『壹』 自动控制原理课程设计 设计题目: 串联滞后校正装置的设计
一、理论分析设计
1、确定原系统数学模型;
当开关S断开时,求原模拟电路的开环传递函数个G(s)。
c);(c、2、绘制原系统对数频率特性,确定原系统性能:
3、确定校正装置传递函数Gc(s),并验算设计结果;
设超前校正装置传递函数为:
,rd>1
),则:c处的对数幅值为L(cm,原系统在=c若校正后系统的截止频率
由此得:
由 ,得时间常数T为:
4、在同一坐标系里,绘制校正前、后、校正装置对数频率特性;
二、Matlab仿真设计(串联超前校正仿真设计过程)
注意:下述仿真设计过程仅供参考,本设计与此有所不同。
利用Matlab进行仿真设计(校正),就是借助Matlab相关语句进行上述运算,完成以下任务:①确定校正装置;②绘制校正前、后、校正装置对数频率特性;③确定校正后性能指标。从而达到利用Matlab辅助分析设计的目的。
例:已知单位反馈线性系统开环传递函数为:
≥450,幅值裕量h≥10dB,利用Matlab进行串联超前校正。≥7.5弧度/秒,相位裕量c要求系统在单位斜坡输入信号作用时,开环截止频率
c)]、幅值裕量Gm(1、绘制原系统对数频率特性,并求原系统幅值穿越频率wc、相位穿越频率wj、相位裕量Pm[即
num=[20];
den=[1,1,0];
G=tf(num,den); %求原系统传递函数
bode(G); %绘制原系统对数频率特性
margin(G); %求原系统相位裕度、幅值裕度、截止频率
[Gm,Pm,wj,wc]=margin(G);
grid; %绘制网格线(该条指令可有可无)
原系统伯德图如图1所示,其截止频率、相位裕量、幅值裕量从图中可见。另外,在MATLAB Workspace下,也可得到此值。由于截止频率和相位裕量都小于要求值,故采用串联超前校正较为合适。
图1 校正前系统伯德图
2、求校正装置Gc(s)(即Gc)传递函数
L=20*log10(20/(7.5*sqrt(7.5^2+1))); =7.5处的对数幅值Lc%求原系统在
rd=10^(-L/10); %求校正装置参数rd
wc=7.5;
T= sqrt(rd)/wc; %求校正装置参数T
numc=[T,1];
denc=[T/ rd,1];
Gc=tf(numc,denc); %求校正装置传递函数Gc
(s)(即Ga)3、求校正后系统传递函数G
numa=conv(num,numc);
dena=conv(den,denc);
Ga=tf(numa,dena); %求校正后系统传递函数Ga
4、绘制校正后系统对数频率特性,并与原系统及校正装置频率特性进行比较;
求校正后幅值穿越频率wc、相位穿越频率wj、相位裕量Pm、幅值裕量Gm。
bode(Ga); %绘制校正后系统对数频率特性
hold on; %保留曲线,以便在同一坐标系内绘制其他特性
bode(G,':'); %绘制原系统对数频率特性
hold on; %保留曲线,以便在同一坐标系内绘制其他特性
bode(Gc,'-.'); %绘制校正装置对数频率特性
margin(Ga); %求校正后系统相位裕度、幅值裕度、截止频率
[Gm,Pm,wj,wc]=margin(Ga);
grid; %绘制网格线(该条指令可有可无)
校正前、后及校正装置伯德图如图2所示,从图中可见其:截止频率wc=7.5;
),校正后各项性能指标均达到要求。相位裕量Pm=58.80;幅值裕量Gm=inf dB(即
从MATLAB Workspace空间可知校正装置参数:rd=8.0508,T=0.37832,校正装置传递函数为 。
图2 校正前、后、校正装置伯德图
三、Simulink仿真分析(求校正前、后系统单位阶跃响应)
注意:下述仿真过程仅供参考,本设计与此有所不同。
线性控制系统校正过程不仅可以利用Matlab语句编程实现,而且也可以利用Matlab-Simulink工具箱构建仿真模型,分析系统校正前、后单位阶跃响应特性。
1、原系统单位阶跃响应
原系统仿真模型如图3所示。
图3 原系统仿真模型
系统运行后,其输出阶跃响应如图4所示。
图4 原系统阶跃向应曲线
2、校正后系统单位阶跃响应
校正后系统仿真模型如图5所示。
图5 校正后系统仿真模型
系统运行后,其输出阶跃响应如图6所示。
图6 校正后系统阶跃向应曲线
3、校正前、后系统单位阶跃响应比较
仿真模型如图7所示。
图7 校正前、后系统仿真模型
系统运行后,其输出阶跃响应如图8所示。
图8 校正前、后系统阶跃响应曲线
四、确定有源超前校正网络参数R、C值
有源超前校正装置如图9所示。
图9 有源超前校正网络
当放大器的放大倍数很大时,该网络传递函数为:
(1)
其中 , , ,“-”号表示反向输入端。
该网络具有相位超前特性,当Kc=1时,其对数频率特性近似于无源超前校正网络的对数频率特性。
根据前述计算的校正装置传递函数Gc(s),与(1)式比较,即可确定R4、C值,即设计任务书中要求的R、C值。
注意:下述计算仅供参考,本设计与此计算结果不同。
如:由设计任务书得知:R1=100K,R2=R3=50K,显然
令
T=R4C
『贰』 什么是自动控制的串联校正,分哪几种类型
对自动控制系统的开环特性进行修改,是通过添加校正装置来实现的。常见的校正类型包括相位超前校正、相位滞后校正和相位滞后一超前校正。当系统在静止和动态性能上无法达到所需指标时,就需要进行校正。相位校正的目的是调整系统的频率响应特性,相位超前校正能提高系统的相位裕度,相位滞后校正则减少系统的相位滞后,相位滞后一超前校正则是这两种校正的组合,可以同时改善系统的稳定性和动态响应。
根据校正装置在系统中的位置,可以将其分为串联校正和反馈校正。串联校正又可以根据校正环节对系统频率特性相位的影响分为上述三种类型。串联校正装置可以是无源的也可以是有源的,有源校正装置常见的有比例-微分(PD)校正装置和比例-积分(PI)校正装置。无源校正装置通常由电阻、电容和电感组成,有源校正装置则需要电源供给。
控制系统校正的目标是优化动态性能指标,包括超调量、调节时间和上升时间等。在复数域中,根轨迹设计是通过调整闭环极点在复平面上的分布来实现的,特定区域的限制决定了系统阶跃响应中各阶分量的衰减速度和阻尼比。设计系统校正的方法大致可分为三类:频率法、根轨迹法和等效结构与传递函数法。频率法通过调整校正装置的Bode图来修改原系统的Bode图,以达到预期的频率响应特性。根轨迹法则通过引入新的开环零极点来改变系统的根轨迹。等效结构与传递函数法则利用典型模型通过参数对比来实现。
『叁』 控制系统校正方法校正方式
控制系统中的校正方法有串联校正和并联校正两种基本类型。串联校正,如图1a所示,校正装置Gc(s)与不可变动部分G0(s)以串联形式连接。这种校正方式相对简单,但常常伴随着严重的增益衰减问题。为了弥补这一体积,串联校正通常需要配合额外的放大器,以提升增益并起到隔离作用。
相反,如果校正装置被连接在系统的一个反馈回路中,如图1b所示,这就是并联校正或反馈校正。并联校正的特点是信号从功率较高的点传输到较低的点,因此不需要额外的放大器。相较于串联校正,它通常需要的元件数量较少。在实际的设计中,选择哪种校正方法,会受到校正目标、信号特性、系统各点功率、可用元件以及经济成本等因素的综合考虑。
在控制系统的设计过程中,工程师会根据具体需求和条件,权衡不同校正方式的优缺点,以实现最佳的控制效果和经济效益。
通过引入附加装置使控制系统的性能得到改善的方法。控制系统校正方法是经典控制理论的一个主要组成部分。通常讨论仅限于单输入、单输出的线性定常控制系统。控制系统中所引入的附加装置称为校正装置。
『肆』 机械控制工程基础 什么叫系统校正,主要有哪些方法
常用的基本方法有根轨迹法和频率响应法两种。 ① 轨迹法设计校正装置 当性能指标以时间域量值(超调量、上升时间、过渡过程时间等)给出时,采用根轨迹法进行设计一般较为有效。设计时,先根据性能指标,在s的复数平面上,确定出闭环主导极点对的位置。随后,画出未加校正时系统的根轨迹图,用它来确定只调整系统增益值能否产生闭环主导极点对。如果这样做达不到目的,就需要引入适当的校正装置。校正装置的类型和参数,根据根轨迹在闭环主导极点对附近的形态进行选取和计算确定。一旦校正装置决定后,就可画出校正后系统的根轨迹图,以确定除主导极点对以外的其他闭环极点。当其他闭环极点对系统过渡过程性能只产生很小影响时,可认为设计已完成,否则还须修正设计。 ② 用频率响应法设计校正装置 在采用频率响应法进行设计时,常选择频率域的性能如相角裕量、增益裕量、带宽等作为设计指标。如果给定性能指标为时间域的形式,则应先化成等价的频率域形式。通常,设计是在波德图上进行的。在波德图上,先画出满足性能指标的期望对数幅值特性曲线,它由三个部分组成:低频段用以表征闭环系统应具有的稳态精度;中频段表征闭环系统的相对稳定性如相角裕量和增益裕量等,它是期望对数幅值特性中的主要部分;高频段表征系统的复杂性。然后,在同一波德图上,再画出系统不可变动部分的对数幅值特性曲线,它是根据其传递函数来作出的。所需串联校正装置的特性曲线即可由这两条特性曲线之差求出,在经过适当的简化后可定出校正装置的类型和参数值。 不论是采用根轨迹法还是频率响应法,设计中常常有一个反复的修正过程,其中设计者的经验起着重要的作用。设计的结果也往往不是唯一的,需要结合性能、成本、体积等方面的考虑,选择一种合理的方案。