① 电磁铁的应用
电磁铁的应用有以下几点:
1、制动电磁铁:用于电机在电气传动装置中的机械制动,达到准确、快速停车的目的。常见的模型有mzd1(单相)和mzs1(三相)系列。
2、起重电磁铁:用作起重装置,用于提升钢、铁砂等导磁材料,或用作电磁机械手,用于固定钢等导磁材料。
3、电磁阀:用磁力推动电磁阀,使阀口开、关或反转。
4、牵引电磁铁:主要利用牵引机械装置执行自动控制任务。
(1)电磁传动装置的应用扩展阅读:
电磁铁的优点:
电磁铁的磁性有无可以用通、断电流控制;磁性的大小可以用电流的强弱或线圈的匝数多少来控制;也可通过改变电阻控制电流大小来控制磁性大小;它的磁极可以由改变电流的方向来控制,等等。
即:磁性的强弱可以改变、磁性的有无可以控制、磁极的方向可以改变,磁性可因电流的消失而消失。
② 火车机车上与电磁接触器比较,电空接触器有哪些优缺点
电磁接触器采用电磁传动装置,电空接触器采用电空传动装置.电磁接触器一般应用于机车的辅助电路中,电空接触器应用于主电路中
电空接触器具有体积小、重量轻、传动力大等优点,所以在电力机车的主电路内广泛采用。电空接触器的触头系统应包括主触头和弧触头两部分。
电控接触器是由电控阀控制压缩空气传动的一种高压电器开关。
电磁接触器是利用电磁作用力驱动的一种电器开关。
电控阀是利用电磁吸引力转换压缩空气通路的三通阀。
继电器是一种自动电器,当继电器轨入量达到一定值时,就使输出量有一个跃变,因而继电器是一个断续控制的自动电器。
③ 电磁铁有哪些用途
1、制动电磁铁:在电气传动装置中用作电动机的机械制动,以达到准确迅速停车的目的,内常见的型号有MZD1(单相)容,MZS1(三相)系列。
2、起重电磁铁:用作起重装置来吊运钢材,铁砂等导磁材料,或用作电磁机械手夹持钢铁等导磁材料。
3、阀用电磁铁:利用磁力推动磁阀,从而达到阀口开启,关闭或换向的目的。
4、牵引电磁铁:主要用牵引机械装置以执行自动控制任务。
(3)电磁传动装置的应用扩展阅读:
电磁铁的优点:
电磁铁的磁性有无可以用通、断电流控制;磁性的大小可以用电流的强弱或线圈的匝数多少来控制;也可通过改变电阻控制电流大小来控制磁性大小;它的磁极可以由改变电流的方向来控制,等等。
即:磁性的强弱可以改变、磁性的有无可以控制、磁极的方向可以改变,磁性可因电流的消失而消失。
磁能应用原理:
在静磁情形,电流与磁场总是相伴存在的,因此,将磁能看成与电流联系起来还是储存在磁场中,效果完全相同。然而科学实践证明磁场是一种特殊形态的物质,它可以脱离电流而存在。
变化的电场也能产生磁场,这种变化电场产生的磁场亦具有能量,其场能密度与静磁相同。在一般情形下,变化的电磁场以波的形式传播,传播过程中伴随着能量传递。
④ 我们身边有哪些东西用到了电磁铁
(1)起重机:为工业用的强力电磁铁,通上大电流,可用以吊运钢板、货柜、废铁等。(2)电话。(3)安培计、伏特计、检流计。(4)电铃等等。(5)自动化控制设备(6)工业自动化控制、办公自动化。(7)包装机械、医疗器械、食品机械、纺织机械等。(8)磁悬浮列车。
电磁铁有许多优点:电磁铁的磁性有无可以用通、断电流控制;磁性的大小可以用电流的强弱或线圈的匝数多少来控制;也可通过改变电阻控制电流大小来控制磁性大小;它的磁极可以由改变电流的方向来控制,等等。
(4)电磁传动装置的应用扩展阅读:
电磁铁的分类:
1、制动电磁铁:在电气传动装置中用作电动机的机械制动,以达到准确迅速停车的目的,常见的型号有MZD1(单相),MZS1(三相)系列。
2、起重电磁铁:用作起重装置来吊运钢材,铁砂等导磁材料,或用作电磁机械手夹持钢铁等导磁材料。
3、阀用电磁铁:利用磁力推动磁阀,从而达到阀口开启,关闭或换向的目的。
4、牵引电磁铁:主要用牵引机械装置以执行自动控制任务。
参考资料来源:网络—电磁铁
⑤ 在生活中,有哪些物体应用了传动装置
转动装置有很多啊!例如:车子,洗衣机,冰箱,手表
⑥ 电气传动技术在各个领域的应用
电气传动技术的特点及展望
1 引言
电气传动技术是指用电动机把电能转换成机械能,带动各种类型的生产机械、交通车辆以及生活中需要运动物品的技术;是通过合理使用电动机实现生产过程机械设备电气化及其自动控制的电器设备及系统的技术总称[1]。一个完整的电气传动系统包括三部分:控制部分、功率部分、电动机。
电气传动技术是电力电子与电机及其控制相结合的产物,内容涉及电机、电力电子、控制理论、计算机、微电子、现代检测技术、仿真技术、电力系统、机械、材料和信息技术等多种学科,是这些学科交叉融合而形成的一门新型的综合性学科。对于位置控制(伺服)系统,也称为运动控制。
电气传动技术诞生于20世纪初的第二次工业革命时期,电气传动技术大大推动了人类社会的现代化进步。它是研究如何通过电动机控制物体和生产机械按要求运动的学科。随着传感器技术和自动控制理论的发展,由简单的继电、接触、开环控制,发展为较复杂的闭环控制系统。20世纪60年代,特别是80年代以来,随着电力电子技术、现代控制理论、计算机技术和微电子技术的发展,逐步形成了集多种高新技术于一身的全新学科技术一现代电气传动技术。2 电气传动的主体电动机
电动机分为交流电动机和直流电动机。二者的结构、工作原理不同,所需的电气传动装置也不同。电气传动可分为两类:直流电气传动和交流电气传动。由于历史上最早出现的是以蓄电池形式供电的直流电动机,所以直流传动也是唯一的电气传动方式。直到1885年意大利都灵大学发明了感应电动机,而后出现了交流电,解决了三相制交流电的输变问题交流电气传动才出现。20世纪80年代之前,直流电气传动在高性能的电气传动领域占绝对统治地位。此后,随着电力电子技术和计算机控制技术的发展,以及现代控制理论的应用,交流电气传动得到了快速发展,静动态性能可以与直流电气传动相媲美。因此交流电气传动在高性能的电气传动领域所占比例逐年上升,目前已处于主导地位。
2.1 直流电动机传动
直流电动机的转速n的表达式为 式中:Ua 电动机电枢两端的电压;Ia 电动机电枢回路电流;R 电动机回路电阻;Ke 电动机电势常数;φ 电动机励磁磁通。
直流电动机的调速方式有三种:一是调压调速,即保持R和φ不变,通过调节Ua来调节n,是一种大范围无级调速方式;二是弱磁升速,即保持R和Ua不变,通过减少φ来升高n,是一种小范围无级调速方式;三是变电阻调速,即保持Ua和φ不变,通过调节R来调节n,是一种大范围有级调速方式。对于要求大范围平滑调速的直流电气传动系统来说,调压调速方式最好。而且现代工业企业的低压供电系统多数采用交流供电,通过可控变流装置即可提供可调的直流电压信号,所以直流调压调速方式应用最广泛。在电力电子变换器中,用于控制直流电机的主要是由全控器件组成的斩波器或PWM变换器,以及晶闸管相控整流器。
直流电气传动控制技术的发展经历了以下演变过程:开环控制→单闭环控制→多闭环控制;分立元件电路控制→小规模集成电路控制→大规模集成电路控制; 模拟电路控制→数模电路混合控制→数字电路控制;硬件控制→软件控制。
2.2 交流电动机传动
交流电动机分异步电动机和同步电动机两大类。按照异步电动机的基本原理,从定子传入转子的电磁功率Pm可分为两部分:一部分是拖动负载的有效功率P1=(1-s) Pm,另一部分是转差功率Ps=sPm。转差功率是评价调速系统效率高低的一种标志,因此交流异步电动机调速方式分三类:一是转差功率消耗型调速, 即把全部转差功率转化成热能消耗掉。该调速方式结构简单,但效率低,而且转速越低,效率越低;二是转差功率回馈型调速,即转差功率的一部分转化成热能消耗掉,大部分则通过变流装置回馈电网或转化为机械能予以利用。该调速方式结构复杂,但效率比第一类高;三是转差功率不变型调速,即无论转速高低,消耗的转差功率基本不变。该调速方式结构复杂,但效率最高。在异步电动机的各种调速方式中,效率最高、性能最好、应用最广泛的是变压变频调速方式。它是一种转差功率不变型调速,可以实现大范围平滑调速。
同步电动机没有转差,当然也没有转差功率,所以同步电动机调速只能是转差功率不变型调速。而同步电动机转子极对数固定,因此只能采用变压变频调速方式。
交流电气传动控制模式的发展经历了以下演变过程:转速开环的恒压频比控制→转速闭环转差频率控制→矢量控制→解耦控制→模糊控制;分立元件电路控制→小规模集成电路控制→大规模集成电路控制;模拟电路控制→数字电路控制;硬件控制→软件控制。3 现代电气传动的物质基础一电力电子器件
电力电子技术是现代电气传动的基石,其直接决定和影响着现代电气传动的发展。如果把计算机比作现代生产设备的大脑,电力电子器件及功率变换装置则可视为支配手足(电机)的肌肉和神经,因此,电力电子变换器是信息流与物质/能量流之间的重要纽带[2][3]。
1957年世界上第一只晶闸管(SCR)的问世标志着电力电子学的诞生,从此,电力电子器件的发展日新月异。从20世纪60年代第一代半控型电力电子器件一晶闸管(SCR)发明至今,已经历了第二代有自关断能力的全控型电力电子器件 CTR,GTO,MOSFET,第三代复合场控制器件一IGBT,SIT,MCT等和正蓬勃发展的第四代模块化功率器件一功率集成电路(PIC),如智能化模块IPM和专用功率器件模块ASPM等。这为交流传动实现高性能控制提供了必需的变频装置。电力电子器件的每一次更新换代,都会引起功率变换装置和交流传动性能的迅速提高,它们相互竞争、相互促进,向高电压、大电流、高频化、集成化、模块化、智能化方向发展,并逐步在性能和价格上可以与直流传动相媲美,而且在某些方面实现了直流传动所不能达到的高性能。
交流传动在实现节能和获得高性能的同时,也带来了诸如电网功率因数降低、谐波和电磁干扰等“污染”。另外,随着容量的增加,功率变换器的体积增大。为了解决这些弊端,1964年,A.Schonug率先将通信系统的脉宽调制(PWM)技术应用于交流电气传动,使变频器由传统的相控电流型逆变器、电压型逆变器发展到脉宽调制(PWM)型逆变器,大大缓解了对环境的“污染”,减小了变频器的体积,简化了变换装置的控制,为近代交流传动开辟了新的发展领域。目前,常用的交流PWM控制技术有:以输出电压接近正弦波为其控制目标的基于正弦波对三角波脉宽调制的SPWM控制和基于消除指定次数谐波的HEPWM控制;以输出正弦波电流为其控制目标的基于电流滞环跟踪的CHPWM控制;以及以被控电机的旋转磁场接近圆形为其控制目标的电压空间矢量控制(SVPWM控制)。电力电子器件及其功率变换装置在交流传动的发展中起着非常关键的作用,可以说没有电力电子技术的发展,就没有今天高性能的电气传动技术。4 电气传动自动化技术发展总趋势及主要的发展方向
电气传动自动化技术发展总趋势是:交流变频调速逐步取代直流调速、无触点控制取代有接点逻辑控制、全数字控制与数模复合控制并存。电气自动化技术的发展是由用户的需求和相关学科的技术发展所推动的,他直接涉及改善电气传动的性能、价格、尺寸、能源消耗与节约设计,调试等方面。其主要发展方向有:
4.1 实现高水平控制
电气传动自动化技术基于电动机和机械模型的控制策略,有矢量控制、磁场控制、直接转矩控、现代理论的控制策略,有滑模变结构技术、模型参考自适应技术、采用微分几何理论的非线性解鲁棒观测器,在某种指标意义下的最优控制技术和逆奈奎斯特阵列设计方法等;基于智能控制思想的控制策略,有模糊控制、神经元网络、专家系统和各种各样的优化自诊断技术等。以高速微处理器RISC( Reced Instruction Set Computer )及高速DSP(DigitalSignal Processor)为基础的数字控制模板处理速度大大提高,有足够的能力实现各种控制算法,Windows操作系统的引人可自由设计,图形编程的控制技术也有很大的发展。
4.2 开发清洁电能的变流器
所谓清洁电能变流器是指变流器的功率因数接近1,网侧和负载侧有尽可能低的谐波分量,以减少对电网的公害和电动机的转矩脉动。对中小容量变流器,提高开关频率的PWM控制是有效的;对大容量交流器,在常规的开关频率下,可改变电路结构和控制方式,实现清洁电能的变换。
4.3 系统化
电气传动自动化的发展与其相关技术的发展是分不开的。电气传动自动化技术的发展是将电网、整流器、逆变器、电动机、生产机械和控制系统为一个整体。从系统上进行考虑。例如要求和上位控制的可编程控制器通过串行通信连接,一般都带有串行通讯标准功能(RS-232、RS-485),此外还通过专用的开放总线方式运行。
4.4 CAD技术
模拟与计算机辅助设计技术(CAD)、电动机模拟器、负载模拟器以及各种CAD软件引人对变频器的设计和测试提供了强有力的支持。
4.5 缩小装置尺寸
紧凑型变流器要求功率和控制元件具有高的集成度,其中包括智能化的功率模块、紧凑型的光耦合器、高频率的开关电源,以及采用新型电工材料制造的小体积变压器、电抗器和电容器。功率器件冷却方式的改变(如水冷、蒸发冷却和热管)对缩小装置的尺寸也很有效。现在主回路中占发热量50%-70%的IGBT的损耗已大幅度减少,集电极一发射极的饱和电压(Vcesat)大为降低,现已开发出了第4代IGBT:目前,国外已研制成功高密度Building Block(系统集成)。
⑦ 电磁铁用途是什么
1、制动电磁铁:在电气传动装置中用作电动机的机械制动,以达到准确迅速停内车的目的,常见的容型号有MZD1(单相),MZS1(三相)系列。
2、起重电磁铁:用作起重装置来吊运钢材,铁砂等导磁材料,或用作电磁机械手夹持钢铁等导磁材料。
3、阀用电磁铁:利用磁力推动磁阀,从而达到阀口开启,关闭或换向的目的。
4、牵引电磁铁:主要用牵引机械装置以执行自动控制任务。
(7)电磁传动装置的应用扩展阅读:
电磁铁的优点:
电磁铁的磁性有无可以用通、断电流控制;磁性的大小可以用电流的强弱或线圈的匝数多少来控制;也可通过改变电阻控制电流大小来控制磁性大小;它的磁极可以由改变电流的方向来控制,等等。
即:磁性的强弱可以改变、磁性的有无可以控制、磁极的方向可以改变,磁性可因电流的消失而消失。
磁能应用原理:
在静磁情形,电流与磁场总是相伴存在的,因此,将磁能看成与电流联系起来还是储存在磁场中,效果完全相同。然而科学实践证明磁场是一种特殊形态的物质,它可以脱离电流而存在。
变化的电场也能产生磁场,这种变化电场产生的磁场亦具有能量,其场能密度与静磁相同。在一般情形下,变化的电磁场以波的形式传播,传播过程中伴随着能量传递。
⑧ 电磁式电气主要组成部分有哪几部分组成各部分的作用是啥
电磁式电气主要组成部分由传动装置(电磁机构)、触头装置(执行机构)、灭弧装置和其他部件组成。
1.电磁机构
电磁机构包括动铁心(衔铁)、静铁心和电磁线圈三部分,在电磁线圈通以电流,产生电磁吸力带动触头动作。
电磁机构是电磁式接触器的重要组成部分之一。电磁机构由线圈、铁心(静铁心)、衔铁(动铁心)、极靴、铁轭和空气隙等组成。电磁机构中的线圈、铁心在工作状态下是不动的;衔铁,则是可动的。
电磁机构通过衔铁与相应的机械机构的动作状态和动作过程,将电磁线圈产生的电磁能转换为机械能来带动触点使之闭合或者断开以实现对被控制电路的控制目的。
2.触头装置
触头的结构形式很多,按控制的电路可分::主触头和辅助触头;
触头按其原始状态分: :常开触头和常闭触头;
触头按其结构形式分: :桥形触头和指形触头。
3.灭弧装置
灭弧罩是一种用陶土和石棉水泥制成的绝缘、耐高温的灭弧装置。是一种简单的灭弧装置。利用灭弧罩装置灭弧时,在灭弧罩内一般均采用纵缝灭弧的方法来灭弧。
常用的灭弧装置:灭弧罩(耐弧陶土、石棉水泥、耐弧塑料),灭弧栅(耐弧栅片—镀铜薄钢片),磁吹灭弧装置(触头电路中串一灭弧线圈)。
4.其他部件,包括反作用弹簧、缓冲弹簧、传动机构及外壳等。
(8)电磁传动装置的应用扩展阅读
1、工作原理
电磁接触器其原理是当接触器的电磁线圈通电后,会产生很强的磁场,使静铁心产生电磁吸力吸引衔铁,并带动触头动作:常闭触头断开,常开触头闭合,两者是联动的。当线圈断电时,电磁吸力消失,衔铁在释放弹簧的作用下释放,使触头复原:常闭触头闭合,常开触头断开。
在工业电气中,接触器的型号很多,电流在5A-1000A的不等,其用处相当广泛。在电工学上,接触器是一种用来接通或断开带负载的交直流主电路或大容量控制电路的自动化切换器,主要控制对象是电动机;
此外也用于其他电力负载,如电热器,电焊机,照明设备,接触器不仅能接通和切断电路,而且还具有低电压释放保护作用。接触器控制容量大。适用于频繁操作和远距离控制。是自动控制系统中的重要元件之一。
2、功能说明
交流接触器利用主接点来开闭电路,用辅助接点来导通控制回路。
主接点一般只有常开接点,而辅助接点常有两对具有常开和常闭功能的接点,小型的接触器也经常作为中间继电器配合主电路使用。交流接触器的接点,由银钨合金制成,具有良好的导电性和耐高温烧蚀性。
交流接触器的动作动力来源于交流电磁铁,电磁铁由两个“山”字形的硅钢片叠成,其中一个固定,在上面套上线圈,工作电压有多种供选择。为了使磁力稳定,铁芯的吸合面加上短路环。交流接触器在失电后,依靠弹簧复位。
另一半是活动铁芯,构造和固定铁芯一样,用以带动主接点和辅助接点的开关。20安培以上的接触器加有灭弧罩,利用断开电路时产生的电磁力,快速拉断电弧,以保护接点。
接触器具有可高频率的做电源开启与切断控制﹐最高操作频率甚至可达每小时1200次也没问题。而接触器的使用寿命很高,机械寿命通常为数百万次至一千万次,电寿命一般则为数十万次至数百万次。
参考资料:网络-电磁接触器
⑨ 交流电磁铁的分磁环能起到什么作用
交流电磁铁和直流电磁铁的区别
1、线圈产生的力因电流方式不同计算不同,如果产生相同的力的线圈,交流和直流的缠绕方式和匝数不一样
2、交流电磁铁一般有分磁环,直流的没有
3、电磁铁的铁心材料不同
直流电磁铁的磁极极性是不变的且有‘磁滞’效应,所以不容易释放。
因为没有交流阻抗,直流电磁线的线圈可以绕的更多一些,所以磁性比较强,也不容易产生噪声。
所以直流电磁铁没有分磁环!!交流电每秒变化50周,电磁铁有100次过零时间,没有磁力,用短路环短路磁铁一部分,有磁场(变化)时将磁能转为电能存在短路环中,当磁场下降,又将电能转化为磁能,使电磁铁永远处于有磁力状态。
交流电磁铁的短路环,作用是在交流电过零时产生延迟的磁场。维持电磁铁的磁力防止产生震动
交流每秒100次过零。电流过零电磁铁的磁力会消失。而短路环中因磁场强度有最大变化量(交流电的直线段)所短路环中有最大电流,这部份电流就会产生磁场维持一定的磁力。章主要介绍了电力机车电器上常用的传动装置(电磁式、电空式)的作用、种类、组成、工作原理和特点、特性。
电器传动装置是有触点开关电器用来驱使电器运动部分(触头、接点)按规定进行动作的执行机构。在电力机车电器上采用的主要是电磁传动装置和电空传动装置,其次还采用了手动、机械式传动装置,个别的还采用了电动机传动(如调压开关)。
电磁传动装置就是通过电磁铁把电磁能转变成机械能来驱动电器动作的机构。电空传动装置是以电磁阀控制的压缩空气作为动力,驱使电器运动部分动作的机构,前者主要用于小型电器,后者主要用于较大容量的电器中。
第一节 电磁传动装置
一、电磁传动装置的基本组成和工作原理
电磁传动装置是一种通过电磁铁把电磁能变成机械能来驱使电器触头动作的机构。电磁传动装置实际上就是一个电磁铁,它的形式很多,比如:螺管式、直动式工形、U形等。但它们的基本组成和工作原理却是相同的。它主要由吸引线圈和磁系统组成。以直流接触器所用的拍合式电磁铁为例,说明其组成和工作原理。如图15—1所示:
⑩ 电磁铁的应用有什么
电磁铁是一种电器,它被广泛应用于机床、起重机等大型机电设备中。电磁铁是利用通电的铁心线圈吸引衔铁或保持某种机械零件、工件于固定位置的一种电器。衔铁的动作可使其他机械装置发生联动。当电源断开时,电磁铁的磁性随之消失,衔铁或其他零件即被释放。电磁铁可分为线圈、铁心及衔铁3部分。
电磁铁在生产中的应用极为普遍,工业上常用来制动机床和起重机的电动机。当接通电源时,电磁铁动作而拉开弹簧,把抱闸提起,于是放开装在电动机轴上的制动轮,这时电动机便可自由转动。当电源断开时,电磁铁的衔铁落下,弹簧便把抱闸压在制动轮上,电动机就被制动。在起重机中采用这种方法,可以避免由于工作过程中的断电而使重物滑下造成的事故。
随着机械工业的发展,在机床中也常用电磁铁操纵气动或液压传动机构的阀门和控制变速机构。电磁吸盘和电磁离合器也都是电磁铁的具体应用。此外,现代物流业的集装流程中,也使用电磁铁进行起重提放钢材等。不论是机床、起重机,还是物流装卸的电磁继电器和接触器,电磁铁的任务是开闭电路,起到一个开关的作用。
电磁开关.牵引电磁铁.电磁吊.磨床吸盘.电磁阀.电磁杀车,磁悬浮,电铃等。