㈠ 风力发电原理及工作过程是什么
风力发电原理:
把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。
依据风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。 风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。
工作过程:
通过风轮把风能转换为机械能,进而借助于发电机再把机械能转化为电能。由于风轮的转速一般比较低(每分钟几转到数十转),而发电机的转速通常很高(一般每分钟超过1000转),因此需要通过齿轮箱变速。
平轴风力发电机:
水平轴风力发电机科分为升力型和阻力型两类。升力型风力发电机旋转速度快,阻力型旋转速度慢。对于风力发电,多采用升力型水平轴风力发电机。
大多数水平轴风力发电机具有对风装置,能随风向改变而转动。对于小型风力发电机,这种对风装置采用尾舵,而对于大型的风力发电机,则利用风向传感元件以及伺服电机组成的传动机构。
风力机的风轮在塔架前面的称为上风向风力机,风轮在塔架后面的则成为下风向风机。水平轴风力发电机的式样很多,有的具有反转叶片的风轮,有的再一个塔架上安装多个风轮,以便在输出功率一定的条件下减少塔架的成本,还有的水平轴风力发电机在风轮周围产生漩涡,集中气流,增加气流速度。
以上内容参考:网络——风力发电
㈡ 我想知道风力发电是怎么一回事都有什么部件组成能告诉我吗谢谢小弟谢谢了
基本原理和部件组成如下:
大部分风电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。图中的黄色带子比红色带子,被吹得更加指向风电机的背部。这是显而易见的,因为叶片末端的转速是撞击风电机前部的风速的八倍。
为什么转子叶片呈螺旋状?
大型风电机的转子叶片通常呈螺旋状。从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。
风电机结构
机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱左端是风电机转子,即转子叶片及轴。
转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。
轴心:转子轴心附着在风电机的低速轴上。
低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。
齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。
高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。
发电机:通常被称为感应电机或异步发电机。在现代风电机上,最大电力输出通常为500至1500千瓦。
偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。图中显示了风电机偏航。通常,在风改变其方向时,风电机一次只会偏转几度。
电子控制器:包含一台不断监控风电机状态的计算机,并控制偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风电机的转动,并通过电话调制解调器来呼叫风电机操作员。
液压系统:用于重置风电机的空气动力闸。
冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风电机具有水冷发电机。
塔:风电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。
风速计及风向标:用于测量风速及风向。
风电机发电机
风电机发电机将机械能转化为电能。风电机上的发电机与你通常看到的,电网上的发电设备相比,有点不同。原因是,发电机需要在波动的机械能条件下运转。
输出电压
大型风电机(100-150千瓦)通常产生690伏特的三相交流电。然后电流通过风电机旁的变压器(或在塔内),电压被提高至一万至三万伏,这取决于当地电网的标准。
大型制造商可以提供50赫兹风电机类型(用于世界大部分的电网),或60赫兹类型(用于美国电网)。
冷却系统
发电机在运转时需要冷却。在大部分风电机上,发电机被放置在管内,并使用大型风扇来空冷;一部分制造商采用水冷。水冷发电机更加小巧,而且电效高,但这种方式需要在机舱内设置散热器,来消除液体冷却系统产生的热量。
启动及停止发电机
如果你通过弹开一个普通开关,将大型风电机发电机与电网连接或解开,你很可能会损毁发电机、齿轮箱及邻近电网。
发电机电网的设计
风电机可以使用同步或异步发电机,并直接或非直接地将发电机连接在电网上。直接电网连接指的是将发电机直接连接在交流电网上。非直接电网连接指的是,风电机的电流通过一系列电力设备,经调节与电网匹配。采用异步发电机,这个调节过程自动完成。
转子叶片
转子叶片轮廓(横切面)
风电机转子叶片看起来像航行器的机翼。实际上,转子叶片设计师通常将叶片最远端的部分的横切面设计得类似于正统飞机的机翼。但是叶片内端的厚轮廓,通常是专门为风电机设计的。为转子叶片选择轮廓涉及很多折衷的方面,诸如可靠的运转与延时特性。叶片的轮廓设计,即使在表面有污垢时,叶片也可以运转良好。
转子叶片的材质
大型风电机上的大部分转子叶片用玻璃纤维强化塑料(GRP)制造。采用碳纤维或芳族聚酰胺作为强化材料是另外一种选择,但这种叶片对大型风电机是不经济的。木材、环氧木材、或环氧木纤维合成物目前还没有在转子叶片市场出现,尽管目前在这一领域已经有了发展。钢及铝合金分别存在重量及金属疲劳等问题,他们目前只用在小型风电机上。
风电机齿轮箱
为什么要使用齿轮箱?
风电机转子旋转产生的能量,通过主轴、齿轮箱及高速轴传送到发电机。
为什么要使用齿轮箱?为什么我们不能通过主轴直接驱动发电机?
如果我们使用普通发电机,并使用两个、四个或六个电极直接连接在50赫兹交流三相电网上,我们将不得不使用转速为1000至3000转每分钟的风电机。对于43米转子直径的风电机,这意味着转子末端的速度比声速的两倍还要高。另外一种可能性是建造一个带许多电极的交流发电机。但如果你要将发电机直接连在电网上,你需要使用200个电极的发电机,来获得30转每分钟的转速。另外一个问题是,发电机转子的质量需要与转矩大小成比例。因此直接驱动的发电机会非常重。
更低的转矩,更高的速度
使用齿轮箱,你可以将风电机转子上的较低转速、较高转矩,转换为用于发电机上的较高转速、较低转矩。风电机上的齿轮箱,通常在转子及发电机转速之间具有单一的齿轮比。对于600千瓦或750千瓦机器,齿轮比大约为1比50。
下图显示了用于风电机的1.5兆瓦的齿轮箱。这个齿轮箱有些不同寻常,因为在高速点的两个发电机上安装有法兰。右侧安装在发电机下的橙黄色配件,是液压驱动的紧急盘状刹车。在背景处你可以看到用于1.5MW风电机的机舱的下半部分
风电机偏航装置
风电机偏航装置用于将风电机转子转动到迎风的方向。
偏航误差
当转子不垂直于风向时,风电机存在偏航误差。偏航误差意味着,风中的能量只有很少一部分可以在转子区域流动。如果只发生这种情况,偏航控制将是控制向风电机转子电力输入的极佳方式。但是,转子靠近风源的部分受到的力比其它部分要大。一方面,这意味着转子倾向于自动对着风偏转,逆风或顺风的汽轮机都存在这种情况。另一方面,这意味着叶片在转子每一次转动时,都会沿着受力方向前后弯曲。存在偏航误差的风电机,与沿垂直于风向偏航的风电机相比,将承受更大的疲劳负载。
偏航机构
几乎所有水平轴的风电机都会强迫偏航。即,使用一个带有电动机及齿轮箱的机构来保持风电机对着风偏转。本图显示的是750千瓦风电机上的偏航机构。我们可以看到环绕外沿的偏航轴承,及内部偏航马达及偏航闸的轮子。几乎所有逆风设备的制造商都喜欢在不需要的情况下,停止偏航机构。偏航机构由电子控制器来激发。
电缆扭曲计数器
电缆用来将电流从风电机运载到塔下。但是当风电机偶然沿一个方向偏转太长时间时,电缆将越来越扭曲。因此风电机配备有电缆扭曲计数器,用于提醒操作员应该将电缆解开了。类似于所有风电机上的安全机构,系统具有冗余。风电机还会配备有拉动开关,在电缆扭曲太厉害时被激发。
http://www.tosafe.net/riskman/ShowArticle.asp?ArticleID=262
㈢ 风力发电机有哪些系统组成
组成风力发电系统的主要部件是塔架、发电机、齿轮增速器(一般为传动效率高的行星齿轮传动)、变桨偏航系统(按风力大小调整桨叶迎风面)、桨叶、联轴器、电控系统等。
风力发电技术采用空气洞力学原理,针对垂直轴旋转的风洞模拟,叶片选用了飞机翼形形状,在风轮旋转时,它不会受到因变形而改变效率等;它用垂直直线4-5个叶片组成,由4角形或5角形形状的轮毂固定、连接叶片的连杆组成的风轮,由风轮带动稀土永磁发电机发电送往控制器进行控制,输配负载所用的电能。
该技术原理根据空气片条理论,实际计算可选取垂直风机旋转轴的切面进行计算模型,按叶片实际尺寸,每个叶片的旋转轴心距离为N米;用CFD技术进行模拟气动系数计算,计算原理采用离散数字方法求解翼形断面的气动力,用网格方法对雷诺数流动涡量分布比较形成高雷诺数下对Navier-Stokes方程进行数字模拟计算的原理结果。
㈣ 风力发电机的结构
风力发电机可以大致分成两类:水平轴式转子和垂直轴式转子
水平轴式转子的发电机转轴平行与风向,优于垂直轴式转子发电机
由风轮,增速齿轮箱,发电机,偏航装置,控制系统,塔架等不见组成.
低速转动的风轮通过传动系统由增速齿轮箱增速,将动力传递给发电机,从而使风能转化为机械能.整个机舱由高大的塔架举起,由于风向变化不定,所以为了有效利用风能,还装有迎风装置,可以根据风向传感器测得的风向信号,由控制器控制偏航电机,驱动与塔架上大齿轮啮合的小齿轮转动,使机舱始终对着风
㈤ 直驱风力发电机的工作原理(发电机部分)
直驱电动机是直接驱动式电动机的简称,主要指电动机在驱动负载时,不需经过传动装置。 由于直驱电动机避免使用了传动带等传动设备,而这些传动部件恰恰是系统中故障率较高的部件,所以使用直驱电动机的系统,从技术上讲应具有更低的故障率。使用传动装置(如减速齿轮、带轮等)的机械系统,常常结构复杂,体积庞大,重量增加,而且带来系统运行成本、噪声及传动效率等方面的多种问题。直驱电动机的诞生使得驱动装置变得更紧凑,重量更轻,控制起来也更加容易。直驱电动机根据其制造的原理不同主要可以分为两类,力矩电动机和直线电动机。
(1) 力矩电动机。直流力矩电动机的工作原理与普通直流电动机相同,不同之处在于其结构。为了在一定体积和电枢电压下产生大的转矩额低的转速,直流力矩电动机一般做成扁平式结构,电枢长度与直径之比一般为0.2左右,极对数较多。为了减小转矩和转速的波动,选用较多的槽数和换向片数。通常采用永磁体产生磁场。定子是由软磁材料制成的带槽的圆环,槽中楔由铜板制成,兼作换向片,槽楔两端伸出槽外,一段作为电枢绕组接线用,另一端排列成环形换向器。转子的所有部件用高温环氧树脂烧铸成整体。
交流力矩电动机分为单相和三相两种,分别是从单相感应电动机和三相感应电动机的基本系列派生的,结构和安装尺寸与基本系列一致。不同之处在于,其转子导条通常采用较高电阻率的材料,如黄铜、纯铜、铝锰合金等,转子电阻较普通感应电动机大得多,因而其机械特性与普通感应电动机明显不同。
(2) 直线电动机。直线电动机是一种通过将封闭式磁场展开为开放式磁场,将电能直接转化为直线运动的机械能,而不需要任何中间转换机构的传动装置。直线电动机的结构可以看作是将一台旋转电动机沿径向剖开,并将电动机的圆周展开成直线而形成的。其中定子相当于直线电动机的初级,转子相当于直线电动机的次级,当初级通电流后,在初次级之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。
㈥ 水平轴风力发电机有什么概念简介
水平轴风力发电机是风力发电机中的一种,装置有风向传感元件及伺服电动机,可分为升力型和阻力型两类,可以集中气流,增加气流速度。
水平轴风力机可分为升力型和阻力型两类。升力型旋转速度快,阻力型旋转速度慢。对于风力发电,多采用升力型水平轴风力机。大多数水平轴风力机具有对风装置,能随风向改变而转动。对小型风力机,这种对风装置采用尾舵,而对于大型风力机,则利用风向传感元件及伺服电动机组成的传动装置。
风力机的风轮在塔架前面的称上风向风力机,风轮在塔架后面的则称下风向风力机。
水平风力机的式样很多,有的具有反转叶片的风轮;有的在一个塔架上安装多个风轮,以便在输出功率一定的条件下减少塔架成本;有的利用锥形罩,使气流通过水平轴风轮时集中或扩撒,因此加速或减速;还有的水平轴风力机在风轮周围产生漩涡,集中气流。增加气流速度。
㈦ 小型风力发电机是如何工作的
小型风力发电机是利用风力带动风车叶片旋转,把风的动能转变为风轮轴的机械能,再通过增速机将旋转速度提升,驱动发电机发电。小型风力发电机一般由风轮、发电机(包括传动装置)、调向器(尾翼)、塔架和限速安全机构等构件组成。目前,最常见的是水平轴风力发电机,即发电机的风轮围绕一个水平轴旋转,水平轴与风向平行,风轮叶片与旋转轴垂直。 (1)风轮。集风装置,它把流动空气具有的动能转变为风轮旋转的机械能。一般由叶片、叶柄、轮毂及风轮轴等组成。 (2)调向器。跟踪风向变化,保证风轮始终处于迎风状态。常用的调向器有尾舵、舵轮、电动机构和自动对风四种。 (3)塔架。支撑机构,它牢固与否将直接关系到风力机的安危与寿命。 (4)限速安全机构。为使风轮能以一定转速稳定工作,风力发电机上设有调速装置,在风速大于设计额定风速时才起作用。 (5)传动装置。包括增速器与联轴器等。通常,风轮的转速低于发电机转子需要的转速,所以要增速。增速器与发电机之间用联轴器连接。 (6)发电机。多采用同步或异步交流发电机,发出的交流电通过整流装置转换成直流电。 (7)蓄电池。风力发电机的输出功率不稳定,所发出的电能一般不直接用在电器上,而是先用蓄电池储存起来,然后再向直流电器供电,或通过逆变器把蓄电池的直流电转变为交流电后再向交流电器供电。
㈧ 谁可以告诉我风力发电机的工作原理及相关图纸.越详细越好.
目前商用大型风力发电机组一般为水平轴风力发电机,它由风轮、增速齿轮箱、发电机、偏航装置、控制系统、塔架等部件所组成。风轮的作用是将风能转换为机械能,它由气动性能优异的叶片(目前商业机组一般为2—3个叶片)装在轮毂上所组成,低速转动的风轮通过传动系统由增速齿轮箱增速,将动力传递给发电机。上述这些部件都安装在机舱平面上,整个机舱由高大的搭架举起,由于风向经常变化,为了有效地利用风能,必须要有迎风装置,它根据风向传感器测得的风向信号,由控制器控制偏航电机,驱动与塔架上大齿轮咬合的小齿轮转动,使机舱始终对风
㈨ 水平轴风力机各部件的作用
1机头座与回转体,风力发电机塔架上端的部件——风轮、传动装置、对风装置、调速装置、发电机等组成了机头,机头与塔架的联结部件是机头座与回转体. (1)机头座 它用来支撑塔架上方的所有装置及附属部件,它牢固如否将直接关系到风力机的安危与寿命。微、小型风力机由于塔架上方的设备重量轻,一般由底板再焊以加强肋构成;中、大型风力机的机头座要复杂一些,它通常由以纵梁、横梁为主,再辅以台板、腹板、肋板等焊接而成。焊接质量要高,台板面要刨平,安装孔的位置要精确。 (2)回转体(转盘) 回转体是塔架与机头座的连接部件,通常由固定套、回转圈以及位于它们之间的轴承组成。固定套销定在塔架上部,而回转圈则与机头座相连,通过它们之间轴承和对风装置,在风向变化时,机头便能水平的回转,使风轮迎风工作。大、中型风力机的回转体常借用塔式吊车上的回转机构;小型风力机的回转体通常中在上、下各设一个轴承,均可采用圆锥滚子轴承,也可以上面用向心球轴承以承受径向载荷,下面用推力轴承来承受机头的全部重量;微型风力机的回转体不宜采用滚动轴承,而用青铜加工的轴套,以防对风向(瞬时变化)过敏,导致风轮的频繁回转。 2 对风装置 自然界的风,方向和速度经常变化,为了使风力机能有效地捕捉风能,就应设置对风装置以跟踪风向的变化,保证风轮基本上始终处于迎风状况。风力机的对风装置常用的有:尾舵(尾翼)、舵轮、电动机构和自动对风四种。 (1)尾舵 尾舵也称尾翼,是常见的一种对风装置,微、小型风力发电机普遍应用它。尾舵有3种基本形式(a)是老式的,(b)是改进的,(c)为新式的,它的翼展与弦长的比为2~5,对风向变化反应敏感,跟踪性好。
图3-3-8 尾舵形式 尾舵常处于风轮后面的尾流区里,为了避开尾流的影响,可将尾舵翘起安装,高出风轮(见图3-3-9之a)。有人研制的10kW左右的风力发电机,将尾舵改进成如力图3-3-9之b所示的型式,既减少了尾舵面积,又使调向平稳。
4 图3-3-9 尾舵的进一步改进 尾舵到风轮的距离一般取为风轮直径的0.8~1.0值。尾舵的面积,在高速风力发电机中,可取为风轮旋转面积的4%左右;而在低速风力发电机中,可取为10%左右的风轮旋转面积。
㈩ 风力发电机齿轮箱增速比一般为多少
大型风力发电机的传动装置,增速比一般为 40~50。
因为风速是不稳定的.齿轮箱可以将很低的风轮转速(大型的风机通常为27转/分)变为很高的发电机转速(通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出...
首先,300W的风力发电机是不需要增速箱的。