下,汽车就会发生甩尾,甚至调头等危险现象。尤其是在某些恶劣路况(湿滑或冰雪)下,将难以保证行车安全。另外,由于制动时车轮抱死,从而导致轮胎局部摩损,大大降低使用寿命。
ABS通过控制作用于车轮制动分泵上的制动管路压力,使汽车在紧急制动下车轮不会抱死,就能保持较好的方向稳定性。ABS能自动向液压调节器发出控制指令,因而能够更迅速、准确而有效地控制制动。ABS能在制动过程中防止车轮抱死,在正常条件下,驾驶员可以像没有装备ABS那样进行常规操作。但在湿滑路面上或者是紧急制动时,由于驾驶员的常规操作会使车轮抱死,ABS就自动接替常规制动,此时制动管路压力不受踏板力大小影响,而由ABS控制调节制动力。
汽车只有受到与行驶方向相反的外力时,才能受到制动从而速度逐渐降低直至停车。这个外力只能由空气和地面提供,空气阻力相对较小,一般情况下不予考虑,所以实际上外力是由地面提供的,我们称之为地面制动力。地面制动力取决于两摩擦付的摩擦力:制动器制动力和轮胎—道路附着力。制动器制动力仅由制动器结构参数所决定,即取决于制动器的型式、结构尺寸、摩擦付的摩擦系数以及车轮半径,并与制动踏板力,即制动时液压或空气压力成正比。汽车的地面制动力首先取决于制动器制动力,但同时又受地面附着条件的限制,所以只有具有足够的制动器制动力,同时地面又能提供高的轮胎—道路附着力时,才能获得足够的地面制动力。
3、轮胎特性和路面附着性能:
轮胎特性在汽车的制动和转向的过程中起着非常重要的作用,制动力(纵向力)和转向力(侧向力)都必须通过和道路的小小的轮胎接地面来产生,只有当车轮滚动的圆周速度与汽车相对于道路表面的速度之间存在着差异时才会产生。车轮的滚动圆周速度与汽车行驶速度的差异包括强性轮胎的变形和胎面的滑移,只有当滑移率为100%时,制动力才完全由车轮胎面在路面上的滑移来产生。对装备有ABS系统的汽车而言,轮胎的性能是非常关键的。ABS控制系统必须使滑移率限制在稳定区域内以防车轮抱死,大多数防抱死系统采用特定的车轮角速度临界值进行控制,超过个临界值后,该系统便自动减小制动扭矩,以防止车轮抱死。因此轮胎附着力达到最大值时的车轮角减速度和车轮达到抱死状态所需的时间是二个重要的参数。为了防止车轮抱死,防抱控制系统响应时间必须短于车轮抱死时间。
为了保证制动时的方向稳定性,在制动附着系数中必须考虑车轮侧向力,只有当车轮有部份侧向滑移时才会产生侧向力,也即在轮胎接地中心的运动方向与车轮平面角间存在侧偏角,某些工作参数诸如充气压力、外倾角、载荷等都会影响侧向力。
尽管以上讨论的轮胎特性是最基本的,但它们已能清楚地表明轮胎纵向力和侧向力之间的复杂关系,为了保证装备了ABS系统的汽车有最短的制动距离、方向稳定性以及其转向制动时的稳定性,其性能要求必须以所使用的轮胎特性为基础。
通过大量的路面试验和实验室台架测试,到目前为止基本搞清楚了影响纵向附着系数和侧向附着系数诸多因素。这些因素可归纳四大类:路面因素、轮胎因素、汽车因素和制动工况因素。
路面因素:路面基础、路面材料、路面宏观不平度、路面微观粗糙度、路表面的覆盖物(灰尘、油污、水、雪、冰等)路面横向坡度、路面曲率等。当汽车行驶时这些因素随时在改变。
轮胎因素:轮胎的尺寸及其比例、帘布层结构、轮胎的径向、切向、侧向刚度、胎压、胎面花纹及其摩损程度、轮胎类型(四季型、夏季型、冬季型)等。对于给定的轮胎,在制动过程中可以认为这些因素保持不变。
汽车因素:整车质量、悬挂质量、整车质心位置、轴距、前、后轮距、每个车轮的动态负荷、车身绕其质心的转动惯量、各个车轮的转动惯量、转换到驱动轮上的转动惯量、车轮外倾角、悬挂装置的类型和性能、转向系统的类型和性能、制动系统的类型和性能等。在制动过程中,这些参数有的保持不变,如车轮的转动惯量。有些随时间而变,如作用在各车轮上的动载荷。有些参数在一定条件下是变化的,如悬挂质量。有些参数改变甚微,可看作是不变的,如轴距等。
制动工况因素:车速、制动踏板动作速度、车辆行驶路迹、风速及其作用方向、侧向力和制动器的湿度等。所有这些参数在制动全过程中都随时改变。
车速对纵向和侧向峰值附着力有较大的影响。车速增大,峰值附着力变小。在较滑的路面上,车速的影响尤其明显。在湿滑路面上,当车速超过某一数值后,车轮和路面已不能产生纵向附着力和侧向附着力,即出现滑水现象。
随着轮胎气压的降低,纵向附着力增大,当作用在轮胎上的垂直载荷较大时,胎压的效果明显。这是因为载荷大,轮胎径向变形大、轮胎与路面的接触面积增大,因而所提供的纵向附着力增大了。而胎压对侧向附着力的影响取决于作用在车轮上的垂直载荷。当作用在车轮上垂直载荷为30KN时,胎压低时侧向力有所减少,当作用在车轮上的垂直载荷为10KN时,胎压低一些,侧向力反而有所增加,在小侧偏角下,胎压的影响可忽略不计。
当胎面花纹高度为新胎面花纹高度的95%时,所能提供的侧向附着力较小,而当胎面花纹高度摩损后,只有新胎面花纹的30%时,所能提供的侧向力较大。这说明胎面花纹摩损越严重,轮胎的倾向附着能力越强。这是因为胎面胶层有侧向弹性,胎面胶层越厚越软,胎面“骨架”(缓冲层)与地面之间的相对扭曲就越容易,轮胎的侧偏刚性越差。因而在相同的侧偏角下,所能提供的侧向力就越小,与此相反的是,胎面摩损越严重,胎面花纹对路面的抓着能力就越低,纵向附着能力就越小。对于子午线轮胎来说,驱动力和制动力对侧向力的关系是对称的。当轮胎结构为斜交时,驱动力和制动力相对于侧向力不对称。当纵向力为制动力时,和驱动力相比较,在相同的侧偏角下,路面所能提供的侧向附着力较大。
二、ABS的工作原理:
ABS系统根据车轮转动情况,随时调整制动力,来防止车轮抱死。汽车制动时,装在汽车各车轮轴侧的轮速传感器产生交变的电流信号,其频率随着车轮转动的角速度的增加而升高,以此来检测车轮速度的任何瞬间的变化,并不断地向电子控制单元输入这些轮速信号。电子控制单元则不断地监视这些信号,并与预先储存的信息相比较。如果信号的频率急剧下降,表明该车轮即将抱死,电子控制单元则指示执行器降低该车轮制动分泵的制动液压。当传感器的信号表明车轮又正常转动时,电子控制单元又发出指令允许升高车轮制动分泵的制动液压。执行器根据电子控制单元的指令“降低”、 “升高”、“保持”各车轮制动分泵的制动液压,从而以每秒约4~10次的脉冲形式进行制动压力调节,始终将车轮的滑移率控制在最佳滑移率范围内,以尽量发挥制动系制动力而又防止车轮抱死,最大限度地保证了制动时汽车的稳定性,增大了安全感,缩短了制动距离和动时间。
ABS系统除具有以上基本功能外,还有另外两种功能:一是ABS系统只有在车轮抱死或即将抱死时才开始开作,在其他所有工况下,ABS系统只是处于准备状态而并不干涉常规制动(即完全由制动踏板操纵的制动);另一种功能是如果ABS系统出现故障,则制动系统脱开ABS防抱装置而恢复原来的制动系,进行常规制动,同时通过仪表盘上的警示灯提醒驾驶员ABS系统出了故障。
三、ABS的控制过程
1、对ABS基本性能的要求:设计车轮防抱死系统(ABS)首先应该全面了解轮胎—道路的附着特性。从最短的制动距离来说,如果制动时轮胎的滑移率始终保持在附着系数的蜂值范围内,那么此时的制动效果最好。在理想情况下,传感装置应能测出各种可能条件下轮胎一道路接触面的附着系数值。而防抱死制动系统的其余机构则根据检测的信号来调节制动扭矩,使整个制动过程中附着系数始终处于峰值施围内,按照制动扭矩自动控制的调节方式,ABS的控制参数有车轮的角速度、轮胎的滑移率、车轮的圆周速度与车速之差、被控制车轮与其他车轮之间的速度差等。
直接测量轮胎—道路接触面的附着系数或相对滑移率在实际应用中有困难,因为这需要在测量装置中使用五轮仪。因此,实际使用的传感元件是设法测量车轮的角速度,制动时通过所测得的车轮速度与储存的制动开始前的车速进行比较,来估算轮胎的相对滑移率。
通常,ABS应满足的性能要求是:
① 在ABS的控制过程中要保持车辆的转向性能良好;
② 在通常的制动过程中,保持车辆的稳定性和转向能力比缩短制动距离更重要;
③ 要使转向轮所受的反作用力最小(尤其是在左右路面附着系数不一样的路面上);
④ ABS必须充分利用最理想的轮胎—道路附着系数的有效范围;
⑤ ABS必须最快地适应路面的粗糙度(附着系数)的变化;
⑥ 在左右侧路面附着系数不一样的路面上,ABS应能降低偏转力矩;
⑦ ABS必须考虑滑水现象并对此进行最优控制,保持汽车的方向稳定性和直线滑行性能;
⑧ 弯道制动时,ABS必须在保持操纵性的同时,不能损害稳定性,而且要求制动距离最短;
⑨ 若ABS出现故障,ABS应能自己关闭,而常规制动系统必须能正常工作,不致于失去方向稳定性;
⑩ ABS出现故障时应能通过警示灯告知驾驶员;
⑾ ABS的保养与维修技能必须与现存的或可以达到的维修实践相一致。
2、ABS的控制参数:
一般说来,可供选择作为制动防抱死系统自动调节控制参数及其不同的组合有以下几种:
① 车轮的滑移率S;
② 车轮滑移率对时间的一阶导数ds/dt;
③ 车轮的角加(减)速度对时间的一阶导敷dw/dt;
④ dw/dt和S的组合;
⑤ dw/dt和S作为主调节参数,减速度a作为辅助调节参数;
⑥ 车轮--道路的纵向附着系数对滑移率的一阶导数dфx/ds和车轮滑移率S的组合。
对于车轮的滑移率S,只要测得整车速度和车轮角速度即可计算而得。前已述及,车轮的最佳滑移率在各种不同附着系数的路面及各种不同的制动工况下变化很大,变化范围可从10%~50%。因而适应各种制动工况的滑移率的门限值很难确定。因此,仅选用滑移率作为唯一的调节参数是很难胜任的。
把滑移率对时间的一阶导数ds/dt作为调节参数,因它不能保证车轮滑移率始终在最佳值附近变动,因此也不理想。
车轮的角加(减)速度作为唯一的调节参数对非驱动轮是可行的。对于驱动轮来说,若在制动时发动机与传动系统断开也是可行的。然而紧急制动时,有时驾驶员来不及断开离合器就踩下制动踏板(特别对不熟炼者而言),此时驱动轮与发动机、传动系仍连在一起,发动机和传动系的旋转件转换到驱动轮上的转动惯量就很大,车轮减速度的响应就比较迟钝。故把车轮的角加(减)速度选为唯一的调节参数是受局限的。
现在通行的调节参数是车轮的角加(减)速度对时间的一阶导数dw/dt和车轮的滑移率s 的组合。现今实用的ABS系统均采用这两个参数对车轮的运动状态进行联合控制。
然而在这种组合参数中,车轮的角加(减)速度和车轮的最佳滑移率并没有直接的关系,也即与车轮—道路间的峰值附着系数没有直接关系。换言之,车轮的角加(减)速度的大小,不能给出车轮是否处于最佳滑转状态的信息,也即不能保证利用附着系数在其峰值附着系数周围变动,从而不能把制动距离缩到最短。
在维持车辆足够的侧向附着能力的前提下,为了获得最短的制动距离,就需选择车轮—道路间纵向附着系数对车轮滑移率的一阶导数,或地面制动力对滑移率的一阶导数和车轮的滑移率的组合作为调节参数。
4. 自卸车卸货时怎样操作
自卸汽车是指利用本车发动机动力驱动液压举升机构,将其车厢倾斜一定角度卸货,并依靠车厢自重使其复位的专用汽车。
自卸车操作规程:
行车前检查
(1)验查自动倾卸车驾驶室内车辆起升警报器、指示灯是否有效,起升操纵手柄各种工作位置应准确可靠。
(2)应检查自动倾卸车液压工作系统管路、接头牢靠无渗漏,油路畅通,操纵自如,不得有卡阻现象。
(3)检查自动倾卸车自动锁止与开启机构是否灵活有效,保持车辆其余各部的技术状况处于完好状态。
自动倾卸车行驶
(1)厂内自动倾卸车司机在行驶途中必须严格遵守《道路交通管理条例》,《厂内交通安全管理标准》和“安全生产守则”。
(2)车辆起步前应观察车辆四周情况,确认安全无误后,(气压制动器汽车待气压表读数达到规定数值)鸣笛起步。起步后应按操作要领由慢渐快地加速。
(3)使用自动倾卸车运送货物时,应按规定吨位均衡装载,严禁超高、超重,偏载。装载大、重货物时,货物不得卡在车厢栏板上。
(4)自动倾卸车适宜装载散积物。装载块状物时应采取措施以避免卸载时造成车厢变形和锁止机构损坏。严禁运载易燃、易爆物品。
(5)自动倾卸车车厢内、驾驶室外平台,脚踏板等处不准乘人,但安装有效锁止装置的可附载装卸人员1~4人。
(6)自动倾卸车卸料前,应认真察视汽车上方有无电 线或其它障碍物,附近无人员后方可翻卸。特殊情况下作业应设专人监护,与上方电线或障碍物保持足够的安全距离。
(7)由挖掘机向自动倾卸车上装料时,驾驶室不准坐人。
(8)自动倾卸车车厢起升前应将锁销拨出。
(9)自动倾卸车的起升操作应平稳,不准猛踏油门,禁止在起升状态下行驶(起升装载过程除外)。
(10)不准在车厢起升状态下排除车厢开启机构失灵故障,如必须进行修理时,应用撑杆撑住车厢,防止突然下落。
(11)自动倾卸车卸料时应选择平坦场地,向坑,沟内卸料时应与坑、沟边缘保持相应安全距离,设置挡墩,以防翻车。在特别危险地段(高坡边缘等)卸车时应有专人指挥,负责安全监护工作。
(12)自动倾卸车的车厢下落操作要平稳,不准边走边落。倾卸完毕后,应锁牢倾卸门,并将操纵杆放在空档位置。
自动倾卸车收车后保养
(1)检修自动倾卸车时,应将变速杆置于空档位置,采取制动,掩轮等安全防护措施。如在车厢起升状态下进行车箱检修作业时,必须采取有效的支撑等安全防护措施。
(2)自动倾卸车发动机熄灭后,察看电流表有无漏电现象。同时检查驾驶室内的车厢起升警报器,指示灯等,必须齐全有效。
(3)清洁全车、检查各部螺丝锁紧情况,检查轮胎与钢圈、钢板弹簧、吊耳、骑马螺栓等。
(4)检查补充润滑油、燃油、液压油等,察看各管路接头处有无渗漏。
5. 工程用自卸车需要注意哪些性能指标
一、自卸车的简述
车厢配有自动倾卸装置的汽车。又称为翻斗车、工程车,由汽车底盘、液压举升机构、取力装置和货厢组成。
在土木工程中,常同挖掘机、装载机、带式输送机等联合作业,构成装、运、卸生产线,进行土方、砂石、松散物料的装卸运输。由于装载车厢能自动倾翻一定角度卸料,大大节省卸料时间和劳动力,缩短运输周期,提高生产效率,降低运输成本,并标明装载容积。是常用的运输机械。
发动机、底盘及驾驶室的构造和一般载重汽车相同。车厢可以后向倾翻或侧向倾翻,通过操纵系统控制活塞杆运动,以后向倾翻较普遍,推动活塞杆使车厢倾翻。少数双向倾翻。高压油经分配阀、油管进入举升液压缸,车厢前端有驾驶室安全防护板。发动机通过变速器、取力装置驱动液压泵,车厢液压倾翻机构由油箱、液压泵、分配阀、举升液压缸、控制阀和油管等组成。以后向倾翻较普遍,通过操纵系统控制活塞杆运动,可使车厢停止在任何需要的倾斜位置上。车厢利用自身重力和液压控制复位。
自卸车的主要技术参数是装载重量,并标明装载容积。新车或大修出厂车必须进行试运转,使车厢举升过程平稳无串动。使用时各部位应按规定正确选用润滑油,大大节省卸料时间和劳动力,注意润滑周期,举升机构严格按期调换油料。按额定装载量装运,严禁超载。
二、自卸车的分类
1.按底盘承载能力可分为轻卡系列自卸、中吨系列自卸和大吨位系列自卸;
2.按驱动形式可分单桥自卸、双桥自卸、前四后八自卸、前四后十等不同系列车型;
3.按卸载液压举升机构不同可分为单顶自卸和双顶自卸。
三、自卸车的构造分析
自卸车结构
自卸车主要由液压倾卸机构、车厢、车架及其附件构成。其中液压倾卸机构和车厢结构各个改装厂家不尽相同,以下按车厢和举升机构的型式两个方面说明自卸车的结构。
1 车厢型式
车厢结机构型式按用途不同大概可分为:普通矩形车厢和矿用铲斗车厢。
普通矩形车厢用于散装货物运输。其后板装有自动开合机构,保证货物顺利卸出。普通矩形车厢板厚为:前板4~6,边板4~8,后板5~8,底板6~12。
矿用铲斗车厢则适用于大石块等粒度较大货物的运输。考虑到货物的冲击和碰幢,矿用铲斗车厢的设计形状较复杂,用料较厚。比如:矿用铲斗车厢标准配置板厚为:前6边6底10,而且有些车型在底板上焊接一些角钢,以增加车厢的刚度和抗冲击能力。
2 举升机构型式
举升机构是自卸车的核心,是判别自卸车优劣的首要指标。
举升机构的型式目前国内常见的有:F式三角架放大举升机构、T式三角架放大举升机构、双缸举升、前顶举升和双面侧翻。
三角架放大式举升机构是目前国内使用最多的一种举升方式,适用载重量8~40吨,车厢长度4.4~6米。优点为结构成熟、举升平稳、造价低;缺点为车厢底板与主车架上平面的闭合高度较大。
双缸举升形式大多用在6X4自卸车上,是在第二桥前方两侧各安装一支多级缸(一般为3~4级),液压缸上支点直接作用在车厢底板上。双缸举升的优点为车厢底板与主车架上平面的闭合高度较小;缺点是液压系统很难保证两液压缸同步,举生平稳性较差,对车厢底板的整体刚度要求较高。
前顶举升方式结构简单、车厢底板与主车架上平面的闭合高度可以很小,整车稳定性好,液压系统压力较小,但前顶多级缸行程较大,造价很高。
双面侧翻液压缸受力较好,行程较小,可实现双面侧翻;但液压管路较复杂,举生翻车事故发生率较高。
四、自卸车选型
随着自卸车的发展和国内购买能力的提高,自卸车已经不是传统意义上的什么活都可以干的万能自卸车,从设计角 度讲也是按不同的货物、不同工况、不同地区开发不同的产品。这就要求用户在购买车辆时要向厂家提供具体使用情况。
1 底盘
在选择底盘时,一般是按经济效益来考虑的,比如:底盘的价格、装载质量、超载能力、百公里油耗、养路费等。除此之外,用户还要考虑底盘的如下参数:
① 底盘车架上平面离地高度。一般6x4底盘车架上平面离地高度为1050~1200。该数值越大整车重心越高,越容易造成翻车。影响该数值的因素主要是轮胎直径、悬挂的布置和主车架截面高度。
② 底盘后悬。该数值过大会影响自卸车举生稳定性,造成举生翻车事故。此数值一般在500-1100之间(侧翻自卸车除外)。
③ 整车匹配合理、使用可靠。
2 上装
目前自卸车改装厂家鱼龙混杂,选择自卸车时选择厂家比选择产品同样重要。除看产品外,还要了解厂家的设备能力、自卸车上装的设计、工艺装备是否成熟、售后服务承诺、配件是否能买到等。
6. 请问汽车检测的标准有哪些
1、汽车技术状况:定量测得的表征某一时刻汽车外观和性能的参数值的总和。
2、汽车检测:确定汽车技术状况或工作能力进行的检查和测量。
3、汽车诊断:在不解体(或仅卸下个别小件)条件下,确定汽车技术状况或查明故障部位、原因进行的检测、分析与判断。
4、汽车诊断参数包括工作过程参数、伴随过程参数和几何尺寸参数。
5、诊断参数的选择原则:灵敏性、单值性、稳定性、信息性、经济性6诊断标准的类型:国家、行业、地方、企业
7、诊断参数标准的组成:初始值Pf、许用值Pd和极限值Pn。
8、测量误差的分类:按测量误差的表示方法分为绝对和相对,按测量误差出现的规律分为系统、随机和过失,按测量误差的状态分为静态和动态。
9、绝对误差是测量值与被测量值之间的差值;相对误差是测量值的绝对误差与被测量值真值的比值,用百分比表示。
10、检测设备一般采用最大引用误差不能超过的允许值,作为划分精度等级尺度,常见的精度等级有0.1、0.2、0.5、1.0、1.5、2.0、2.5、5.0
11、系统误差:在同一测量条件下多次测量同一量时,测量误差的大小和符号保持不变或按一定规律变化的误差;随机~:在同一测量条件下多次测量同一值时,误差的大小和符号以不可预见的方式变化着的~
12、发动机总成(气缸压力表);底盘总成(前束尺);量具与计量仪表(电解液密度计、高频放电叉)
13、检测站的类型:按服务功能分( 安全~维修~ 综合~);综合检测站按职能分(A级B级C级);安全~ :定期检测车辆中与安全和环保有关的项目,以保证汽车安全行驶,并将污染降低到允许的限度;维修~:从车辆使用和维修的角度,担负车辆维修前、后的技术状况检测;综合~:既能担负车辆管理部门的安全环保检测,又能担负车辆使用、维修企业的技术状况诊断,还能承接科研或教学方面的性能试验和参数测试;A级站:能全面承担检测站的任务;B 级站:能承担在用车辆技术状况和车辆维修质量的检测;C级站:能承担在用车辆技术状况的检测。
14、汽车资料输入及安全装置检查工位:本工位除将汽车资料输入登录微机并发给检测线主控制微机外,还进行汽车上部的灯光和安全装置等项目的外观检查,可简称为L工位。侧滑制动车速表工位:由侧滑检测、轴重检测、制动检测和车速表检测组成,简称ABS工位。灯光尾气工位:主要由前照灯检测、排气检测、烟度检测和喇叭声级检测组成,简称HX~。车底检查工位简称P~,本工位是车辆底部的外观检查,由检测人员在地沟内人工检查底盘各装置及发动机的连接是否牢固可靠,有无弯扭断裂、松旷及漏油、漏水、漏气、漏电等现象。
15、轴制动力与轴荷的百分比=(左轮制动力+右轮~)/轴荷*100%
16、ABS工位检测程序:1)四轮汽车(后驱、后驻):侧滑—前制动—后制动—驻车制动—车速表2)四轮汽车(前驱、前驻):侧滑—前制动—驻车制动—车速表—后制动3)四轮汽车(前驱、后驻):侧滑—前制动—车速表—后制动—驻车制动。
17、示波器可显示电压随时间变化的波形,是一种多用途的汽车检测设备,可以用来显示电火系波形、电子元器件波形、柴油机高压油管波形和发动机异响波形等用途愈来愈广泛。它的基本功能是显示电压随时间的变化,除用于观察状态变化外,还可以检测电压、频率和脉冲宽度等
18、气缸密封性与气缸、气缸盖、气缸衬垫、活塞、活塞环和进排气门等零件的技术状况有关;气缸密封性的诊断参数主要有气缸压缩压力、曲轴箱漏气量、气缸漏气量、气缸漏气率及进气管真空度等。
19、气缸压力表检测条件:发动机运转至正常工作温度。用起动机带动带动已拆除全部火花塞或喷油器的发动机运转,其转速应符合原厂的规定。
诊断参数标准:发动机各气缸压力应不小于原设计规定值的85%,每缸压力与各缸平均压力的差,汽油机应不大于8%。柴油机不大于10%;大修竣工发动机的气缸压力应符合原设计规定,每缸压力与各缸平均压力的差,汽油机不超过8%,柴油机不超过10%
20、FA触点闭合后,先是产生二次闭合振荡,尔后二次电压由一定负值逐渐变化到零
21 、发动机异响的类别:主要有机械异响,燃烧异响,空气动力异响和电磁异响等。(1)机械异响主要是运动副配合间隙太大后配合表面有损伤运动中引起冲击和振动造成的。(2)燃烧异响主要是发动机不正常燃烧造成的。(3)空气动力异响主要是发动机在进气口、排气口行和运转中的风扇处,因气流振动而造成的。(4)电磁异响主要是发动机、电动机和某些电磁器件内,由于磁场的交替变化,引起机械中某些部件或某一部分空间产生振动而造成的。发动机的异响的影响因素有转速、温度、负荷和润滑条件;汽油机过热时,往往产生点火敲击声(爆燃或表面点火);柴油发动机温度过低时,往往产生着火敲击声(工作粗暴)。
22、曲轴主轴承响:1)现象:汽车加速行驶或发动机突然加速时,发动机发出沉重而有力的“铛、铛、铛”或“刚、刚、刚”的金属敲击声,严重时机体发生很大振动,响声随发动机转速的提高而增大,随负荷的增加而增强,产生响声的部位在曲轴上与曲轴轴线齐平处,单缸断火时响声无明显变化,相邻两缸同时断火时,响声明显减弱或消失,温度变化时响声变化不明显,响声严重时,机油压力明显降低。2)原因:(1)曲轴主轴承盖固定螺钉松动;(2)曲轴主轴承减磨合金烧毁或脱落(3)曲轴主轴承和轴颈磨损过甚、轴向止推装置磨损过甚,造成径向和轴向间隙过大(4)曲轴弯曲未得到校正,发动机装合时不得不将某些主轴承与轴颈的配合间隙放大(5)机油压力太低、黏度太小或机油变质。
23、曲轴连杆轴承响:1)现象:汽车加速行驶和发动机突然加速时,发动机发出“铛,铛。铛”连续明显、轻而短促的金属敲击声(主要特征);连杆轴承严重松旷时,怠速运转也能听到明显的响声,且机油压力降低;发动机温度变化时,响声变化不明显;响声随发动机转速的提高而增大,随负荷的增加而增强,产生响声的部位在曲轴箱上部;单缸断火,响声明显减弱或消失,但复火时又重新出现,即具有所谓响声“上缸”现象。2)原因:(1)曲轴连杆轴承盖的固定螺栓松动或折断(2)曲轴连杆轴承减磨合金烧毁或脱落(3)曲轴连杆轴承或轴颈磨损过甚,造成径向间隙太大(4)曲轴内通连杆轴颈的油道堵塞(5)机油压力太大、黏度太小或机油变质
24、传动系游动角度,是离合器、变速器、万向传动装置、驱动桥的游动角度之和,也称为传动系总游动角度。检测方法有经验检查法和仪器检查法;仪器检测有指针式和数字式;指针式检测仪由指针、刻度盘、测量扳手组成,数字式由倾角传感器和测量仪组成;经验检测法检测步骤:用经验检测法检查传动系游动角时可分段进行,然后将各段涌动角度求和即可获得传动系总的游动角度。(1)离合器与变速器游动角的检查:离合区处于结合状态,变速器挂在要检查的档上,松开驻车制动器,然后在车下用手将变速器输出轴上的凸缘盘或驻车制动盘从一个极端位置转到另一个极端位置,两个极端位置之间的转角即为在该档下从离合器至变速器输出端的游动角度。依次挂入每一档,可获得各档下的这一游动角度。(2)万向传动装置游动角度的检查:支起驱动桥,拉紧驻车制动器,然后在车下用手将驱动桥凸缘盘从一个极端位置转到另一个极端位置,两极端位置之间的转角即为万向传动装置的游动角度。(3)驱动桥游动角的检查:松开驻车制动器,变速器置空档位置,驱动桥着地或处于制动状态,然后在车下将驱动桥凸缘盘从一个极端位置转到另一个极端位置,两极端位置之间的转角即为驱动桥的游动角度。以上三段即为传动系的游动角度。
25、倾角传感器其作用是将传感器外壳随传动轴游动之倾角转换为相应频率的电振荡。