① 液压的答案
1.液压系统是以液体为工作介质传递机械能,实现各种机械传动和自动控制的机械组成部分。 利用液体的压力能来进行能量控制和传递的传动方式称为液压传动; 利用液体的动能来进行能量传递的传递方式称为液力传动。 液压传动是利用密闭系统中的受压液体来传递运动和动力的一种传动方式。
组成;液压系统是由驱动元件(液压泵).控制元件(压力、流量,方向控制阀),执行元件(液压缸和液压马达)辅助元件(油箱,油管,过滤器等),工作介质(液压油)
液压传动的优点:1易获得较大的力或力矩,可实现低速大吨位的传动;2 能在很大范围内很方便的实现无级调速;3 在输出功率一样的条件下,液压传动装置体积小、重量轻,结构紧凑;4 使执行元件的运动十分均匀稳定,可使运动部件换向无冲击;5 液压传动系统操作简单,调整控制方便,易于实现自动化;6 系统便于实现过载保护,使用安全,可靠,不会因过载而造成元件损失;7 由于液压元件以实现标准化,系列化和通用化,有利于缩短机器的设计,制造周期和降低制造成本。
缺点;泄露(内漏和外漏);故障处理困难;系统效率低;工作介质对温度变化比较敏感,不适合很高和很低的温度环境下工作;对工作介质的污染比较敏感,需要有良好的防护和过滤措施;成本高。
2液压泵是动力元件将机械能转为压力能。液压马达是执行元件把压力能转为机械能
液压泵的分类:按是否课调节分:变量泵和定量泵。按结构分:齿轮式,叶片式和柱塞式。按压力分:低,中,中高,高压泵等。按液流方向分:单向和双向泵。液压马达同上。
液压泵和马达的差异:1动力不同,液压马达靠液压力启动,泵直接带动2配流机构,液压马达有正反转,液压泵单转3自吸性能差异马达不需自吸,泵必须自吸4防止泄漏形式不同泵采用内漏,做马达时应用外漏5容积效率不同,马达溶积效率低液压马达启动转矩大。
液压泵选用:1根据主机工况,功率大小,工作环境和液压系统对泵的性能要求,确定液压泵类型。液压性能包括流量,压力脉动性能,抗击耐震性能,对油污的敏感性,自吸性能和噪声等。2根据液压系统的要求确定液压泵的主要参数。3最后选择液压泵的规格型号。 液 压泵常见故障;1轴不转动2噪声大3不吸油4液压力不足5压力和流量不稳定6异常发热7油封漏油
3液压缸是液压系统中的执行元件,是一种将液压泵提供的液压能转变成机械能的能量转换装置, 它用以驱动工作机构直线往复运动或往复摆动。 分类;按结构形式分:活塞式,柱塞式和摆动式。 按作用分:单,双作用式 组成;液压缸由缸体组件,活塞组件,密封装置,缓冲装置和排气装置组成。常见故障:运动部件速度达不到或不运动,运动部件产生爬行,运动部件换向有冲击,外泄漏,活塞杆拉伤。
4液压控制阀对液流的方向,压力及流量进行控制和调节,以满足各种工况的要求
分类;按作用分:方向,压力,流量控制阀;按操纵分:手动式,机动式,电动式,液压式。按安装形式分:管式,板式,法兰式,叠加式,插装式连接。按控制方式分:开关控制阀,比例控制阀,伺服控制阀等
伺服系统是一种自动控制系统,系统的输出量能自动,快速而准确地复现输出量的变化规律。液压伺服阀是液压伺服系统中最基本最重要的元件起着信号转换和功率放大的作用。
5蓄能器是一种能够储存油液的压力能,并在需要时释放出来供给系统使用的能量储存装置。分类;分为重力式,弹簧式和充气式三类 功用:储存能量,吸收压力脉动,缓和冲击等。可以作为辅助装置,应急动力源,维持系统压力等。过滤器 作用:净化油液,过滤掉混在液压油中的杂质,使油液的污染程度控制在所允许的范围内。分类;按材料可分为网式过滤器,线隙式过滤器,烧结式过滤器,纸芯过滤器和磁性过滤器。 油管 是用以连接液压元件和输送液压油的。 按材料分类;钢管、纯铜管、象胶软管、尼龙管塑料管 油箱 用以储存液压系统所需的足够油液,
6液压油作为系统中的工作介质传递能量,驱动系统工作,还起到润滑,冷却和防锈作用。液压油的特性:密度,可压缩性,黏性,抗磨性,抗氧化安定性,抗乳化性,抗剪切安定性,抗泡沫性,抗橡胶溶胀性,抗燃性和防锈性,流动点凝固点闪点和燃点
污染原因:液压油本身的变质产生黏度变化和酸值变化;外界污物混入;工作过程中产生污物。污染控制:液压元件和液压系统在加工与装配过程中的清洗;防止污染物侵入液压系统;液压的过滤与净化;定期更换液压油;控制液压油的工作温度
7液压基本回路就是由一些液压元件组成,并能完成某种特定控制功能的典型回路 分类 按功能:压力控制回路(溢流阀),速度控制回路(截流阀),方向控制回路(换向阀),多执行元件动作控制回路
压力控制回路;包括调压回路,减压回路,增压、卸荷、保压、平衡、缓冲补油回路
速度控制回路;包括调速回路,快速回路,速度换接回路
方向控制回路;包括换向回路,紧锁回路,浮动回路2
8液力传动是液体为工作介质的一种能量转换装置 分类;偶合器液力传动和变矩器液力传动结构形式。前者包括泵轮(能量输入部件,将机械能转换为液体动能)和涡轮(能量输出部件,蒋液体的动能转换为机械能输出)后者再加一导轮
特点;1外特性2自动适应性3防振隔振性能4多机牵引性能5带载启动性能6限矩保护性能7简化车辆的操作8传动效率低
9气压传动简称气动,是指以压缩空气为工作介质来传递动力和控制信号,控制和驱动各种机械和设备,以实现生产过程机械化,自动化的一门技术。 组成;由气压发生装置,执行元件,控制元件和辅助装置四个部分组成。 工作介质为高压空气。
空气压缩机简称空压机是气源装置的核心它将原动机输出的机械能转化为气体的压力能。
气动基本回路包括;压力控制回路,速度控制回路,换向回路
② 液压传动都有哪些结构组成
液压传动是指以液体为工作介质进行能量传递和控制的一种传动方式。在液体传动中,根据其能量传递形式不同,又分为液力传动和液压传动。液力传动主要是利用液体动能进行能量转换的传动方式,如液力耦合器和液力变矩器。液压传动是利用液体压力能进行能量转换的传动方式。在机械上采用液压传动技术,可以简化机器的结构,减轻机器质量,减少材料消耗,降低制造成本,减轻劳动强度,提高工作效率和工作的可靠性。
液压传动系统主要由5部分组成。
1、动力元件
动力元件是把原动机输入的机械能转换为油液压力能的能量转换装置。其作用是为液压系统提供压力油。动力元件为各种液压泵。
2、执行元件
执行元件是将油液的压力能转换为机械能的能量转换装置。其作用是在压力油的推动下输出力和速度(直线运动),或力矩和转速(回转运动)。这类元件包括各类液压缸和液压马达。
3、控制调节元件
控制调节元件是用来控制或调节液压系统中油液的压力、流量和方向,以保证执行元件完成预期工作的元件。这类元件主要包括各种溢流阀、节流阀以及换向阀等。这些元件的不同组合便形成了不同功能的液压传动系统。
4、辅助元件
辅助元件是指油箱、油管、油管接头、蓄能器、滤油器、压力表、流量表以及各种密封元件等。这些元件分别起散热贮油、输油、连接、蓄能、过滤、测量压力、测量流量和密封等作用,以保证系统正常工作,是液压系统不可缺少的组成部分。
5、工作介质
工作介质在液压传动及控制中起传递运动、动力及信号的作用。T作介质为液压油或其他合成液体。
③ 液力传动的特点
液力传动具有很多优点,但是也存在一些缺点,它主要有以下优点: 指泵轮转速不变的情况下,当负载变化时引起输入轴(即泵轮或发动机轴)力矩变化的程度。由于液力元件类型的不同而具有不同的透穿性,可根据工作机械的不同要求与发动机合理匹配,借以提高机械的动力和经济性能。
另外,还具有过载保护、自动协调、分配负载的功能。液力传动并不完美,它也是有缺点的,比如:效率较低、高效范围较窄,需要增设冷却补偿系统,使结构复杂、成本高。
④ 液力变矩器起什么作用
液力变扭器亦称“液力变矩器”、“涡轮变扭器”、“动液变扭器”。液力传动部件的一种。由泵轮、涡轮和导向轮组成。泵轮同主动轴相连,能把主动轴输入的机械能依靠离心力的作用转换成液体的动能和压头,供涡轮做功之用。涡轮和从动轴相连,能把液体的动能和压头所含的能量由从动轴输出。
液力变扭器由泵轮、涡轮、导轮三个基本元件以及变扭器壳体组成。
1.泵轮
它是液力变扭器的主动元件,与变扭器壳制成(或焊接)一体,变扭器壳体总成用螺栓固定于发动机曲轴后端凸缘上,随曲轴一起旋转。泵轮内部有一系列径向向后弯曲的叶片,以给工作液一个额外加速度和附加能量。叶片内沿装有让变速器油平滑流动的导环。
2.涡轮
涡轮是液力变扭器的从动元件,它通过花键与行星齿轮变速器输入轴连接,从运动的液体吸收动能并把动能转变为旋转动能。如同泵轮一样,涡轮也装有许多叶片。但是:
1)涡轮叶片多于泵轮叶片,以提高传动效率。
2)涡轮叶片的弯曲方向与泵轮叶片弯曲方向相反,既相对于顺时针转动的方向而言,所有的叶片都向前弯曲。
涡轮叶片与泵轮叶片相对放置,中间有一很小的间隙。在泵轮与涡轮间,油流方向突然改变,以减少振动损失。
3.导轮
它位于泵轮与涡轮之间,是液力变扭器的反应元件。它通过单向离合器安装在导轮套管(与变速器壳体相连)上。用以控制从涡轮中心回到泵轮中间的液体回流,即改变离开涡轮返回泵轮的液流方向。因为涡轮叶片是曲线型,当液流离开涡轮时改变方向,当液流重新进入泵轮中心时,其方向导致了放慢液体转动的趋势。而导轮改变了从涡轮返回泵轮的油流方向,使其冲击泵轮的叶片背部,给泵轮一个额外的“助推力”,这在变扭器扭矩放大阶段起了关键性的作用。
4.壳体
液力变扭器壳体有组装(可拆)式和焊接(不可拆)式两种。
组装式壳体,即壳体做成两半,用螺栓连接在一起,为可拆式。其维修方便,平衡精度不高,用在转速较低的场合。如重型载货汽车用的大尺寸液力变扭器,拆检后将会影响其平衡状况。
原理
液力变扭器有3个工作轮,即泵轮、涡轮和导轮。其中泵轮和涡轮的构造与液力耦合器基本相同;导轮则位于泵轮和涡轮之间,并与泵轮和涡轮保持一定的轴向间隙,通过导轮固定套固定于变速器壳体。发动机运转时带动液力变扭器的壳体和泵轮与之一同旋转,泵轮内的液压油在离心力的作用下,由泵轮叶片外缘冲向涡轮。并沿涡轮叶片流向导轮,再经导轮叶片流回泵轮叶片内缘,形成循环的液流。导轮的作用是改变涡轮上的输出扭矩。由于从涡轮叶片下缘流向导轮的液压油仍有相当大的冲击力,只要将泵轮、涡轮和导轮的叶片设计成一定的形状和角度,就可以利用上述冲击力来提高涡轮的输出扭矩。
作用
液力变扭器是一种借助于液体的高速运动来传递功率的元件。它的工作特点是输入端的转速和扭矩基本恒定;或虽有变化,但变化不大。而输出端的转速和扭矩可以大于、等于或小于输入端的转速和扭矩,并且输出转速与输出扭矩之间可以随着所驱动的工作机负荷大小,自动地连续调节变化。由于液力变扭器具有无级变速和变扭的功能,因此,它广泛用作各种动力机与工作机之间的传动装置。例如用作公路运输车辆(小汽车、公共汽车、载重卡车、坦克等)以及铁道运输车辆(干线内燃机车、高速动车、调车机车等)的传动装置。此外,还应用在工程机械(起重机、挖掘机、装卸机、推土机、拖拉机等)。矿山机械(石油钻机、钻探机、破碎机等)和大型船舶中。所以液力变扭器在现代工业上具有很大实用价值。特别是最近发展起来的液力换向调车机车,能做到不停车即可改变机车运行方向,这个优点更是电传动和机械传动内燃机车所无与伦比的。
⑤ 火车上的电传动和液力传动分别指什么呀
电传动:机车上使用柴油内燃机产生动力,动力经发电机转化成电力,再由电动机驱动车轮
液力传动:叶轮将动力机(内燃机、电动机、涡轮机等)输入的转速、力矩加以转换,经输出轴带动机器的工作部分。液体与装在输入轴、输出轴、壳体上的各叶轮相互作用,产生动量矩的变化,从而达到传递能量的目的。液力传动与靠液体压力能来传递能量的液压传动在原理、结构和性能上都有很大差别。液力传动的输入轴与输出轴之间只靠液体为工作介质联系,构件间不直接接触,是一种非刚性传动。液力传动的优点是:能吸收冲击和振动,过载保护性好,甚至在输出轴卡住时动力机仍能运转而不受损伤,带载荷起动容易,能实现自动变速和无级调速等。因此它能提高整个传动装置的动力性能。
⑥ 液压传动系统主要由那五个部分组成,汽车上应用在什么东方
1、液压传动系统主要由以下五部分构成:
(1)动力元件 泵(机械能转变为液压能)
(2)执行元件 马达、液压缸(液压能转变为机械能)
(3)控制元件 阀(作用为控制压力、方向和流量)
(4)辅助元件 液压油箱、过滤器、管路等
(5)工作介质 液压油。
2、液压传动系组合运用液力和机械来传递动力。在汽车上,液压传动一般指液传动,即以液体为传动介质,利用液体在主动元件和从动元件之间循环流动过程中动能的变化来传递动力。动液传动装置有液力偶合器和液力变矩器两种。液力偶合器只能传递扭矩,而不能改变扭矩的大小,可以代替离合器的部分功能,即保证汽车平稳起步和加速,但不能保证在换档时变速器中的齿轮不受冲击。液力变矩器则除了具有液力偶合器的全部功能外,还能实现无级变速,故应用得比液力偶合器广泛得多。但是,液力变矩器的输出扭矩与输入扭矩的比值范围还不足以满足使用要求,故一般在其后再串联一个有级式机械变速器而组成液力机械变速器以取代机械式传动系中的离合器和变速器。液力机械式传动系能根据道路阻力的变化自动地在若干个车速范围内分别实现无级变速,而且其中的有级式机械变速器还可以实现自动或半自动操纵,因而可使驾驶员的操作大为简化。但是由于其结构较复杂,造价较高,机械效率较低等缺点,除了高级轿车和部分重型汽车以外,一般轿车和货车很少采用。
3、静液式传动系又称容积式液压传动系。主要由油泵、液压马达和控制装置等组成。发动机的机械能通过油泵转换成液压能,然后由液压马达再又转换为机械能。在图示方案中,只用一个马达将动力传给驱动桥主减速器,再经差速器、半轴传给驱动轮。另一方案是每一个驱动轮上都装一个马达。采用后一方案时,主减速器、差速器和半轴等机械传动件都可取消静压式传动系,由于机械效率低、造价高、使用寿命和可靠性不够理想,故只在某些军用车辆上开始采用。
希望对你有所帮助。
⑦ 汽车液力偶合器工作原理是什么
液力耦合器又称液力联轴器,是一种用来将动力源(通常是发动机或电机)与工作机连接起来,靠液体动量矩的变化传递力矩的液力传动装置。
液力耦合器是以液体为工作介质的一种非刚性联轴器。液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。两轮为沿径向排列着许多叶片的半圆环,它们相向耦合布置,互不接触,中间有3mm到4mm的间隙,并形成一个圆环状的工作轮。驱动轮称为泵轮,被驱动轮称为涡轮,泵轮和涡轮都称为工作轮。泵轮和涡轮装合后,形成环形空腔,其内充有工作油液。
泵轮通常在内燃机或电机驱动下旋转,叶片带动油液,在离心力作用下,这些油液被甩向泵轮叶片边缘,由于泵轮和涡轮的半径相等,故当泵轮的转速大于涡轮转速时,泵轮叶片外缘的液压大于涡轮叶片外缘的液压,由于压差液体冲击涡轮叶片,当足以克服外阻力时,使涡轮开始转动,即是将动能传给涡轮,使涡轮与泵轮同方向旋转。油液动能下降后从涡轮的叶片边缘又流回到泵轮,形成循环回路,其流动路线如同一个首尾相连的环形螺旋线。液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。在忽略不计叶轮旋转时的风损及其他机械损失时,它的输出(涡轮)扭矩等于输入(泵轮)扭矩。
优点
(1)具有柔性传动自动适应功能。
(2)具有减缓冲击和隔离扭振功能。
(3)具有改善动力机启动能力,使之带载荷或空载启动功能。
(4)具有在外载荷超载时保护电机和工作机不受损坏的过载保护功能。
(5)具有协调多动力机顺序启动、均衡载荷和平稳并车功能。
(6)具有柔性制动减速功能(指液力减速器和堵转阻尼型液力耦合器)。
(7)具有使工作机延时缓慢启动功能,能平稳地启动大惯量机械。
(8)对环境的适应性强,可以在寒冷、潮湿、粉尘、需防爆的环境下工作。
(9)可以使用廉价的笼型电机替代价格昂贵的绕线式电机。
(10)对环境没有污染。
(11)传递功率与其输入转速的平方成正比,输入转速高时,能容量大,性能价格比高。
(12)具有无级调速功能,调速型液力耦合器可以在输入端转速不变的条件下,通过在运行中调节工作腔的充液量而改变输出力矩和输出转速。
(13)具有离合功能,调速型和离合型液力耦合器,可以在电机不停止转动的条件下,使工作机启动或制动。
(14)具有扩大动力机稳定运行工作范围功能。
(15)具有节电效果,能降低电机的启动电流和持续时间,降低对电网的冲击,降低电机的装机容量,大惯量难启动机械应用限矩型液力耦合器和离心式机械应用调雹弯速型液力耦合器节能效果显著。
(16)除轴承、油封外无任何直接机械摩擦,故障率低,使用寿命长。
(17)结构简单,操作维护简便,不需要特别复杂的技术,养护穗渣费用低。
(18)性能价格比高,价格低廉,初始投资少,投资回收期短。
缺点
(1)始终存在转差猜肆悄率,有转差功率损失,限矩型液力耦合器的额定效率约等于0.96,调速型液力耦合器与离心式机械匹配相对运行效率在0.85~0.97之间。
(2)输出转速始终低于输入转速,且输出转速不能像齿轮传动那样准确不变。
(3)调速型液力耦合器需要附加冷却系统,增加投资费用和运行费用。
(4)占地面积较大,需要在动力机与工作机之间占有一定空间。
(5)调速范围相对较窄,与离心机械匹配调速范围为1~1/5,与恒力矩机械匹配调速范围为1~1/3。
(6)无变矩功能。
(7)传递功率的能力与其输入转速的平方成正比,输入转速过低时,耦合器规格增大,性能价格比降低。
⑧ 液力耦合器基本工作原理
液力耦合器的结构与工作原理
1、液力耦合器的结构组成
液力耦合器是一种液力传动装置,又称液力联轴器。在不考虑机械损失的情况下,输出力矩与输入力矩相等。它的主要功能有两个方面,一是防止发动机过载,二是调节工作机构的转速。其结构主要由壳体、泵轮、涡轮三个部分组成。
液力耦合器的壳体安装在发动机飞轮上,泵轮与壳体焊接在一起,随发动机曲轴的转动而转动,是液力耦合器的主动部分:涡轮和输出轴连接在一起,是液力耦合器的从动部分。泵轮和涡轮相对安装,统称为工作轮。在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。两者之间有一定的间隙(约3mm~4mm);泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。
2、液力耦合器的工作原理
当发动机运转时,曲轴带动液力耦合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在液压冲击力的作用下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘的液压油,又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。
液力耦合器中的循环液压油,在从泵轮叶片内缘流向外缘的过程中,泵轮对其作功,其速度和动能逐渐增大;而在从涡轮叶片外缘流向内缘的过程中,液压油对涡轮作功,其速度和动能逐渐减小。液力耦合器要实现传动,必须在泵轮和涡轮之间有油液的循环流动。而油液循环流动的产生,是由于泵轮和涡轮之间存在着转速差,使两轮叶片外缘处产生压力差所致。如果泵轮和涡轮的转速相等,则液力耦合器不起传动作用。因此,液力耦合器工作时,发动机的动能通过泵轮传给液压油,液压油在循环流动的过程中又将动能传给涡轮输出。由于在液力耦合器内只有泵轮和涡轮两个工作轮,液压油在循环流动的过程中,除了受泵轮和涡轮之间的作用力之外,没有受到其他任何附加的外力。根据作用力与反作用力相等的原理,液压油作用在涡轮上的扭矩应等于泵轮作用在液压油上的扭矩,即发动机传给泵轮的扭矩与涡轮上输出的扭矩相等,这就是液力耦合器的传动特点