机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况:
载荷平稳、单向旋转
三. 原始数据
鼓轮的扭矩T(N·m):850
鼓轮的直径D(mm):350
运输带速度V(m/s):0.7
带速允许偏差(%):5
使用年限(年):5
工作制度(班/日):2
四. 设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份
六. 设计进度
1、 第一阶段:总体计算和传动件参数计算
2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写
传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大齿轮浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择
1) 工作机所需功率Pw
Pw=3.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW
3.电动机转速的选择
nd=(i1’·i2’…in’)nw
初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求。
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=38.4
i=25.14
㈡ 简单的机械设计,升旗
电机 —— 减速机(或者自己设计蜗轮蜗杆)—— 皮带轮 —— 旗的绳子 OK~
当然做的时候比较复杂 得通过旗子升到顶用的时间和电机的转速来计算减速机的减速比
以为你说的是简单的 复杂一点的就得用到PLC 变频器了 成本也就翻了好多倍了
望采纳~
㈢ 机械设计基础课程设计的题目是带式运输机传动装置设计
是指一个传送带吗,是横卧,还是有角度的。
㈣ 机械设计 螺旋输送机传动装置设计
一、传动方案拟定
螺旋输送机用减速器方案如下图所示
FD
V
二、电动机的选择
电动机的选择:选用Y系列三相异步电动机
1.带式输送机所需功率
2.初估电动机额定功率P=
V带效率=0.96,一对滚动轴承效率=0.99,闭式齿轮传动效率=0.97(8级精度),联轴器
3.确定电动机转速
选择同步转速为1500电动机,型号为
4.各尺寸及主要性能如下:
额定功率
同步转速
满载转速
额定转矩
最大转矩
质量
(kg)
4.0
1500
1440
2.2
2.2
43
机座号
中心高
安装尺寸
轴伸尺寸
平键尺寸
外形尺寸
112M
112
A
B
D
E
G
L
HD
AC
AD
190
140
28
60
24
400
265
230
190
三、分配各级传动比
初取V带传动比3
则两斜圆柱齿轮 取
综上取传动比
四、 计算运动和动力参数(传动装置运动和动力参数的计算)
1.各轴转速
电动机轴
I轴
II轴
III轴
卷筒轴IV
2.各轴输入功率
I轴
II轴
III轴
卷筒轴IV
3.各轴输入转矩
I轴
II轴
III轴
卷筒轴IV
五、 减速器外传动零件的设计计算
一 V带的设计计算
1:确定计算功率
由V带的工作情况和工作时间长短等因素 取
2:选择带型
根据计算功率小带轮的转速,由表8-6,可选 SPZ型V带
3:确定带轮的基准直径
1):由表8-7,8-3,初选
2):验算带速度:
故V带选择合适
3):计算从动轮的基准直径
由表8-7,选取
4:确定中心距
初选,带的基准长度
由表8-2取
5:验算主动轮的包角
,
主动轮的包角符合要求
6:确定窄V带根数z
由查表8-5c和8-5d得:
由表8-8得:
由表8-2得:
代入式(8-22)得:
故z取z=3
7:计算带的预紧力
查表8-4得:
由于新带容易松弛,所以安装新带时的预紧力为上述预紧力的1.5倍
8:计算压紧力
9验算 实际传动比:
9:带轮结构设计
基准宽度
基准线上槽深
基准线下槽深
槽间距
第一槽对称面
至端面的距离
最小带轮缘厚
带轮宽
外径
轮槽角
㈤ 机械设计-课程设计-带式运输机传动装置-二级齿轮减速器
一、设计题目:二级直齿圆柱齿轮减速器
1. 要求:
- 传动关系:由电动机、V带、减速器、联轴器、工作机构构成。
- 工作条件:双班工作,有轻微振动,小批量生产,单向传动,使用5年,运输带允许误差5%。
- 知条件:运输带卷筒转速,减速箱输出轴功率 4KW,二级齿轮减速器传动比 i=8。
二、传动装置总体设计:
1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。其传动方案如下:
三、选择电机:
1. 计算电机所需功率:
- 查手册第3页表1-7:带传动效率 0.96,每对轴承传动效率 0.99,圆柱齿轮的传动效率 0.96,联轴器的传动效率 0.993,卷筒的传动效率 0.96。
- 电机至工作机之间的传动装置的总效率:2。
- 确定电机转速:查指导书第7页表1,取V带传动比 i=2。
四、确定传动装置的传动比和分配传动比:
- 总传动比:8。
- 分配传动比:取 i=8。
- 经计算,i=750/1000=0.75,i=8。
五、计算传动装置的运动和动力参数:
- 各轴转速:
- 各轴输入功率:
- 各轴输入转矩:
- 运动和动力参数结果如下表:
六、设计V带和带轮:
1. 设计V带:
- 确定V带型号:查课本第206页表13-7,取 A 型 V 带,取 e=0.8。
- 验算带速:带速在 5-20 m/s 范围内,合适。
- 取V带基准长度和中心距 a:初步选取中心距 a,由课本第195页式(13-2)得,查课本第202页表13-2取,由课本第206页式13-6计算实际中心距。
- 验算小带轮包角:由课本第195页式(13-1)得。
- 求V带根数 Z:由课本第204页式13-15得,查课本第203页表13-3由内插值法得。
七、齿轮的设计:
1. 高速级大小齿轮的设计:
- 材料:高速级小齿轮选用 钢调质,齿面硬度为250HBS。高速级大齿轮选用 钢正火,齿面硬度为220HBS。
- 设计参数:查课本第166页表11-7,查课本第165页表11-4,查课本第168页表11-10C图。
- 按齿面接触强度设计:9级精度制造,查课本第164页表11-3得,计算中心距。
- 验算轮齿弯曲强度:查课本第167页表11-9得,按最小齿宽计算。
- 齿轮的圆周速度:查课本第162页表11-2知选用9级的精度是合适的。
八、减速器机体结构尺寸如下:
- 名称、符号、计算公式、结果。
九、轴的设计:
1. 高速轴设计:
- 材料:选用45号钢调质处理。
- 各轴段直径的确定:根据课本第230页式14-2得。
- 校核该轴和轴承:计算作用力、力矩和危险截面的当量弯矩。
- 轴承寿命校核:轴承寿命可由式进行校核。
- 弯矩及轴的受力分析图如下。
十、键的设计与校核:
- 设计键:已知,参考教材表10-9,由挤压强度条件,键的校核为。
十一、联轴器的选择:
- 计算联轴器所需的转矩:查手册94页表8-7选用型号为HL6的弹性柱销联轴器。
十二、润滑方式的确定:
- 因为传动装置属于轻型的,且传速较低,所以其速度远远小于,采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度。
十三、其他有关数据见装配图的明细表和手册中的有关数据。
十四、参考资料:
- 《机械设计课程设计手册》(第二版)——清华大学吴宗泽,北京科技大学罗圣国主编。
- 《机械设计课程设计指导书》(第二版)——罗圣国,李平林等主编。
- 《机械课程设计》(重庆大学出版社)——周元康等主编。
- 《机械设计基础》(第四版)课本——杨可桢程光蕴主编。
㈥ 机械设计的一般流程是什么
机械设计的一般流程是:需求分析、概念设计、初步设计、详细设计、制图与文档编写、评审与优化、制造与测试、维护与改进。
在机械设计过程中,需求分析是第一步。这一阶段,设计师需要深入了解机械设备的使用场景、功能要求、性能标准以及用户的具体需求。例如,设计一台挖掘机,需要考虑挖掘深度、挖掘力、工作速度、燃油效率等参数,同时还需要考虑操作简便性、安全性以及维护成本等因素。
接下来是概念设计阶段。在这一阶段,设计师会提出多个可能的设计方案,并通过草图、初步的三维模型等方式进行展示。这些方案会基于需求分析的结果,尝试以创新的方式满足所有要求。例如,设计师可能会考虑采用不同类型的发动机、传动系统或工作装置,以找到最佳的平衡点。
初步设计和详细设计阶段则是对概念设计的进一步细化。初步设计会确定机械设备的基本结构和主要尺寸,而详细设计则会具体到每一个零部件的尺寸、材料、加工工艺等。在这个阶段,设计师会使用专业的CAD软件进行绘图和建模,以便更准确地表达设计理念。
制图与文档编写阶段则是将设计结果转化为工程图纸和技术文档。这些图纸和文档不仅是制造和装配的依据,也是后续评审、优化、维护和改进的基础。同时,它们也是设计师与工程师、制造人员等其他团队成员沟通的重要工具。
评审与优化阶段是对设计结果的全面审查和改进。这一阶段会邀请行业专家、用户代表等共同参与,对设计方案的可行性、经济性、安全性等方面进行综合评价。根据评审结果,设计师会进行相应的优化和改进,以提高设计的质量和性能。
制造与测试阶段是将设计转化为实体的关键步骤。在这一阶段,设计师需要与制造人员紧密合作,确保制造过程符合设计要求。同时,还需要进行各种性能测试和可靠性试验,以验证设计的实际效果。这些测试数据将为后续的维护和改进提供重要依据。
最后是维护与改进阶段。机械设备在使用过程中难免会出现磨损和故障,因此需要进行定期的维护和保养。同时,根据实际使用情况和用户反馈,设计师还可以对设备进行进一步的改进和优化,以提高其性能和寿命。
综上所述,机械设计是一个复杂而系统的过程,需要设计师全面考虑各种因素和挑战。通过遵循这一流程,并不断优化和改进设计方案,可以确保最终的产品能够满足用户的需求和期望。