① 交直流电传动内燃机车的传动装置由什么组成
不知道你说的是来什么意源思?什么叫传动装置?
现在的内燃机车都使用电传动,电传动又分为交-直传动和交流电传动。东风型号的内燃机车多为交-直传动,少部分是交流电传动(如DF11G)。上个世纪,我国曾出现过液压传动的内燃机车,但由于液压传动维护成本高,所以就逐渐淘汰了。
② NJ1型内燃机车的传动装置
为使柴油机的功率传到动轴上能符合机车牵引要求而在两者之间设置的媒介装置。柴油机扭矩—转速特性和机车牵引力—速度特性完全不同,不能用柴油机来直接驱动机车动轮:柴油机有一个最低转速,低于这个转速就不能工作,柴油机因此无法启动机车;柴油机功率基本上与转速成正比,只有在最高转速下才能达到最大功率值,而机车运行的速度经常变化,使柴油机功率得不到充分利用;柴油机不能逆转,机车也就无法换向。所以,内燃机车必须加装传动装置来满足机车牵引要求。常用的传动方式有机械传动、液力传动和电力传动。①机械传动装置是由离合器、齿轮变速箱、轴减速箱等组成的。因其功率受到限制,在铁路内燃机车中不再采用。②液力传动装置主要由液力传动箱、车轴齿轮箱、万向轴等组成。液力变扭器(又称变矩器)是液力传动机车最重要的传动元件,由泵轮、涡轮、导向轮组成。泵轮和柴油机曲轴相连,泵轮叶片带动工作液体使其获得能量,并在涡轮叶片流道内流动中将能量传给涡轮叶片,由涡轮轴输出机械能做功,通过万向轴、车轴齿轮箱将柴油机功率传给机车动轮;工作液体从涡轮叶片流出后,经导向轮叶片的引导,又重新返回泵轮。液力传动机车(图2)操纵简单、可靠,特别适用于多风沙和多雨的地带。③电力传动分为三种:(a)直流电力传动装置。牵引发电机和电动机均为直流电机,发动机带动直流牵引发电机,将直流电直接供各牵引直流电动机驱动机车动轮。(b)交—直流电力传动装置。发动机带动三相交流同步发电机,发出的三相交流电经过大功率半导体整流装置变为直流电,供给直流牵引电动机驱动机车动轮。(c)变—直—交流电力传动装置。发动机带动三相同步交流牵引发电机,发出的直流通过整流器到达直流中间回路,中间回路中恒定的直流电压通过逆变器调节其振幅和频率,再将直流电逆变成三相变频调压交流电压,并供给三相异步牵引电动机驱动机车动轮。电力传动机车的应用最为广泛。
③ DF12型内燃机车的传动装置
为使柴油机的功率传到动轴上能符合机车牵引要求而在两者之间设置的媒介装置。柴油机扭矩—转速特性和机车牵引力—速度特性完全不同,不能用柴油机来直接驱动机车动轮:柴油机有一个最低转速,低于这个转速就不能工作,柴油机因此无法启动机车;柴油机功率基本上与转速成正比,只有在最高转速下才能达到最大功率值,而机车运行的速度经常变化,使柴油机功率得不到充分利用;柴油机不能逆转,机车也就无法换向。所以,内燃机车必须加装传动装置来满足机车牵引要求。常用的传动方式有机械传动、液力传动和电力传动。①机械传动装置是由离合器、齿轮变速箱、轴减速箱等组成的。因其功率受到限制,在铁路内燃机车中不再采用。②液力传动装置主要由液力传动箱、车轴齿轮箱、万向轴等组成。液力变扭器(又称变矩器)是液力传动机车最重要的传动元件,由泵轮、涡轮、导向轮组成。泵轮和柴油机曲轴相连,泵轮叶片带动工作液体使其获得能量,并在涡轮叶片流道内流动中将能量传给涡轮叶片,由涡轮轴输出机械能做功,通过万向轴、车轴齿轮箱将柴油机功率传给机车动轮;工作液体从涡轮叶片流出后,经导向轮叶片的引导,又重新返回泵轮。液力传动机车(图2)操纵简单、可靠,特别适用于多风沙和多雨的地带。③电力传动分为三种:(a)直流电力传动装置。牵引发电机和电动机均为直流电机,发动机带动直流牵引发电机,将直流电直接供各牵引直流电动机驱动机车动轮。(b)交—直流电力传动装置。发动机带动三相交流同步发电机,发出的三相交流电经过大功率半导体整流装置变为直流电,供给直流牵引电动机驱动机车动轮。(c)变—直—交流电力传动装置。发动机带动三相同步交流牵引发电机,发出的直流通过整流器到达直流中间回路,中间回路中恒定的直流电压通过逆变器调节其振幅和频率,再将直流电逆变成三相变频调压交流电压,并供给三相异步牵引电动机驱动机车动轮。电力传动机车的应用最为广泛。
④ 电力传动内燃机车的传动装置有哪几个主要设备功率是如何传输的
主要有柴油机,传动装置,走行部,车体,车底架,车钩缓冲装置,制动装置和辅助装置等部分组成
⑤ 为什么内燃机车要使用传动装置
因为柴油机功率太大,直接通过齿轮传动要不齿轮做的非常大,满足柴油机功率变化要求,同时还要满足强度刚度要求,但受到体积及强度要求限制,所以不能太大,所以用传动装置
⑥ 机车传动装置的分类
利用原动机驱动离心泵,使获得能量的工作液体(机车用油)冲击涡轮从而驱动车轮来实现传递动力的装置。1902年德国的费廷格提出了液力循环元件(液力耦合器和液力变扭器)的方案,即将泵轮和涡轮组合在同一壳体内,工作液体在壳体内循环流动。采用这种元件大大提高了液力传动装置的效率。液力传动首先用于船舶。1932年制成第一台约60千瓦的液力传动柴油动车。
液力耦合器有相对布置的一个泵轮和一个涡轮。泵轮轴和涡轮轴的扭矩相等。涡轮转速略低于泵轮转速,二者转速之比即为液力耦合器的效率。液力耦合器用于机车主传动时,效率约为97%。液力变扭器除泵轮和涡轮外,还有固定的导向轮。涡轮与泵轮的扭矩之比称变扭比,转速比越小则变扭比越大。在同样的泵轮转速下,涡轮转速越低则涡轮扭矩越大。因此机车速度越低则牵引力越大,机车起动时的牵引力最大。液力变扭器的效率只在最佳工况下达到最大值。现代机车用的液力变扭器效率可达90%~91%。但当转速比低于或高于最佳工况时,效率曲线即呈抛物线形状下降。为使机车在常用速度范围内都有较高的传动效率,机车的液力传动装置一般采用不止一个简单的液力变扭器。机车液力传动装置如梅基特罗型、克虏伯型、苏里型、SRM型、ΓΤК型等,都是将一个液力变扭器与某种机械传动装置结合使用。福伊特型则是采用 2~3个液力变扭器(最佳工况点的转速比一般并不相同)或液力耦合器(图1),利用充油和排油换档,在各种机车速度下都使当时效率最佳的那一液力循环元件充油工作。换档时,前一元件排油和后一元件充油有一段重叠时间,所以换档过程中的机车牵引力只是稍有起伏而不中断。和其他类型相比,福伊特型液力传动装置的重量较大,但有结构简单、可靠性较高的优点。到60年代,经验证明:对于1500千瓦以上的液力传动装置,福伊特型较为适用。中国机车所用的液力传动装置都是这一类型的。
大功率增压柴油机车的液力传动装置都不用液力耦合器,但燃气轮机车的液力传动装置则用一个启动变扭器,并在高速时用一个液力耦合器。
液力循环元件传递功率P的能力也像其他液力机械一样,与工作液体重度r的一次方、泵轮转速n的三次方和元件尺寸D的五次方成正比,即P∝rnD。在柴油机车上,为了减小传动装置的尺寸,柴油机都不直接驱动液力循环元件的泵轮,而是通过一对增速齿轮,在轴承和其他旋转件容许线速度的限制范围内,尽可能提高泵轮转速。燃气轮机车由于转速很高,所以用一级甚至两级减速齿轮来驱动泵轮。同一种传动装置,只要改变这种齿轮的增速比或减速比,即可在经济合理的范围内应用于不同功率的机车。
液力传动装置通常包括一组使输出轴能改变转向的换向齿轮和离合器机构。输出轴通过适当的机械部件(万向轴和车轴齿轮箱,或曲拐和连杆等)驱动机车车轮。液力传动系统还可包括一组工况机构,使机车具有两种最高速度,在高速档有较高的行车速度,在低速档有较高的效率和较大的起动牵引力和加速能力。因此同一机车既可用于客运,也可用于货运,或者既可用于调车,也可用作小运转机车。而当调车工况的最高速度定得较低时,机车在起动和低速运行时的牵引力可以超过同功率的电力传动柴油调车机车。
1965年出现的液力换向柴油调车机车,传动装置有两组液力变扭器,每个行车方向各用一组,换向动作也用充油排油的方式来完成。当机车正在某一方向行驶时改用另一方向的液力变扭器充油工作,由于变扭器的涡轮转向与泵轮相反,对机车即起制动作用。机车换向不必先停车。只要司机改换行车方向手把的位置,机车即可自动地完成从牵引状态经过制动、停车,又立即改换行车方向的全部过程。
液力传动装置不用铜,重量轻,成本低,可靠性高,维修量少,并具有隔振、无级调速和恒功率特性好等优点,因而得到广泛采用。联邦德国和日本的柴油机车全部采用液力传动。 把机车原动机的动力变换成电能,再变换成机械能以驱动车轮而实现传递动力的装置。电力传动装置按发展的顺序有直-直流电力传动装置、交-直流电力传动装置、交-直-交流电力传动装置、交-交流电力传动装置四种。它们所用的牵引发电机、变换器(指整流器、逆变器、循环变频器等)和牵引电动机类型各不相同。
直-直流电力传动装置
1906年美国制造的150千瓦汽油动车最先采用了直-直流电力传动装置。1965年以前,世界各国单机功率75~2200千瓦的电传动机车都采用这种电力传动装置。这是因为同步牵引发电机无法高效变流,异步牵引电动机难于变频调速,只能采用直流电机。直-直流电力传动原理是基于直流电机是一种电能和机械能的可逆换能器,其原理见图 2。原动机G为柴油机,通过联轴器驱动直流牵引发电机ZF,后者把柴油机轴上的机械能变换成可控的直流电能,通过电线传送给1台或多台串并联或全并联接线的直流牵引电动机ZD,直流牵引电动机将电能变换成转速和转矩都可调节的机械能,经减速齿轮驱动机车动轮,实现牵引。此外设有自控装置。自控装置由既对柴油机调速又对牵引发电机调磁的联合调节器、牵引发电机磁场和牵引电动机磁场控制装置等组成,用来保证直-直流电力传动装置接近理想的工作特性。
交-直流电力传动装置
直流牵引发电机受整流子限制,不能制造出大功率电力传动装置。60年代前期,美国发明大功率硅二极管和可控硅,为制造大功率的电力传动装置准备了条件。1965年法国研制成 1765千瓦交-直流电力传动装置,它是世界各国单机功率 700~4400千瓦机车普遍采用的电力传动装置。
交-直流和直-直流电力传动原理相似。由图3可以看出两者差异在于柴油机 G驱动同步牵引发电机TF,经硅二极管整流桥ZL,把增频三相交流电变换成直流电,事实上TF和ZL组成等效无整流子直流电机。其余部分和自控装置主要工作原理与直-直流电力传动装置相同。
交-直-交流电力传动装置
异步牵引电动机结构简单,体积小,工作可靠,在变频调压电源控制下,能提供优良调速性能。联邦德国于 1971年研制成实用的交-直-交流电力传动装置,如图4所示。
交-直-交流电力传动原理如下:柴油机 G驱动同步牵引发电机TF,产生恒频可调压三相交流电(柴油机恒速时),经硅整流桥ZL变换成直流电,再经过可控硅逆变器 N(具有分谐波调制功能)再将直流电逆变成三相变频调压交流电,通过三根电线传输给多台全并联接线的异步牵引电动机AD。AD将交流电能变换成转速和转矩可调的机械能,驱动机车动轴,实现牵引。它的自控装置由联合调节器以及对同步牵引发电机磁场、变换器、异步牵引电动机作脉冲、数模或逻辑控制的装置组成,从而提供接近理想的工作特性。
交-交流电力传动装置
交-直-交变频调压电能经二次变换,降低了传动装置的效率,而且逆变器用可控硅需要强迫关断,对主电路技术有较高的要求。为提高效率,在交-交流电力传动装置中采用了自然关断可控硅相控循环变频器(图5)。60~70年代,美国在重型汽车上,苏联在电力机车上都采用了交-交流电力传动装置。不过美国用的是异步牵引电动机牵引,苏联用的是同步牵引电动机牵引。
交-交流电力传动原理如图5所示。柴油机G驱动同步牵引发电机TF,发出增频可调压交流电,经相控循环变频器FB变换成可变频调压的三相交流电(降频),输给多台全并联接线的异步牵引电动机AD。AD将交流电能变换成转速和转矩可调的机械能,驱动动轮实现牵引。它的自控装置也是由联合调节器、脉冲、数模、逻辑电路等装置构成(但对可控硅导通程序要求严格),同样能保证优良的工作特性。
⑦ 电力机车得传动装置是什么电力传动内燃机车的传动装置又是什么
电力机车:变压器,变流器,电机,齿轮箱
内燃机车没有变压器,换成柴油机和主发电机
⑧ 机车传动装置的原理
牵引力与速度成反比,在起动(速度等于零)时具有最大值。机车前进和后退这两个方向内的牵引性能要基本相同。容但是机车柴油机的扭矩-转速特性和机车牵引力-速度特性完全不同。柴油机不能在负载下启动;在转速等于零时没有任何扭矩;在最高转速下才能达到最大功率值;转速愈低,功率也愈低;低于一定转速时即不能稳定工作,甚至熄火停车。此外,机车柴油机不能逆转。因此,柴油机曲轴不能和机车车轮直接连接,两者之间必须有一传动装置作为媒介满足机车牵引要求。燃气轮机也不能逆转,低速时功率较小,为了提高机车的起动牵引和加速的能力,也要有传动装置。
⑨ 内燃机车柴油机结构示意图以及各部位的名称请专家给我详细的图纸
长度一般有两种,26.4和24.4m 宽度大概是3.1m 高度大概是3.8m 机车供电与列车的车厢供电分别独立.车厢也分集中供电空调车(电压为220V)与非集中供电(电压为非稳压的48V-65V). 客车车体为高强度耐大气腐蚀钢制造的整体承载结构,客车使用寿命为三十年。 走形装置采用CW-2C型转向架,装有迷宫式轴箱,转臂式无磨耗轴箱定位装置,二系弹簧为空气弹簧。 各车种采用整体铝合金车窗。 车内设施齐全,装有单元式空调机组,自动电茶炉、整体玻璃钢洗面室、厕所、可躺式座椅、卡拉OK音乐系统等。 各车种内部设计新颖,色调柔和,为广大旅客提供乘座舒适的旅行环境。 各车种大量采用了经过运用考验的新结构、新工艺、新材料,增强了防腐、隔热、阻燃、密封、隔音、减震性能,提高了客车的综合技术指标。 性能参数: 轨距:1435 mm 自重:约 46.4 吨 构造速度:160 km/h(最高试验速度:180-200 km/h) 平稳性指标:W ≤ 2.5 车体长度:25500 mm 车体宽度:3104 mm 车钩中心线距轨面高度:880 mm 车体高度:4050 mm 转向架:CW-2C型转向架 制 动 装 置:自动式电控制动装置.盘型制动.电子防滑器 空气调节装置:(车顶)单元式空调机组(40kw) 给水装置:上水箱 电气装置:发电车集中供电,供电电压为 AC 380V 50Hz 早期的火车车厢内燃点油灯,后改用煤油气灯,20世纪初逐渐使用白炽灯。1910年以后,机车车头装上白炽灯的前照灯,照射距离为300m。1950年以后,车厢内开始采用荧光灯,使车厢内照度达到100~300lx。随后,逐步采用了高频供电技术和三基色荧光灯,照明质量明显提高。现在,除在特殊场所、辅助照明场所和高级客车的豪华型装饰灯中使用白炽灯照明外,荧光灯已成为客车照明的主要光源。1965年后,机车的前照灯采用超高压球形汞氙灯作为光源,这种光源的照射距离达到1000m以上。照射距离的增加,促进了现代长途和高速列车的发展。 火车灯分机车灯和车厢灯两大类。 机车灯 包括前照灯、标志灯和车内照明灯。①前照灯,又名车头灯。机车前、后上方各装一盏,其形状和功能与探照灯相似,光源采用超高压球形汞氙灯,功率有500W和1000W两种,供电电压为直流50~110V,工作时须用触发器启动。②标志灯。用于表示机车运行方向和运行线路的类别。分前标灯和后标灯,前者装在机车前端面的两侧,后者装于机车后方两侧(指非对称车型),光源采用60~200W的白炽灯。 车厢灯 包括车厢内使用的各种灯具,如棚顶灯、壁灯、镜前灯和尾侧灯等。①棚顶灯。装于车厢内部客室、通道和走廊等处的棚顶上,是车厢照明的主要灯种。②尾侧灯。装于列车尾部车辆的外侧,表示列车运行方向。各国车厢都采用均匀柔和无眩光的照明方式,选用漫射式的灯具,使车厢内有足够的照度和均匀度。卧车内按室布置,座车内则采用单光带或双光带两种照明方式。光源使用15、20或40W的荧光灯,有的还使用110W直管形荧光灯或环形、 U形荧光灯。车厢内的灯具须具有灵活方便的开启结构和良好的密闭性,外形分矩形和圆形两种。 内燃机车简述 内燃机车是以内燃机作为原动力,通过传动装置驱动车轮的机车。根据机车所用内燃机的种类,可分为柴油机车和燃气轮机车。在中国,内燃机车由于使用柴油机,所以在介绍内燃机车时一般都是指柴油机车(图4.3_01电传动内燃机车结构示意图)。 当柴油机的燃料在汽缸内燃烧时,所产生的高压高温气体在汽缸内膨胀,推动活塞往复运动,并通过曲轴将往复运动变为旋转运动,这样燃料的热能就转化为机械功。柴油机发出的动力传输给传动装置,通过对柴油机、传动装置的控制和调节,将适应机车运行工况的输出转速和转矩再送到每个车轴齿轮箱驱动机车动轮,使机车运行,动轮产生的轮周牵引力传送到车架,由车架端部的车钩变为挽钩牵引力来拖动或推送车辆。 从内燃机车工作原理可以看出,内燃机车的基本构造是由柴油机、传动装置、车体走行部、辅助装置、制动设备、控制设备等部分组成的。 柴油机是内燃机车的动力装置,现代内燃机车一般采用四冲程高速或中速柴油机。为满足各种功率的需要,在制造柴油机时,便生产相同汽缸直径和活塞冲程,不同汽缸数的系列产品。小功率的多为直列型,大功率的一般都是V型等。所谓直
⑩ 为什么内燃机车要使用传动装置
因为柴油机的功率特性
曲轴无法反转导致直接驱动机车时无回法换向
机车启动时需要极答大的牵引力来提供负载
而柴油机的特性决定了柴油机启动时需要的是0负载
所以用传动装置来作为中间环节
给机车提供适合机车牵引特性曲线图的动力